2013-10-21 19:15:29 +02:00
|
|
|
/*
|
|
|
|
* This file is part of the coreboot project.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2013 Google Inc.
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
|
|
|
* published by the Free Software Foundation; version 2 of
|
|
|
|
* the License.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
|
|
|
* MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <console/console.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <rmodule.h>
|
|
|
|
#include <arch/cpu.h>
|
|
|
|
#include <cpu/cpu.h>
|
|
|
|
#include <cpu/intel/microcode.h>
|
|
|
|
#include <cpu/x86/cache.h>
|
|
|
|
#include <cpu/x86/lapic.h>
|
|
|
|
#include <cpu/x86/name.h>
|
|
|
|
#include <cpu/x86/msr.h>
|
|
|
|
#include <cpu/x86/mtrr.h>
|
|
|
|
#include <cpu/x86/smm.h>
|
|
|
|
#include <cpu/x86/mp.h>
|
|
|
|
#include <delay.h>
|
|
|
|
#include <device/device.h>
|
|
|
|
#include <device/path.h>
|
|
|
|
#include <lib.h>
|
|
|
|
#include <smp/atomic.h>
|
|
|
|
#include <smp/spinlock.h>
|
|
|
|
#include <thread.h>
|
|
|
|
|
|
|
|
#define MAX_APIC_IDS 256
|
|
|
|
/* This needs to match the layout in the .module_parametrs section. */
|
|
|
|
struct sipi_params {
|
|
|
|
uint16_t gdtlimit;
|
|
|
|
uint32_t gdt;
|
|
|
|
uint16_t unused;
|
|
|
|
uint32_t idt_ptr;
|
|
|
|
uint32_t stack_top;
|
|
|
|
uint32_t stack_size;
|
|
|
|
uint32_t microcode_lock; /* 0xffffffff means parallel loading. */
|
|
|
|
uint32_t microcode_ptr;
|
|
|
|
uint32_t msr_table_ptr;
|
|
|
|
uint32_t msr_count;
|
|
|
|
uint32_t c_handler;
|
|
|
|
atomic_t ap_count;
|
|
|
|
} __attribute__((packed));
|
|
|
|
|
|
|
|
/* This also needs to match the assembly code for saved MSR encoding. */
|
|
|
|
struct saved_msr {
|
|
|
|
uint32_t index;
|
|
|
|
uint32_t lo;
|
|
|
|
uint32_t hi;
|
|
|
|
} __attribute__((packed));
|
|
|
|
|
|
|
|
|
|
|
|
/* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */
|
|
|
|
extern char _binary_sipi_vector_start[];
|
|
|
|
/* These symbols are defined in c_start.S. */
|
|
|
|
extern char gdt[];
|
|
|
|
extern char gdt_end[];
|
|
|
|
extern char idtarg[];
|
|
|
|
|
|
|
|
/* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the
|
|
|
|
* memory range is already reserved so the OS cannot use it. That region is
|
|
|
|
* free to use for AP bringup before SMM is initialized. */
|
|
|
|
static const uint32_t sipi_vector_location = SMM_DEFAULT_BASE;
|
|
|
|
static const int sipi_vector_location_size = SMM_DEFAULT_SIZE;
|
|
|
|
|
|
|
|
struct mp_flight_plan {
|
|
|
|
int num_records;
|
|
|
|
struct mp_flight_record *records;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct mp_flight_plan mp_info;
|
|
|
|
|
|
|
|
struct cpu_map {
|
|
|
|
device_t dev;
|
|
|
|
int apic_id;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Keep track of apic and device structure for each cpu. */
|
|
|
|
static struct cpu_map cpus[CONFIG_MAX_CPUS];
|
|
|
|
|
|
|
|
static inline void barrier_wait(atomic_t *b)
|
|
|
|
{
|
|
|
|
while (atomic_read(b) == 0) {
|
|
|
|
asm ("pause");
|
|
|
|
}
|
|
|
|
mfence();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void release_barrier(atomic_t *b)
|
|
|
|
{
|
|
|
|
mfence();
|
|
|
|
atomic_set(b, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns 1 if timeout waiting for APs. 0 if target aps found. */
|
|
|
|
static int wait_for_aps(atomic_t *val, int target, int total_delay,
|
|
|
|
int delay_step)
|
|
|
|
{
|
|
|
|
int timeout = 0;
|
|
|
|
int delayed = 0;
|
|
|
|
while (atomic_read(val) != target) {
|
|
|
|
udelay(delay_step);
|
|
|
|
delayed += delay_step;
|
|
|
|
if (delayed >= total_delay) {
|
|
|
|
timeout = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return timeout;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ap_do_flight_plan(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < mp_info.num_records; i++) {
|
|
|
|
struct mp_flight_record *rec = &mp_info.records[i];
|
|
|
|
|
|
|
|
atomic_inc(&rec->cpus_entered);
|
|
|
|
barrier_wait(&rec->barrier);
|
|
|
|
|
|
|
|
if (rec->ap_call != NULL) {
|
|
|
|
rec->ap_call(rec->ap_arg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* By the time APs call ap_init() caching has been setup, and microcode has
|
|
|
|
* been loaded. */
|
|
|
|
static void asmlinkage ap_init(unsigned int cpu)
|
|
|
|
{
|
|
|
|
struct cpu_info *info;
|
|
|
|
int apic_id;
|
|
|
|
|
|
|
|
/* Ensure the local apic is enabled */
|
|
|
|
enable_lapic();
|
|
|
|
|
|
|
|
info = cpu_info();
|
|
|
|
info->index = cpu;
|
|
|
|
info->cpu = cpus[cpu].dev;
|
|
|
|
thread_init_cpu_info_non_bsp(info);
|
|
|
|
|
|
|
|
apic_id = lapicid();
|
|
|
|
info->cpu->path.apic.apic_id = apic_id;
|
|
|
|
cpus[cpu].apic_id = apic_id;
|
|
|
|
|
|
|
|
printk(BIOS_INFO, "AP: slot %d apic_id %x.\n", cpu, apic_id);
|
|
|
|
|
|
|
|
/* Walk the flight plan */
|
|
|
|
ap_do_flight_plan();
|
|
|
|
|
|
|
|
/* Park the AP. */
|
|
|
|
stop_this_cpu();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void setup_default_sipi_vector_params(struct sipi_params *sp)
|
|
|
|
{
|
|
|
|
sp->gdt = (uint32_t)&gdt;
|
|
|
|
sp->gdtlimit = (uint32_t)&gdt_end - (u32)&gdt - 1;
|
|
|
|
sp->idt_ptr = (uint32_t)&idtarg;
|
|
|
|
sp->stack_size = CONFIG_STACK_SIZE;
|
|
|
|
sp->stack_top = (uint32_t)&_estack;
|
|
|
|
/* Adjust the stack top to take into account cpu_info. */
|
|
|
|
sp->stack_top -= sizeof(struct cpu_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define NUM_FIXED_MTRRS 11
|
|
|
|
static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
|
|
|
|
MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR,
|
|
|
|
MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR,
|
|
|
|
MTRRfix4K_D8000_MSR, MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR,
|
|
|
|
MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR,
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
|
|
|
|
{
|
|
|
|
msr_t msr;
|
|
|
|
|
|
|
|
msr = rdmsr(index);
|
|
|
|
entry->index = index;
|
|
|
|
entry->lo = msr.lo;
|
|
|
|
entry->hi = msr.hi;
|
|
|
|
|
|
|
|
/* Return the next entry. */
|
|
|
|
entry++;
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int save_bsp_msrs(char *start, int size)
|
|
|
|
{
|
|
|
|
int msr_count;
|
|
|
|
int num_var_mtrrs;
|
|
|
|
struct saved_msr *msr_entry;
|
|
|
|
int i;
|
|
|
|
msr_t msr;
|
|
|
|
|
|
|
|
/* Determine number of MTRRs need to be saved. */
|
|
|
|
msr = rdmsr(MTRRcap_MSR);
|
|
|
|
num_var_mtrrs = msr.lo & 0xff;
|
|
|
|
|
|
|
|
/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */
|
|
|
|
msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
|
|
|
|
|
|
|
|
if ((msr_count * sizeof(struct saved_msr)) > size) {
|
|
|
|
printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
msr_entry = (void *)start;
|
|
|
|
for (i = 0; i < NUM_FIXED_MTRRS; i++) {
|
|
|
|
msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < num_var_mtrrs; i++) {
|
|
|
|
msr_entry = save_msr(MTRRphysBase_MSR(i), msr_entry);
|
|
|
|
msr_entry = save_msr(MTRRphysMask_MSR(i), msr_entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
msr_entry = save_msr(MTRRdefType_MSR, msr_entry);
|
|
|
|
|
|
|
|
return msr_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static atomic_t *load_sipi_vector(struct mp_params *mp_params)
|
|
|
|
{
|
|
|
|
struct rmodule sipi_mod;
|
|
|
|
int module_size;
|
|
|
|
int num_msrs;
|
|
|
|
struct sipi_params *sp;
|
|
|
|
char *mod_loc = (void *)sipi_vector_location;
|
|
|
|
const int loc_size = sipi_vector_location_size;
|
|
|
|
atomic_t *ap_count = NULL;
|
|
|
|
|
|
|
|
if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) {
|
|
|
|
printk(BIOS_CRIT, "Unable to parse sipi module.\n");
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rmodule_entry_offset(&sipi_mod) != 0) {
|
|
|
|
printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n");
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rmodule_load_alignment(&sipi_mod) != 4096) {
|
|
|
|
printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n",
|
|
|
|
rmodule_load_alignment(&sipi_mod));
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
module_size = rmodule_memory_size(&sipi_mod);
|
|
|
|
|
|
|
|
/* Align to 4 bytes. */
|
|
|
|
module_size = ALIGN(module_size, 4);
|
|
|
|
|
|
|
|
if (module_size > loc_size) {
|
|
|
|
printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n",
|
|
|
|
module_size, loc_size);
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size);
|
|
|
|
|
|
|
|
if (num_msrs < 0) {
|
|
|
|
printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n");
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rmodule_load(mod_loc, &sipi_mod)) {
|
|
|
|
printk(BIOS_CRIT, "Unable to load SIPI module.\n");
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
sp = rmodule_parameters(&sipi_mod);
|
|
|
|
|
|
|
|
if (sp == NULL) {
|
|
|
|
printk(BIOS_CRIT, "SIPI module has no parameters.\n");
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
setup_default_sipi_vector_params(sp);
|
|
|
|
/* Setup MSR table. */
|
|
|
|
sp->msr_table_ptr = (uint32_t)&mod_loc[module_size];
|
|
|
|
sp->msr_count = num_msrs;
|
|
|
|
/* Provide pointer to microcode patch. */
|
|
|
|
sp->microcode_ptr = (uint32_t)mp_params->microcode_pointer;
|
|
|
|
/* Pass on abiility to load microcode in parallel. */
|
|
|
|
if (mp_params->parallel_microcode_load) {
|
|
|
|
sp->microcode_lock = 0;
|
|
|
|
} else {
|
|
|
|
sp->microcode_lock = ~0;
|
|
|
|
}
|
|
|
|
sp->c_handler = (uint32_t)&ap_init;
|
|
|
|
ap_count = &sp->ap_count;
|
|
|
|
atomic_set(ap_count, 0);
|
|
|
|
|
|
|
|
return ap_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int allocate_cpu_devices(struct bus *cpu_bus, struct mp_params *p)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int max_cpus;
|
|
|
|
struct cpu_info *info;
|
|
|
|
|
|
|
|
max_cpus = p->num_cpus;
|
|
|
|
if (max_cpus > CONFIG_MAX_CPUS) {
|
|
|
|
printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n",
|
|
|
|
max_cpus, CONFIG_MAX_CPUS);
|
|
|
|
max_cpus = CONFIG_MAX_CPUS;
|
|
|
|
}
|
|
|
|
|
|
|
|
info = cpu_info();
|
|
|
|
for (i = 1; i < max_cpus; i++) {
|
|
|
|
struct device_path cpu_path;
|
|
|
|
device_t new;
|
|
|
|
int apic_id;
|
|
|
|
|
|
|
|
/* Build the cpu device path */
|
|
|
|
cpu_path.type = DEVICE_PATH_APIC;
|
|
|
|
|
|
|
|
/* Assuming linear APIC space allocation. */
|
|
|
|
apic_id = info->cpu->path.apic.apic_id + i;
|
|
|
|
if (p->adjust_apic_id != NULL) {
|
|
|
|
apic_id = p->adjust_apic_id(i, apic_id);
|
|
|
|
}
|
|
|
|
cpu_path.apic.apic_id = apic_id;
|
|
|
|
|
|
|
|
/* Allocate the new cpu device structure */
|
|
|
|
new = alloc_find_dev(cpu_bus, &cpu_path);
|
|
|
|
if (new == NULL) {
|
|
|
|
printk(BIOS_CRIT, "Could not allocte cpu device\n");
|
|
|
|
max_cpus--;
|
|
|
|
}
|
|
|
|
cpus[i].dev = new;
|
|
|
|
}
|
|
|
|
|
|
|
|
return max_cpus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns 1 for timeout. 0 on success. */
|
|
|
|
static int apic_wait_timeout(int total_delay, int delay_step)
|
|
|
|
{
|
|
|
|
int total = 0;
|
|
|
|
int timeout = 0;
|
|
|
|
|
|
|
|
while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
|
|
|
|
udelay(delay_step);
|
|
|
|
total += delay_step;
|
|
|
|
if (total >= total_delay) {
|
|
|
|
timeout = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return timeout;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int start_aps(struct bus *cpu_bus, int ap_count, atomic_t *num_aps)
|
|
|
|
{
|
|
|
|
int sipi_vector;
|
|
|
|
/* Max location is 4KiB below 1MiB */
|
|
|
|
const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
|
|
|
|
|
|
|
|
if (ap_count == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* The vector is sent as a 4k aligned address in one byte. */
|
|
|
|
sipi_vector = sipi_vector_location >> 12;
|
|
|
|
|
|
|
|
if (sipi_vector > max_vector_loc) {
|
|
|
|
printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n",
|
|
|
|
sipi_vector);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count);
|
|
|
|
|
|
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
|
|
return -1;
|
|
|
|
} else
|
|
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Send INIT IPI to all but self. */
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
|
|
|
|
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
|
|
|
|
LAPIC_DM_INIT);
|
|
|
|
printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n");
|
|
|
|
mdelay(10);
|
|
|
|
|
|
|
|
/* Send 1st SIPI */
|
|
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
|
|
return -1;
|
|
|
|
} else
|
|
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
|
|
|
|
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
|
|
|
|
LAPIC_DM_STARTUP | sipi_vector);
|
|
|
|
printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete...");
|
|
|
|
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
|
|
|
|
printk(BIOS_DEBUG, "timed out.\n");
|
|
|
|
return -1;
|
|
|
|
} else {
|
|
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Wait for CPUs to check in up to 200 us. */
|
|
|
|
wait_for_aps(num_aps, ap_count, 200 /* us */, 15 /* us */);
|
|
|
|
|
|
|
|
/* Send 2nd SIPI */
|
|
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
|
|
return -1;
|
|
|
|
} else
|
|
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
|
|
|
|
lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
|
|
|
|
LAPIC_DM_STARTUP | sipi_vector);
|
|
|
|
printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete...");
|
|
|
|
if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) {
|
|
|
|
printk(BIOS_DEBUG, "timed out.\n");
|
|
|
|
return -1;
|
|
|
|
} else {
|
|
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Wait for CPUs to check in. */
|
|
|
|
if (wait_for_aps(num_aps, ap_count, 10000 /* 10 ms */, 50 /* us */)) {
|
|
|
|
printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n",
|
|
|
|
atomic_read(num_aps), ap_count);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bsp_do_flight_plan(struct mp_params *mp_params)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int ret = 0;
|
|
|
|
const int timeout_us = 100000;
|
|
|
|
const int step_us = 100;
|
|
|
|
int num_aps = mp_params->num_cpus - 1;
|
|
|
|
|
|
|
|
for (i = 0; i < mp_params->num_records; i++) {
|
|
|
|
struct mp_flight_record *rec = &mp_params->flight_plan[i];
|
|
|
|
|
|
|
|
/* Wait for APs if the record is not released. */
|
|
|
|
if (atomic_read(&rec->barrier) == 0) {
|
|
|
|
/* Wait for the APs to check in. */
|
|
|
|
if (wait_for_aps(&rec->cpus_entered, num_aps,
|
|
|
|
timeout_us, step_us)) {
|
|
|
|
printk(BIOS_ERR, "MP record %d timeout.\n", i);
|
|
|
|
ret = -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rec->bsp_call != NULL) {
|
|
|
|
rec->bsp_call(rec->bsp_arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
release_barrier(&rec->barrier);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_bsp(struct bus *cpu_bus)
|
|
|
|
{
|
|
|
|
struct device_path cpu_path;
|
|
|
|
struct cpu_info *info;
|
|
|
|
char processor_name[49];
|
|
|
|
|
|
|
|
/* Print processor name */
|
|
|
|
fill_processor_name(processor_name);
|
|
|
|
printk(BIOS_INFO, "CPU: %s.\n", processor_name);
|
|
|
|
|
|
|
|
/* Ensure the local apic is enabled */
|
|
|
|
enable_lapic();
|
|
|
|
|
|
|
|
/* Set the device path of the boot cpu. */
|
|
|
|
cpu_path.type = DEVICE_PATH_APIC;
|
|
|
|
cpu_path.apic.apic_id = lapicid();
|
|
|
|
|
|
|
|
/* Find the device structure for the boot cpu. */
|
|
|
|
info = cpu_info();
|
|
|
|
info->cpu = alloc_find_dev(cpu_bus, &cpu_path);
|
|
|
|
|
|
|
|
if (info->index != 0)
|
|
|
|
printk(BIOS_CRIT, "BSP index(%d) != 0!\n", info->index);
|
|
|
|
|
|
|
|
/* Track BSP in cpu_map structures. */
|
|
|
|
cpus[info->index].dev = info->cpu;
|
|
|
|
cpus[info->index].apic_id = cpu_path.apic.apic_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
int mp_init(struct bus *cpu_bus, struct mp_params *p)
|
|
|
|
{
|
|
|
|
int num_cpus;
|
|
|
|
int num_aps;
|
|
|
|
atomic_t *ap_count;
|
|
|
|
|
|
|
|
init_bsp(cpu_bus);
|
|
|
|
|
|
|
|
if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
|
|
|
|
printk(BIOS_CRIT, "Invalid MP parameters\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Default to currently running CPU. */
|
|
|
|
num_cpus = allocate_cpu_devices(cpu_bus, p);
|
|
|
|
|
|
|
|
if (num_cpus < p->num_cpus) {
|
|
|
|
printk(BIOS_CRIT,
|
|
|
|
"ERROR: More cpus requested (%d) than supported (%d).\n",
|
|
|
|
p->num_cpus, num_cpus);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Copy needed parameters so that APs have a reference to the plan. */
|
|
|
|
mp_info.num_records = p->num_records;
|
|
|
|
mp_info.records = p->flight_plan;
|
|
|
|
|
|
|
|
/* Load the SIPI vector. */
|
|
|
|
ap_count = load_sipi_vector(p);
|
|
|
|
if (ap_count == NULL)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/* Make sure SIPI data hits RAM so the APs that come up will see
|
|
|
|
* the startup code even if the caches are disabled. */
|
|
|
|
wbinvd();
|
|
|
|
|
|
|
|
/* Start the APs providing number of APs and the cpus_entered field. */
|
|
|
|
num_aps = p->num_cpus - 1;
|
|
|
|
if (start_aps(cpu_bus, num_aps, ap_count) < 0) {
|
|
|
|
mdelay(1000);
|
|
|
|
printk(BIOS_DEBUG, "%d/%d eventually checked in?\n",
|
|
|
|
atomic_read(ap_count), num_aps);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Walk the flight plan for the BSP. */
|
|
|
|
return bsp_do_flight_plan(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
void mp_initialize_cpu(void *unused)
|
|
|
|
{
|
|
|
|
/* Call back into driver infrastructure for the AP initialization. */
|
|
|
|
struct cpu_info *info = cpu_info();
|
|
|
|
cpu_initialize(info->index);
|
|
|
|
}
|
|
|
|
|
|
|
|
int mp_get_apic_id(int cpu_slot)
|
|
|
|
{
|
|
|
|
if (cpu_slot >= CONFIG_MAX_CPUS || cpu_slot < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
return cpus[cpu_slot].apic_id;
|
|
|
|
}
|
2013-10-22 05:24:40 +02:00
|
|
|
|
|
|
|
void smm_initiate_relocation_parallel(void)
|
|
|
|
{
|
|
|
|
if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
|
|
|
|
printk(BIOS_DEBUG, "Waiting for ICR not to be busy...");
|
|
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 50)) {
|
|
|
|
printk(BIOS_DEBUG, "timed out. Aborting.\n");
|
|
|
|
return;
|
|
|
|
} else
|
|
|
|
printk(BIOS_DEBUG, "done.\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid()));
|
|
|
|
lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI);
|
|
|
|
if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */)) {
|
|
|
|
printk(BIOS_DEBUG, "SMI Relocation timed out.\n");
|
|
|
|
} else
|
|
|
|
printk(BIOS_DEBUG, "Relocation complete.\n");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_SPIN_LOCK(smm_relocation_lock);
|
|
|
|
|
|
|
|
/* Send SMI to self with single user serialization. */
|
|
|
|
void smm_initiate_relocation(void)
|
|
|
|
{
|
|
|
|
spin_lock(&smm_relocation_lock);
|
|
|
|
smm_initiate_relocation_parallel();
|
|
|
|
spin_unlock(&smm_relocation_lock);
|
|
|
|
}
|