coreboot-kgpe-d16/util/x86emu/yabel/mem.c

494 lines
16 KiB
C
Raw Normal View History

/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2009 Pattrick Hueper <phueper@hueper.net>
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <types.h>
#include "debug.h"
#include "device.h"
#include "x86emu/x86emu.h"
#include "biosemu.h"
#include "mem.h"
#include "compat/time.h"
// define a check for access to certain (virtual) memory regions (interrupt handlers, BIOS Data Area, ...)
#if CONFIG_X86EMU_DEBUG
static u8 in_check = 0; // to avoid recursion...
u16 ebda_segment;
u32 ebda_size;
//TODO: these macros have grown so large, that they should be changed to an inline function,
//just for the sake of readability...
#define DEBUG_CHECK_VMEM_READ(_addr, _rval) \
if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
in_check = 1; \
/* determine ebda_segment and size \
* since we are using my_rdx calls, make sure, this is after setting in_check! */ \
/* offset 03 in BDA is EBDA segment */ \
ebda_segment = my_rdw(0x40e); \
/* first value in ebda is size in KB */ \
ebda_size = my_rdb(ebda_segment << 4) * 1024; \
/* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
if (_addr < 0x400) { \
DEBUG_PRINTF_CS_IP("%s: read from Interrupt Vector %x --> %x\n", \
__func__, _addr / 4, _rval); \
} \
/* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
else if ((_addr >= 0x400) && (addr < 0x500)) { \
DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Area: addr: %x --> %x\n", \
__func__, _addr, _rval); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* access to first 64k of memory... */ \
else if (_addr < 0x10000) { \
DEBUG_PRINTF_CS_IP("%s: read from segment 0000h: addr: %x --> %x\n", \
__func__, _addr, _rval); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* read from PMM_CONV_SEGMENT */ \
else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
DEBUG_PRINTF_CS_IP("%s: read from PMM Segment %04xh: addr: %x --> %x\n", \
__func__, PMM_CONV_SEGMENT, _addr, _rval); \
/* HALT_SYS(); */ \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* read from PNP_DATA_SEGMENT */ \
else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
DEBUG_PRINTF_CS_IP("%s: read from PnP Data Segment %04xh: addr: %x --> %x\n", \
__func__, PNP_DATA_SEGMENT, _addr, _rval); \
/* HALT_SYS(); */ \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* read from EBDA Segment */ \
else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
DEBUG_PRINTF_CS_IP("%s: read from Extended BIOS Data Area %04xh, size: %04x: addr: %x --> %x\n", \
__func__, ebda_segment, ebda_size, _addr, _rval); \
} \
/* read from BIOS_DATA_SEGMENT */ \
else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
DEBUG_PRINTF_CS_IP("%s: read from BIOS Data Segment %04xh: addr: %x --> %x\n", \
__func__, BIOS_DATA_SEGMENT, _addr, _rval); \
/* for PMM debugging */ \
/*if (_addr == BIOS_DATA_SEGMENT << 4) { \
X86EMU_trace_on(); \
M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F; \
}*/ \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
in_check = 0; \
}
#define DEBUG_CHECK_VMEM_WRITE(_addr, _val) \
if ((debug_flags & DEBUG_CHECK_VMEM_ACCESS) && (in_check == 0)) { \
in_check = 1; \
/* determine ebda_segment and size \
* since we are using my_rdx calls, make sure, this is after setting in_check! */ \
/* offset 03 in BDA is EBDA segment */ \
ebda_segment = my_rdw(0x40e); \
/* first value in ebda is size in KB */ \
ebda_size = my_rdb(ebda_segment << 4) * 1024; \
/* check Interrupt Vector Access (0000:0000h - 0000:0400h) */ \
if (_addr < 0x400) { \
DEBUG_PRINTF_CS_IP("%s: write to Interrupt Vector %x <-- %x\n", \
__func__, _addr / 4, _val); \
} \
/* access to BIOS Data Area (0000:0400h - 0000:0500h)*/ \
else if ((_addr >= 0x400) && (addr < 0x500)) { \
DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Area: addr: %x <-- %x\n", \
__func__, _addr, _val); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* access to first 64k of memory...*/ \
else if (_addr < 0x10000) { \
DEBUG_PRINTF_CS_IP("%s: write to segment 0000h: addr: %x <-- %x\n", \
__func__, _addr, _val); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* write to PMM_CONV_SEGMENT... */ \
else if ((_addr <= ((PMM_CONV_SEGMENT << 4) | 0xffff)) && (_addr >= (PMM_CONV_SEGMENT << 4))) { \
DEBUG_PRINTF_CS_IP("%s: write to PMM Segment %04xh: addr: %x <-- %x\n", \
__func__, PMM_CONV_SEGMENT, _addr, _val); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* write to PNP_DATA_SEGMENT... */ \
else if ((_addr <= ((PNP_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (PNP_DATA_SEGMENT << 4))) { \
DEBUG_PRINTF_CS_IP("%s: write to PnP Data Segment %04xh: addr: %x <-- %x\n", \
__func__, PNP_DATA_SEGMENT, _addr, _val); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* write to EBDA Segment... */ \
else if ((_addr <= ((ebda_segment << 4) | (ebda_size - 1))) && (_addr >= (ebda_segment << 4))) { \
DEBUG_PRINTF_CS_IP("%s: write to Extended BIOS Data Area %04xh, size: %04x: addr: %x <-- %x\n", \
__func__, ebda_segment, ebda_size, _addr, _val); \
} \
/* write to BIOS_DATA_SEGMENT... */ \
else if ((_addr <= ((BIOS_DATA_SEGMENT << 4) | 0xffff)) && (_addr >= (BIOS_DATA_SEGMENT << 4))) { \
DEBUG_PRINTF_CS_IP("%s: write to BIOS Data Segment %04xh: addr: %x <-- %x\n", \
__func__, BIOS_DATA_SEGMENT, _addr, _val); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
/* write to current CS segment... */ \
else if ((_addr < ((M.x86.R_CS << 4) | 0xffff)) && (_addr > (M.x86.R_CS << 4))) { \
DEBUG_PRINTF_CS_IP("%s: write to CS segment %04xh: addr: %x <-- %x\n", \
__func__, M.x86.R_CS, _addr, _val); \
/* dump registers */ \
/* x86emu_dump_xregs(); */ \
} \
in_check = 0; \
}
#else
#define DEBUG_CHECK_VMEM_READ(_addr, _rval)
#define DEBUG_CHECK_VMEM_WRITE(_addr, _val)
#endif
void update_time(u32);
#if !defined(CONFIG_YABEL_DIRECTHW) || (!CONFIG_YABEL_DIRECTHW)
// read byte from memory
u8
my_rdb(u32 addr)
{
unsigned long translated_addr = addr;
u8 translated = biosemu_dev_translate_address(&translated_addr);
u8 rval;
if (translated != 0) {
//translation successfull, access VGA Memory (BAR or Legacy...)
DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
__func__, addr);
//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
set_ci();
rval = *((u8 *) translated_addr);
clr_ci();
DEBUG_PRINTF_MEM("%s(%08x) VGA --> %02x\n", __func__, addr,
rval);
return rval;
} else if (addr > M.mem_size) {
DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
__func__, addr);
//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
HALT_SYS();
} else {
/* read from virtual memory */
rval = *((u8 *) (M.mem_base + addr));
DEBUG_CHECK_VMEM_READ(addr, rval);
return rval;
}
return -1;
}
//read word from memory
u16
my_rdw(u32 addr)
{
unsigned long translated_addr = addr;
u8 translated = biosemu_dev_translate_address(&translated_addr);
u16 rval;
if (translated != 0) {
//translation successfull, access VGA Memory (BAR or Legacy...)
DEBUG_PRINTF_MEM("%s(%08x): access to VGA Memory\n",
__func__, addr);
//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
// check for legacy memory, because of the remapping to BARs, the reads must
// be byte reads...
if ((addr >= 0xa0000) && (addr < 0xc0000)) {
//read bytes a using my_rdb, because of the remapping to BARs
//words may not be contiguous in memory, so we need to translate
//every address...
rval = ((u8) my_rdb(addr)) |
(((u8) my_rdb(addr + 1)) << 8);
} else {
if ((translated_addr & (u64) 0x1) == 0) {
// 16 bit aligned access...
set_ci();
rval = in16le((void *) translated_addr);
clr_ci();
} else {
// unaligned access, read single bytes
set_ci();
rval = (*((u8 *) translated_addr)) |
(*((u8 *) translated_addr + 1) << 8);
clr_ci();
}
}
DEBUG_PRINTF_MEM("%s(%08x) VGA --> %04x\n", __func__, addr,
rval);
return rval;
} else if (addr > M.mem_size) {
DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
__func__, addr);
//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
HALT_SYS();
} else {
/* read from virtual memory */
rval = in16le((void *) (M.mem_base + addr));
DEBUG_CHECK_VMEM_READ(addr, rval);
return rval;
}
return -1;
}
//read long from memory
u32
my_rdl(u32 addr)
{
unsigned long translated_addr = addr;
u8 translated = biosemu_dev_translate_address(&translated_addr);
u32 rval;
if (translated != 0) {
//translation successfull, access VGA Memory (BAR or Legacy...)
DEBUG_PRINTF_MEM("%s(%x): access to VGA Memory\n",
__func__, addr);
//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
// check for legacy memory, because of the remapping to BARs, the reads must
// be byte reads...
if ((addr >= 0xa0000) && (addr < 0xc0000)) {
//read bytes a using my_rdb, because of the remapping to BARs
//dwords may not be contiguous in memory, so we need to translate
//every address...
rval = ((u8) my_rdb(addr)) |
(((u8) my_rdb(addr + 1)) << 8) |
(((u8) my_rdb(addr + 2)) << 16) |
(((u8) my_rdb(addr + 3)) << 24);
} else {
if ((translated_addr & (u64) 0x3) == 0) {
// 32 bit aligned access...
set_ci();
rval = in32le((void *) translated_addr);
clr_ci();
} else {
// unaligned access, read single bytes
set_ci();
rval = (*((u8 *) translated_addr)) |
(*((u8 *) translated_addr + 1) << 8) |
(*((u8 *) translated_addr + 2) << 16) |
(*((u8 *) translated_addr + 3) << 24);
clr_ci();
}
}
DEBUG_PRINTF_MEM("%s(%08x) VGA --> %08x\n", __func__, addr,
rval);
//HALT_SYS();
return rval;
} else if (addr > M.mem_size) {
DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
__func__, addr);
//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
HALT_SYS();
} else {
/* read from virtual memory */
rval = in32le((void *) (M.mem_base + addr));
switch (addr) {
case 0x46c:
//BDA Time Data, update it, before reading
update_time(rval);
rval = in32le((void *) (M.mem_base + addr));
break;
}
DEBUG_CHECK_VMEM_READ(addr, rval);
return rval;
}
return -1;
}
//write byte to memory
void
my_wrb(u32 addr, u8 val)
{
unsigned long translated_addr = addr;
u8 translated = biosemu_dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successfull, access VGA Memory (BAR or Legacy...)
DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
__func__, addr, val);
//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
set_ci();
*((u8 *) translated_addr) = val;
clr_ci();
} else if (addr > M.mem_size) {
DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
__func__, addr);
//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
HALT_SYS();
} else {
/* write to virtual memory */
DEBUG_CHECK_VMEM_WRITE(addr, val);
*((u8 *) (M.mem_base + addr)) = val;
}
}
void
my_wrw(u32 addr, u16 val)
{
unsigned long translated_addr = addr;
u8 translated = biosemu_dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successfull, access VGA Memory (BAR or Legacy...)
DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
__func__, addr, val);
//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
// check for legacy memory, because of the remapping to BARs, the reads must
// be byte reads...
if ((addr >= 0xa0000) && (addr < 0xc0000)) {
//read bytes a using my_rdb, because of the remapping to BARs
//words may not be contiguous in memory, so we need to translate
//every address...
my_wrb(addr, (u8) (val & 0x00FF));
my_wrb(addr + 1, (u8) ((val & 0xFF00) >> 8));
} else {
if ((translated_addr & (u64) 0x1) == 0) {
// 16 bit aligned access...
set_ci();
out16le((void *) translated_addr, val);
clr_ci();
} else {
// unaligned access, write single bytes
set_ci();
*((u8 *) translated_addr) =
(u8) (val & 0x00FF);
*((u8 *) translated_addr + 1) =
(u8) ((val & 0xFF00) >> 8);
clr_ci();
}
}
} else if (addr > M.mem_size) {
DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
__func__, addr);
//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
HALT_SYS();
} else {
/* write to virtual memory */
DEBUG_CHECK_VMEM_WRITE(addr, val);
out16le((void *) (M.mem_base + addr), val);
}
}
void
my_wrl(u32 addr, u32 val)
{
unsigned long translated_addr = addr;
u8 translated = biosemu_dev_translate_address(&translated_addr);
if (translated != 0) {
//translation successfull, access VGA Memory (BAR or Legacy...)
DEBUG_PRINTF_MEM("%s(%x, %x): access to VGA Memory\n",
__func__, addr, val);
//DEBUG_PRINTF_MEM("%s(%08x): translated_addr: %llx\n", __func__, addr, translated_addr);
// check for legacy memory, because of the remapping to BARs, the reads must
// be byte reads...
if ((addr >= 0xa0000) && (addr < 0xc0000)) {
//read bytes a using my_rdb, because of the remapping to BARs
//words may not be contiguous in memory, so we need to translate
//every address...
my_wrb(addr, (u8) (val & 0x000000FF));
my_wrb(addr + 1, (u8) ((val & 0x0000FF00) >> 8));
my_wrb(addr + 2, (u8) ((val & 0x00FF0000) >> 16));
my_wrb(addr + 3, (u8) ((val & 0xFF000000) >> 24));
} else {
if ((translated_addr & (u64) 0x3) == 0) {
// 32 bit aligned access...
set_ci();
out32le((void *) translated_addr, val);
clr_ci();
} else {
// unaligned access, write single bytes
set_ci();
*((u8 *) translated_addr) =
(u8) (val & 0x000000FF);
*((u8 *) translated_addr + 1) =
(u8) ((val & 0x0000FF00) >> 8);
*((u8 *) translated_addr + 2) =
(u8) ((val & 0x00FF0000) >> 16);
*((u8 *) translated_addr + 3) =
(u8) ((val & 0xFF000000) >> 24);
clr_ci();
}
}
} else if (addr > M.mem_size) {
DEBUG_PRINTF("%s(%08x): Memory Access out of range!\n",
__func__, addr);
//disassemble_forward(M.x86.saved_cs, M.x86.saved_ip, 1);
HALT_SYS();
} else {
/* write to virtual memory */
DEBUG_CHECK_VMEM_WRITE(addr, val);
out32le((void *) (M.mem_base + addr), val);
}
}
#else
u8
my_rdb(u32 addr)
{
return rdb(addr);
}
u16
my_rdw(u32 addr)
{
return rdw(addr);
}
u32
my_rdl(u32 addr)
{
return rdl(addr);
}
void
my_wrb(u32 addr, u8 val)
{
wrb(addr, val);
}
void
my_wrw(u32 addr, u16 val)
{
wrw(addr, val);
}
void
my_wrl(u32 addr, u32 val)
{
wrl(addr, val);
}
#endif
//update time in BIOS Data Area
//DWord at offset 0x6c is the timer ticks since midnight, timer is running at 18Hz
//byte at 0x70 is timer overflow (set if midnight passed since last call to interrupt 1a function 00
//cur_val is the current value, of offset 6c...
void
update_time(u32 cur_val)
{
//for convenience, we let the start of timebase be at midnight, we currently dont support
//real daytime anyway...
u64 ticks_per_day = tb_freq * 60 * 24;
// at 18Hz a period is ~55ms, converted to ticks (tb_freq is ticks/second)
u32 period_ticks = (55 * tb_freq) / 1000;
u64 curr_time = get_time();
u64 ticks_since_midnight = curr_time % ticks_per_day;
u32 periods_since_midnight = ticks_since_midnight / period_ticks;
// if periods since midnight is smaller than last value, set overflow
// at BDA Offset 0x70
if (periods_since_midnight < cur_val) {
my_wrb(0x470, 1);
}
// store periods since midnight at BDA offset 0x6c
my_wrl(0x46c, periods_since_midnight);
}