coreboot-kgpe-d16/util/cbmem/cbmem.c

1238 lines
30 KiB
C
Raw Normal View History

Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/*
* This file is part of the coreboot project.
*
* Copyright 2012 Google Inc.
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
Remove address from GPLv2 headers As per discussion with lawyers[tm], it's not a good idea to shorten the license header too much - not for legal reasons but because there are tools that look for them, and giving them a standard pattern simplifies things. However, we got confirmation that we don't have to update every file ever added to coreboot whenever the FSF gets a new lease, but can drop the address instead. util/kconfig is excluded because that's imported code that we may want to synchronize every now and then. $ find * -type f -exec sed -i "s:Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *MA[, ]*02110-1301[, ]*USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 59 Temple Place[-, ]*Suite 330, Boston, MA *02111-1307[, ]*USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.:Foundation, Inc.:" {} + $ find * -type f -a \! -name \*.patch \ -a \! -name \*_shipped \ -a \! -name LICENSE_GPL \ -a \! -name LGPL.txt \ -a \! -name COPYING \ -a \! -name DISCLAIMER \ -exec sed -i "/Foundation, Inc./ N;s:Foundation, Inc.* USA\.* *:Foundation, Inc. :;s:Foundation, Inc. $:Foundation, Inc.:" {} + Change-Id: Icc968a5a5f3a5df8d32b940f9cdb35350654bef9 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Reviewed-on: http://review.coreboot.org/9233 Tested-by: build bot (Jenkins) Reviewed-by: Vladimir Serbinenko <phcoder@gmail.com>
2015-03-26 15:17:45 +01:00
* Foundation, Inc.
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
*/
#include <inttypes.h>
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <getopt.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <libgen.h>
#include <assert.h>
#include <commonlib/cbmem_id.h>
#include <commonlib/timestamp_serialized.h>
#include <commonlib/coreboot_tables.h>
#ifdef __OpenBSD__
#include <sys/param.h>
#include <sys/sysctl.h>
#endif
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#define MAP_BYTES (1024*1024)
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
typedef uint8_t u8;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define CBMEM_VERSION "1.1"
/* verbose output? */
static int verbose = 0;
#define debug(x...) if(verbose) printf(x)
/* File handle used to access /dev/mem */
static int mem_fd;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/* IMD root pointer location */
static uint64_t rootptr = 0;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/*
* calculate ip checksum (16 bit quantities) on a passed in buffer. In case
* the buffer length is odd last byte is excluded from the calculation
*/
static u16 ipchcksum(const void *addr, unsigned size)
{
const u16 *p = addr;
unsigned i, n = size / 2; /* don't expect odd sized blocks */
u32 sum = 0;
for (i = 0; i < n; i++)
sum += p[i];
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
sum = ~sum & 0xffff;
return (u16) sum;
}
/*
* Functions to map / unmap physical memory into virtual address space. These
* functions always maps 1MB at a time and can only map one area at once.
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
*/
static void *mapped_virtual;
static size_t mapped_size;
static inline size_t size_to_mib(size_t sz)
{
return sz >> 20;
}
static void unmap_memory(void)
{
if (mapped_virtual == NULL) {
fprintf(stderr, "Error unmapping memory\n");
return;
}
if (size_to_mib(mapped_size) == 0) {
debug("Unmapping %zuMB of virtual memory at %p.\n",
size_to_mib(mapped_size), mapped_virtual);
}
else {
debug("Unmapping %zuMB of virtual memory at %p.\n",
size_to_mib(mapped_size), mapped_virtual);
}
munmap(mapped_virtual, mapped_size);
mapped_virtual = NULL;
mapped_size = 0;
}
static void *map_memory_size(u64 physical, size_t size)
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
{
void *v;
off_t p;
u64 page = getpagesize();
size_t padding;
if (mapped_virtual != NULL)
unmap_memory();
/* Mapped memory must be aligned to page size */
p = physical & ~(page - 1);
padding = physical & (page-1);
size += padding;
if (size_to_mib(size) == 0) {
debug("Mapping %zuB of physical memory at 0x%jx (requested 0x%jx).\n",
size, (intmax_t)p, (intmax_t)physical);
}
else {
debug("Mapping %zuMB of physical memory at 0x%jx (requested 0x%jx).\n",
size_to_mib(size), (intmax_t)p, (intmax_t)physical);
}
v = mmap(NULL, size, PROT_READ, MAP_SHARED, mem_fd, p);
if (v == MAP_FAILED) {
/* The mapped area may have overrun the upper cbmem boundary when trying to
* align to the page size. Try growing down instead of up...
*/
p -= page;
padding += page;
size &= ~(page - 1);
size = size + (page - 1);
v = mmap(NULL, size, PROT_READ, MAP_SHARED, mem_fd, p);
debug(" ... failed. Mapping %zuB of physical memory at 0x%jx.\n",
size, (intmax_t)p);
}
if (v == MAP_FAILED) {
fprintf(stderr, "Failed to mmap /dev/mem: %s\n",
strerror(errno));
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
exit(1);
}
/* Remember what we actually mapped ... */
mapped_virtual = v;
mapped_size = size;
/* ... but return address to the physical memory that was requested */
if (padding)
debug(" ... padding virtual address with 0x%zx bytes.\n",
padding);
v += padding;
return v;
}
static void *map_memory(u64 physical)
{
return map_memory_size(physical, MAP_BYTES);
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
/*
* Try finding the timestamp table and coreboot cbmem console starting from the
* passed in memory offset. Could be called recursively in case a forwarding
* entry is found.
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
*
* Returns pointer to a memory buffer containg the timestamp table or zero if
* none found.
*/
static struct lb_cbmem_ref timestamps;
static struct lb_cbmem_ref console;
static struct lb_memory_range cbmem;
/* This is a work-around for a nasty problem introduced by initially having
* pointer sized entries in the lb_cbmem_ref structures. This caused problems
* on 64bit x86 systems because coreboot is 32bit on those systems.
* When the problem was found, it was corrected, but there are a lot of
* systems out there with a firmware that does not produce the right
* lb_cbmem_ref structure. Hence we try to autocorrect this issue here.
*/
static struct lb_cbmem_ref parse_cbmem_ref(struct lb_cbmem_ref *cbmem_ref)
{
struct lb_cbmem_ref ret;
ret = *cbmem_ref;
if (cbmem_ref->size < sizeof(*cbmem_ref))
ret.cbmem_addr = (uint32_t)ret.cbmem_addr;
debug(" cbmem_addr = %" PRIx64 "\n", ret.cbmem_addr);
return ret;
}
static int parse_cbtable(u64 address, size_t table_size)
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
{
int i, found = 0;
void *buf;
debug("Looking for coreboot table at %" PRIx64 " %zd bytes.\n",
address, table_size);
buf = map_memory_size(address, table_size);
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/* look at every 16 bytes within 4K of the base */
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
for (i = 0; i < 0x1000; i += 0x10) {
struct lb_header *lbh;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
struct lb_record* lbr_p;
void *lbtable;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
int j;
lbh = (struct lb_header *)(buf + i);
if (memcmp(lbh->signature, "LBIO", sizeof(lbh->signature)) ||
!lbh->header_bytes ||
ipchcksum(lbh, sizeof(*lbh))) {
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
continue;
}
lbtable = buf + i + lbh->header_bytes;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
if (ipchcksum(lbtable, lbh->table_bytes) !=
lbh->table_checksum) {
debug("Signature found, but wrong checksum.\n");
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
continue;
}
found = 1;
debug("Found!\n");
for (j = 0; j < lbh->table_bytes; j += lbr_p->size) {
lbr_p = (struct lb_record*) ((char *)lbtable + j);
debug(" coreboot table entry 0x%02x\n", lbr_p->tag);
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
switch (lbr_p->tag) {
case LB_TAG_MEMORY: {
int i = 0;
debug(" Found memory map.\n");
struct lb_memory *memory =
(struct lb_memory *)lbr_p;
util/cbmem: Fix CBMEM TOC printing Since commit c0199078 (cbmem utility: Find actual CBMEM area) [1], at least on the Lenovo X201, X230 and X60, printing the CBMEM table of contents did not work. It still worked on the ASRock E350M1 though. $ sudo /src/coreboot/util/cbmem/cbmem -l --verbose # Lenovo X60t Looking for coreboot table at 0 Mapping 1MB of physical memory at 0x0. Found! coreboot table entry 0x11 Found forwarding entry. Unmapping 1MB of virtual memory at 0xb74dc000. Looking for coreboot table at 7f6c4000 Mapping 1MB of physical memory at 0x7f6c4000. Found! coreboot table entry 0xc8 coreboot table entry 0x01 Found memory map. coreboot table entry 0x03 coreboot table entry 0x04 coreboot table entry 0x05 coreboot table entry 0x06 coreboot table entry 0x07 coreboot table entry 0x08 coreboot table entry 0x09 coreboot table entry 0x0a coreboot table entry 0x16 Found timestamp table. cbmem_addr = 7f7dd000 coreboot table entry 0x17 Found cbmem console. cbmem_addr = 7f7de000 Unmapping 1MB of virtual memory at 0xb74dc000. No coreboot CBMEM area found! The address of the boot info record has to be used for checking, that reading takes place in the bounds of the boot info record. $ sudo ~/src/coreboot/util/cbmem/cbmem -l # Lenovo X60 CBMEM table of contents: ID START LENGTH […] Big thanks to David and Stefan for their help. [1] http://review.coreboot.org/2117 Change-Id: I1eb09a6445d9ea17e1e16b6866dece74315d3c73 Found-by: Kyösti Mälkki <kyosti.malkki@gmail.com> Signed-off-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-on: http://review.coreboot.org/7093 Tested-by: build bot (Jenkins) Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com> Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-10-17 13:46:12 +02:00
while ((char *)&memory->map[i] < ((char *)lbr_p
+ lbr_p->size)) {
if (memory->map[i].type == LB_MEM_TABLE) {
debug(" LB_MEM_TABLE found.\n");
/* The last one found is CBMEM */
cbmem = memory->map[i];
}
i++;
}
continue;
}
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
case LB_TAG_TIMESTAMPS: {
debug(" Found timestamp table.\n");
timestamps = parse_cbmem_ref((struct lb_cbmem_ref *) lbr_p);
continue;
}
case LB_TAG_CBMEM_CONSOLE: {
debug(" Found cbmem console.\n");
console = parse_cbmem_ref((struct lb_cbmem_ref *) lbr_p);
continue;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
case LB_TAG_FORWARD: {
/*
* This is a forwarding entry - repeat the
* search at the new address.
*/
struct lb_forward lbf_p =
*(struct lb_forward *) lbr_p;
debug(" Found forwarding entry.\n");
unmap_memory();
return parse_cbtable(lbf_p.forward, table_size);
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
default:
break;
}
}
}
unmap_memory();
return found;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
#if defined(linux) && (defined(__i386__) || defined(__x86_64__))
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/*
* read CPU frequency from a sysfs file, return an frequency in Kilohertz as
* an int or exit on any error.
*/
static unsigned long arch_tick_frequency(void)
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
{
FILE *cpuf;
char freqs[100];
int size;
char *endp;
u64 rv;
const char* freq_file =
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
cpuf = fopen(freq_file, "r");
if (!cpuf) {
fprintf(stderr, "Could not open %s: %s\n",
freq_file, strerror(errno));
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
exit(1);
}
memset(freqs, 0, sizeof(freqs));
size = fread(freqs, 1, sizeof(freqs), cpuf);
if (!size || (size == sizeof(freqs))) {
fprintf(stderr, "Wrong number of bytes(%d) read from %s\n",
size, freq_file);
exit(1);
}
fclose(cpuf);
rv = strtoull(freqs, &endp, 10);
if (*endp == '\0' || *endp == '\n')
return rv;
fprintf(stderr, "Wrong formatted value ^%s^ read from %s\n",
freqs, freq_file);
exit(1);
}
#elif defined(__OpenBSD__) && (defined(__i386__) || defined(__x86_64__))
static unsigned long arch_tick_frequency(void)
{
int mib[2] = { CTL_HW, HW_CPUSPEED };
static int value = 0;
size_t value_len = sizeof(value);
/* Return 1 MHz when sysctl fails. */
if ((value == 0) && (sysctl(mib, 2, &value, &value_len, NULL, 0) == -1))
return 1;
return value;
}
#else
static unsigned long arch_tick_frequency(void)
{
/* 1 MHz = 1us. */
return 1;
}
#endif
static unsigned long tick_freq_mhz;
static void timestamp_set_tick_freq(unsigned long table_tick_freq_mhz)
{
tick_freq_mhz = table_tick_freq_mhz;
/* Honor table frequency. */
if (tick_freq_mhz)
return;
tick_freq_mhz = arch_tick_frequency();
if (!tick_freq_mhz) {
fprintf(stderr, "Cannot determine timestamp tick frequency.\n");
exit(1);
}
}
u64 arch_convert_raw_ts_entry(u64 ts)
{
return ts / tick_freq_mhz;
}
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/*
* Print an integer in 'normalized' form - with commas separating every three
* decimal orders.
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
*/
static void print_norm(u64 v)
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
{
if (v >= 1000) {
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/* print the higher order sections first */
print_norm(v / 1000);
printf(",%3.3u", (u32)(v % 1000));
} else {
printf("%u", (u32)(v % 1000));
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
}
enum additional_timestamp_id {
// Depthcharge entry IDs start at 1000.
TS_DC_START = 1000,
TS_RO_PARAMS_INIT = 1001,
TS_RO_VB_INIT = 1002,
TS_RO_VB_SELECT_FIRMWARE = 1003,
TS_RO_VB_SELECT_AND_LOAD_KERNEL = 1004,
TS_RW_VB_SELECT_AND_LOAD_KERNEL = 1010,
TS_VB_SELECT_AND_LOAD_KERNEL = 1020,
TS_CROSSYSTEM_DATA = 1100,
TS_START_KERNEL = 1101
};
static const struct timestamp_id_to_name {
u32 id;
const char *name;
} timestamp_ids[] = {
/* Marker to report base_time. */
{ 0, "1st timestamp" },
{ TS_START_ROMSTAGE, "start of rom stage" },
{ TS_BEFORE_INITRAM, "before ram initialization" },
{ TS_AFTER_INITRAM, "after ram initialization" },
{ TS_END_ROMSTAGE, "end of romstage" },
{ TS_START_VBOOT, "start of verified boot" },
{ TS_END_VBOOT, "end of verified boot" },
{ TS_START_COPYRAM, "starting to load ramstage" },
{ TS_END_COPYRAM, "finished loading ramstage" },
{ TS_START_RAMSTAGE, "start of ramstage" },
{ TS_START_BOOTBLOCK, "start of bootblock" },
{ TS_END_BOOTBLOCK, "end of bootblock" },
{ TS_START_COPYROM, "starting to load romstage" },
{ TS_END_COPYROM, "finished loading romstage" },
{ TS_START_ULZMA, "starting LZMA decompress (ignore for x86)" },
{ TS_END_ULZMA, "finished LZMA decompress (ignore for x86)" },
{ TS_DEVICE_ENUMERATE, "device enumeration" },
{ TS_DEVICE_CONFIGURE, "device configuration" },
{ TS_DEVICE_ENABLE, "device enable" },
{ TS_DEVICE_INITIALIZE, "device initialization" },
{ TS_DEVICE_DONE, "device setup done" },
{ TS_CBMEM_POST, "cbmem post" },
{ TS_WRITE_TABLES, "write tables" },
{ TS_LOAD_PAYLOAD, "load payload" },
{ TS_ACPI_WAKE_JUMP, "ACPI wake jump" },
{ TS_SELFBOOT_JUMP, "selfboot jump" },
{ TS_START_COPYVER, "starting to load verstage" },
{ TS_END_COPYVER, "finished loading verstage" },
{ TS_START_TPMINIT, "starting to initialize TPM" },
{ TS_END_TPMINIT, "finished TPM initialization" },
{ TS_START_VERIFY_SLOT, "starting to verify keyblock/preamble (RSA)" },
{ TS_END_VERIFY_SLOT, "finished verifying keyblock/preamble (RSA)" },
{ TS_START_HASH_BODY, "starting to verify body (load+SHA2+RSA) " },
{ TS_DONE_LOADING, "finished loading body (ignore for x86)" },
{ TS_DONE_HASHING, "finished calculating body hash (SHA2)" },
{ TS_END_HASH_BODY, "finished verifying body signature (RSA)" },
{ TS_DC_START, "depthcharge start" },
{ TS_RO_PARAMS_INIT, "RO parameter init" },
{ TS_RO_VB_INIT, "RO vboot init" },
{ TS_RO_VB_SELECT_FIRMWARE, "RO vboot select firmware" },
{ TS_RO_VB_SELECT_AND_LOAD_KERNEL, "RO vboot select&load kernel" },
{ TS_RW_VB_SELECT_AND_LOAD_KERNEL, "RW vboot select&load kernel" },
{ TS_VB_SELECT_AND_LOAD_KERNEL, "vboot select&load kernel" },
{ TS_CROSSYSTEM_DATA, "crossystem data" },
{ TS_START_KERNEL, "start kernel" },
/* FSP related timestamps */
{ TS_FSP_MEMORY_INIT_START, "calling FspMemoryInit" },
{ TS_FSP_MEMORY_INIT_END, "returning from FspMemoryInit" },
{ TS_FSP_TEMP_RAM_EXIT_START, "calling FspTempRamExit" },
{ TS_FSP_TEMP_RAM_EXIT_END, "returning from FspTempRamExit" },
{ TS_FSP_SILICON_INIT_START, "calling FspSiliconInit" },
{ TS_FSP_SILICON_INIT_END, "returning from FspSiliconInit" },
{ TS_FSP_BEFORE_ENUMERATE, "calling FspNotify(AfterPciEnumeration)" },
{ TS_FSP_AFTER_ENUMERATE,
"returning from FspNotify(AfterPciEnumeration)" },
{ TS_FSP_BEFORE_FINALIZE, "calling FspNotify(ReadyToBoot)" },
{ TS_FSP_AFTER_FINALIZE, "returning from FspNotify(ReadyToBoot)" }
};
static const char *timestamp_name(uint32_t id)
{
int i;
for (i = 0; i < ARRAY_SIZE(timestamp_ids); i++) {
if (timestamp_ids[i].id == id)
return timestamp_ids[i].name;
}
return "<unknown>";
}
static uint64_t timestamp_print_parseable_entry(uint32_t id, uint64_t stamp,
uint64_t prev_stamp)
{
const char *name;
uint64_t step_time;
name = timestamp_name(id);
step_time = arch_convert_raw_ts_entry(stamp - prev_stamp);
/* ID<tab>absolute time<tab>relative time<tab>description */
printf("%d\t", id);
printf("%llu\t", (long long)arch_convert_raw_ts_entry(stamp));
printf("%llu\t", (long long)step_time);
printf("%s\n", name);
return step_time;
}
uint64_t timestamp_print_entry(uint32_t id, uint64_t stamp, uint64_t prev_stamp)
{
const char *name;
uint64_t step_time;
name = timestamp_name(id);
printf("%4d:", id);
printf("%-50s", name);
print_norm(arch_convert_raw_ts_entry(stamp));
step_time = arch_convert_raw_ts_entry(stamp - prev_stamp);
if (prev_stamp) {
printf(" (");
print_norm(step_time);
printf(")");
}
printf("\n");
return step_time;
}
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/* dump the timestamp table */
static void dump_timestamps(int mach_readable)
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
{
int i;
struct timestamp_table *tst_p;
size_t size;
uint64_t prev_stamp;
uint64_t total_time;
if (timestamps.tag != LB_TAG_TIMESTAMPS) {
fprintf(stderr, "No timestamps found in coreboot table.\n");
return;
}
size = sizeof(*tst_p);
tst_p = map_memory_size((unsigned long)timestamps.cbmem_addr, size);
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
timestamp_set_tick_freq(tst_p->tick_freq_mhz);
if (!mach_readable)
printf("%d entries total:\n\n", tst_p->num_entries);
size += tst_p->num_entries * sizeof(tst_p->entries[0]);
unmap_memory();
tst_p = map_memory_size((unsigned long)timestamps.cbmem_addr, size);
/* Report the base time within the table. */
prev_stamp = 0;
if (mach_readable)
timestamp_print_parseable_entry(0, tst_p->base_time,
prev_stamp);
else
timestamp_print_entry(0, tst_p->base_time, prev_stamp);
prev_stamp = tst_p->base_time;
total_time = 0;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
for (i = 0; i < tst_p->num_entries; i++) {
uint64_t stamp;
const struct timestamp_entry *tse = &tst_p->entries[i];
/* Make all timestamps absolute. */
stamp = tse->entry_stamp + tst_p->base_time;
if (mach_readable)
total_time +=
timestamp_print_parseable_entry(tse->entry_id,
stamp, prev_stamp);
else
total_time += timestamp_print_entry(tse->entry_id,
stamp, prev_stamp);
prev_stamp = stamp;
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
if (!mach_readable) {
printf("\nTotal Time: ");
print_norm(total_time);
printf("\n");
}
unmap_memory();
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
}
/* dump the cbmem console */
static void dump_console(void)
{
void *console_p;
char *console_c;
uint32_t size;
uint32_t cursor;
if (console.tag != LB_TAG_CBMEM_CONSOLE) {
fprintf(stderr, "No console found in coreboot table.\n");
return;
}
console_p = map_memory_size((unsigned long)console.cbmem_addr,
2 * sizeof(uint32_t));
/* The in-memory format of the console area is:
* u32 size
* u32 cursor
* char console[size]
* Hence we have to add 8 to get to the actual console string.
*/
size = ((uint32_t *)console_p)[0];
cursor = ((uint32_t *)console_p)[1];
/* Cursor continues to go on even after no more data fits in
* the buffer but the data is dropped in this case.
*/
if (size > cursor)
size = cursor;
console_c = malloc(size + 1);
unmap_memory();
if (!console_c) {
fprintf(stderr, "Not enough memory for console.\n");
exit(1);
}
console_p = map_memory_size((unsigned long)console.cbmem_addr,
size + sizeof(size) + sizeof(cursor));
memcpy(console_c, console_p + 8, size);
console_c[size] = 0;
console_c[cursor] = 0;
printf("%s\n", console_c);
if (size < cursor)
printf("%d %s lost\n", cursor - size,
(cursor - size) == 1 ? "byte":"bytes");
free(console_c);
unmap_memory();
}
static void hexdump(unsigned long memory, int length)
{
int i;
uint8_t *m;
int all_zero = 0;
m = map_memory_size((intptr_t)memory, length);
if (length > MAP_BYTES) {
printf("Truncating hex dump from %d to %d bytes\n\n",
length, MAP_BYTES);
length = MAP_BYTES;
}
for (i = 0; i < length; i += 16) {
int j;
all_zero++;
for (j = 0; j < 16; j++) {
if(m[i+j] != 0) {
all_zero = 0;
break;
}
}
if (all_zero < 2) {
printf("%08lx:", memory + i);
for (j = 0; j < 16; j++)
printf(" %02x", m[i+j]);
printf(" ");
for (j = 0; j < 16; j++)
printf("%c", isprint(m[i+j]) ? m[i+j] : '.');
printf("\n");
} else if (all_zero == 2) {
printf("...\n");
}
}
unmap_memory();
}
static void dump_cbmem_hex(void)
{
if (cbmem.type != LB_MEM_TABLE) {
fprintf(stderr, "No coreboot CBMEM area found!\n");
return;
}
hexdump(unpack_lb64(cbmem.start), unpack_lb64(cbmem.size));
}
/* The root region is at least DYN_CBMEM_ALIGN_SIZE . */
#define DYN_CBMEM_ALIGN_SIZE (4096)
#define ROOT_MIN_SIZE DYN_CBMEM_ALIGN_SIZE
#define CBMEM_POINTER_MAGIC 0xc0389481
#define CBMEM_ENTRY_MAGIC ~(CBMEM_POINTER_MAGIC)
struct cbmem_root_pointer {
uint32_t magic;
/* Relative to upper limit/offset. */
int32_t root_offset;
} __attribute__((packed));
struct dynamic_cbmem_entry {
uint32_t magic;
int32_t start_offset;
uint32_t size;
uint32_t id;
} __attribute__((packed));
struct cbmem_root {
uint32_t max_entries;
uint32_t num_entries;
uint32_t flags;
uint32_t entry_align;
int32_t max_offset;
struct dynamic_cbmem_entry entries[0];
} __attribute__((packed));
#define CBMEM_MAGIC 0x434f5245
#define MAX_CBMEM_ENTRIES 16
struct cbmem_entry {
uint32_t magic;
uint32_t id;
uint64_t base;
uint64_t size;
} __attribute__((packed));
struct cbmem_id_to_name {
uint32_t id;
const char *name;
};
static const struct cbmem_id_to_name cbmem_ids[] = { CBMEM_ID_TO_NAME_TABLE };
void cbmem_print_entry(int n, uint32_t id, uint64_t base, uint64_t size)
{
int i;
const char *name;
name = NULL;
for (i = 0; i < ARRAY_SIZE(cbmem_ids); i++) {
if (cbmem_ids[i].id == id) {
name = cbmem_ids[i].name;
break;
}
}
printf("%2d. ", n);
if (name == NULL)
printf("%08x ", id);
else
printf("%s", name);
printf(" %08" PRIx64 " ", base);
printf(" %08" PRIx64 "\n", size);
}
static void dump_static_cbmem_toc(struct cbmem_entry *entries)
{
int i;
printf("CBMEM table of contents:\n");
printf(" ID START LENGTH\n");
for (i=0; i<MAX_CBMEM_ENTRIES; i++) {
if (entries[i].magic != CBMEM_MAGIC)
break;
cbmem_print_entry(i, entries[i].id,
entries[i].base, entries[i].size);
}
}
static void dump_dynamic_cbmem_toc(struct cbmem_root *root)
{
int i;
debug("CBMEM: max_entries=%d num_entries=%d flags=0x%x, entry_align=0x%x, max_offset=%d\n\n",
root->max_entries, root->num_entries, root->flags, root->entry_align, root->max_offset);
printf("CBMEM table of contents:\n");
printf(" ID START LENGTH\n");
for (i = 0; i < root->num_entries; i++) {
if(root->entries[i].magic != CBMEM_ENTRY_MAGIC)
break;
cbmem_print_entry(i, root->entries[i].id,
rootptr + root->entries[i].start_offset, root->entries[i].size);
}
}
static void dump_cbmem_toc(void)
{
uint64_t start;
void *cbmem_area;
struct cbmem_entry *entries;
if (cbmem.type != LB_MEM_TABLE) {
fprintf(stderr, "No coreboot CBMEM area found!\n");
return;
}
start = unpack_lb64(cbmem.start);
cbmem_area = map_memory_size(start, unpack_lb64(cbmem.size));
entries = (struct cbmem_entry *)cbmem_area;
if (entries[0].magic == CBMEM_MAGIC) {
dump_static_cbmem_toc(entries);
} else {
rootptr = unpack_lb64(cbmem.start) + unpack_lb64(cbmem.size);
rootptr &= ~(DYN_CBMEM_ALIGN_SIZE - 1);
rootptr -= sizeof(struct cbmem_root_pointer);
unmap_memory();
struct cbmem_root_pointer *r =
map_memory_size(rootptr, sizeof(*r));
if (r->magic == CBMEM_POINTER_MAGIC) {
struct cbmem_root *root;
uint64_t rootaddr = rootptr + r->root_offset;
unmap_memory();
root = map_memory_size(rootaddr, ROOT_MIN_SIZE);
dump_dynamic_cbmem_toc(root);
} else
fprintf(stderr, "No valid coreboot CBMEM root pointer found.\n");
}
unmap_memory();
}
#define COVERAGE_MAGIC 0x584d4153
struct file {
uint32_t magic;
uint32_t next;
uint32_t filename;
uint32_t data;
int offset;
int len;
};
static int mkpath(char *path, mode_t mode)
{
assert (path && *path);
char *p;
for (p = strchr(path+1, '/'); p; p = strchr(p + 1, '/')) {
*p = '\0';
if (mkdir(path, mode) == -1) {
if (errno != EEXIST) {
*p = '/';
return -1;
}
}
*p = '/';
}
return 0;
}
static void dump_coverage(void)
{
int i, found = 0;
uint64_t start;
struct cbmem_entry *entries;
void *coverage;
unsigned long phys_offset;
#define phys_to_virt(x) ((void *)(unsigned long)(x) + phys_offset)
if (cbmem.type != LB_MEM_TABLE) {
fprintf(stderr, "No coreboot table area found!\n");
return;
}
start = unpack_lb64(cbmem.start);
entries = (struct cbmem_entry *)map_memory(start);
for (i=0; i<MAX_CBMEM_ENTRIES; i++) {
if (entries[i].magic != CBMEM_MAGIC)
break;
if (entries[i].id == CBMEM_ID_COVERAGE) {
found = 1;
break;
}
}
if (!found) {
unmap_memory();
fprintf(stderr, "No coverage information found in"
" CBMEM area.\n");
return;
}
start = entries[i].base;
unmap_memory();
/* Map coverage area */
coverage = map_memory(start);
phys_offset = (unsigned long)coverage - (unsigned long)start;
printf("Dumping coverage data...\n");
struct file *file = (struct file *)coverage;
while (file && file->magic == COVERAGE_MAGIC) {
FILE *f;
char *filename;
debug(" -> %s\n", (char *)phys_to_virt(file->filename));
filename = strdup((char *)phys_to_virt(file->filename));
if (mkpath(filename, 0755) == -1) {
perror("Directory for coverage data could "
"not be created");
exit(1);
}
f = fopen(filename, "wb");
if (!f) {
printf("Could not open %s: %s\n",
filename, strerror(errno));
exit(1);
}
if (fwrite((void *)phys_to_virt(file->data),
file->len, 1, f) != 1) {
printf("Could not write to %s: %s\n",
filename, strerror(errno));
exit(1);
}
fclose(f);
free(filename);
if (file->next)
file = (struct file *)phys_to_virt(file->next);
else
file = NULL;
}
unmap_memory();
}
static void print_version(void)
{
printf("cbmem v%s -- ", CBMEM_VERSION);
printf("Copyright (C) 2012 The ChromiumOS Authors. All rights reserved.\n\n");
printf(
"This program is free software: you can redistribute it and/or modify\n"
"it under the terms of the GNU General Public License as published by\n"
"the Free Software Foundation, version 2 of the License.\n\n"
"This program is distributed in the hope that it will be useful,\n"
"but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
"MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"
"GNU General Public License for more details.\n\n"
"You should have received a copy of the GNU General Public License\n"
"along with this program. If not, see <http://www.gnu.org/licenses/>.\n\n");
}
static void print_usage(const char *name)
{
printf("usage: %s [-cCltTxVvh?]\n", name);
printf("\n"
" -c | --console: print cbmem console\n"
" -C | --coverage: dump coverage information\n"
" -l | --list: print cbmem table of contents\n"
" -x | --hexdump: print hexdump of cbmem area\n"
" -t | --timestamps: print timestamp information\n"
" -T | --parseable-timestamps: print parseable timestamps\n"
" -V | --verbose: verbose (debugging) output\n"
" -v | --version: print the version\n"
" -h | --help: print this help\n"
"\n");
exit(1);
}
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
#ifdef __arm__
static void dt_update_cells(const char *name, int *addr_cells_ptr,
int *size_cells_ptr)
{
if (*addr_cells_ptr >= 0 && *size_cells_ptr >= 0)
return;
int buffer;
size_t nlen = strlen(name);
char *prop = alloca(nlen + sizeof("/#address-cells"));
strcpy(prop, name);
if (*addr_cells_ptr < 0) {
strcpy(prop + nlen, "/#address-cells");
int fd = open(prop, O_RDONLY);
if (fd < 0 && errno != ENOENT) {
perror(prop);
} else if (fd >= 0) {
if (read(fd, &buffer, sizeof(int)) < 0)
perror(prop);
else
*addr_cells_ptr = ntohl(buffer);
close(fd);
}
}
if (*size_cells_ptr < 0) {
strcpy(prop + nlen, "/#size-cells");
int fd = open(prop, O_RDONLY);
if (fd < 0 && errno != ENOENT) {
perror(prop);
} else if (fd >= 0) {
if (read(fd, &buffer, sizeof(int)) < 0)
perror(prop);
else
*size_cells_ptr = ntohl(buffer);
close(fd);
}
}
}
static char *dt_find_compat(const char *parent, const char *compat,
int *addr_cells_ptr, int *size_cells_ptr)
{
char *ret = NULL;
struct dirent *entry;
DIR *dir;
if (!(dir = opendir(parent))) {
perror(parent);
return NULL;
}
/* Loop through all files in the directory (DT node). */
while ((entry = readdir(dir))) {
/* We only care about compatible props or subnodes. */
if (entry->d_name[0] == '.' || !((entry->d_type & DT_DIR) ||
!strcmp(entry->d_name, "compatible")))
continue;
/* Assemble the file name (on the stack, for speed). */
size_t plen = strlen(parent);
char *name = alloca(plen + strlen(entry->d_name) + 2);
strcpy(name, parent);
name[plen] = '/';
strcpy(name + plen + 1, entry->d_name);
/* If it's a subnode, recurse. */
if (entry->d_type & DT_DIR) {
ret = dt_find_compat(name, compat, addr_cells_ptr,
size_cells_ptr);
/* There is only one matching node to find, abort. */
if (ret) {
/* Gather cells values on the way up. */
dt_update_cells(parent, addr_cells_ptr,
size_cells_ptr);
break;
}
continue;
}
/* If it's a compatible string, see if it's the right one. */
int fd = open(name, O_RDONLY);
int clen = strlen(compat);
char *buffer = alloca(clen + 1);
if (fd < 0) {
perror(name);
continue;
}
if (read(fd, buffer, clen + 1) < 0) {
perror(name);
close(fd);
continue;
}
close(fd);
if (!strcmp(compat, buffer)) {
/* Initialize these to "unset" for the way up. */
*addr_cells_ptr = *size_cells_ptr = -1;
/* Can't leave string on the stack or we'll lose it! */
ret = strdup(parent);
break;
}
}
closedir(dir);
return ret;
}
#endif /* __arm__ */
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
int main(int argc, char** argv)
{
int print_defaults = 1;
int print_console = 0;
int print_coverage = 0;
int print_list = 0;
int print_hexdump = 0;
int print_timestamps = 0;
int machine_readable_timestamps = 0;
int opt, option_index = 0;
static struct option long_options[] = {
{"console", 0, 0, 'c'},
{"coverage", 0, 0, 'C'},
{"list", 0, 0, 'l'},
{"timestamps", 0, 0, 't'},
{"parseable-timestamps", 0, 0, 'T'},
{"hexdump", 0, 0, 'x'},
{"verbose", 0, 0, 'V'},
{"version", 0, 0, 'v'},
{"help", 0, 0, 'h'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(argc, argv, "cCltTxVvh?",
long_options, &option_index)) != EOF) {
switch (opt) {
case 'c':
print_console = 1;
print_defaults = 0;
break;
case 'C':
print_coverage = 1;
print_defaults = 0;
break;
case 'l':
print_list = 1;
print_defaults = 0;
break;
case 'x':
print_hexdump = 1;
print_defaults = 0;
break;
case 't':
print_timestamps = 1;
print_defaults = 0;
break;
case 'T':
print_timestamps = 1;
machine_readable_timestamps = 1;
print_defaults = 0;
break;
case 'V':
verbose = 1;
break;
case 'v':
print_version();
exit(0);
break;
case 'h':
case '?':
default:
print_usage(argv[0]);
exit(0);
break;
}
}
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
mem_fd = open("/dev/mem", O_RDONLY, 0);
if (mem_fd < 0) {
fprintf(stderr, "Failed to gain memory access: %s\n",
strerror(errno));
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
return 1;
}
#ifdef __arm__
int addr_cells, size_cells;
char *coreboot_node = dt_find_compat("/proc/device-tree", "coreboot",
&addr_cells, &size_cells);
if (!coreboot_node) {
fprintf(stderr, "Could not find 'coreboot' compatible node!\n");
return 1;
}
if (addr_cells < 0) {
fprintf(stderr, "Warning: no #address-cells node in tree!\n");
addr_cells = 1;
}
int nlen = strlen(coreboot_node);
char *reg = alloca(nlen + sizeof("/reg"));
strcpy(reg, coreboot_node);
strcpy(reg + nlen, "/reg");
free(coreboot_node);
int fd = open(reg, O_RDONLY);
if (fd < 0) {
perror(reg);
return 1;
}
int i;
size_t size_to_read = addr_cells * 4 + size_cells * 4;
u8 *dtbuffer = alloca(size_to_read);
if (read(fd, dtbuffer, size_to_read) < 0) {
perror(reg);
return 1;
}
close(fd);
/* No variable-length byte swap function anywhere in C... how sad. */
u64 baseaddr = 0;
for (i = 0; i < addr_cells * 4; i++) {
baseaddr <<= 8;
baseaddr |= *dtbuffer;
dtbuffer++;
}
u64 cb_table_size = 0;
for (i = 0; i < size_cells * 4; i++) {
cb_table_size <<= 8;
cb_table_size |= *dtbuffer;
dtbuffer++;
}
parse_cbtable(baseaddr, cb_table_size);
#else
int j;
static const int possible_base_addresses[] = { 0, 0xf0000 };
/* Find and parse coreboot table */
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
for (j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
if (parse_cbtable(possible_base_addresses[j], MAP_BYTES))
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
break;
}
#endif
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
if (print_console)
dump_console();
if (print_coverage)
dump_coverage();
if (print_list)
dump_cbmem_toc();
if (print_hexdump)
dump_cbmem_hex();
if (print_defaults || print_timestamps)
dump_timestamps(machine_readable_timestamps);
close(mem_fd);
Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
return 0;
}