2008-04-04 01:01:23 +02:00
|
|
|
/*
|
|
|
|
*
|
|
|
|
* It has originally been taken from the OpenBSD project.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* $OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $ */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SHA-1 in C
|
|
|
|
* By Steve Reid <steve@edmweb.com>
|
|
|
|
* 100% Public Domain
|
|
|
|
*
|
|
|
|
* Test Vectors (from FIPS PUB 180-1)
|
|
|
|
* "abc"
|
|
|
|
* A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
|
|
|
|
* "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
|
|
|
|
* 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
|
|
|
|
* A million repetitions of "a"
|
|
|
|
* 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
|
|
|
|
*/
|
|
|
|
|
2008-11-24 18:54:46 +01:00
|
|
|
#include <libpayload-config.h>
|
2008-04-04 01:01:23 +02:00
|
|
|
#include <libpayload.h>
|
|
|
|
|
|
|
|
typedef u8 u_int8_t;
|
|
|
|
typedef u32 u_int32_t;
|
|
|
|
typedef u64 u_int64_t;
|
|
|
|
typedef unsigned int u_int;
|
|
|
|
|
2008-08-11 19:10:58 +02:00
|
|
|
/* Moved from libpayload.h */
|
|
|
|
|
2019-03-06 01:55:15 +01:00
|
|
|
#if CONFIG(LP_LITTLE_ENDIAN)
|
2008-08-11 19:10:58 +02:00
|
|
|
#define BYTE_ORDER LITTLE_ENDIAN
|
|
|
|
#else
|
|
|
|
#define BYTE_ORDER BIG_ENDIAN
|
|
|
|
#endif
|
|
|
|
|
2008-04-04 01:01:23 +02:00
|
|
|
#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* blk0() and blk() perform the initial expand.
|
|
|
|
* I got the idea of expanding during the round function from SSLeay
|
|
|
|
*/
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
|
|
# define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
|
|
|
|
|(rol(block->l[i],8)&0x00FF00FF))
|
|
|
|
#else
|
|
|
|
# define blk0(i) block->l[i]
|
|
|
|
#endif
|
|
|
|
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
|
|
|
|
^block->l[(i+2)&15]^block->l[i&15],1))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
|
|
|
|
*/
|
|
|
|
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
|
|
|
|
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
|
|
|
|
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
|
|
|
|
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
|
|
|
|
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash a single 512-bit block. This is the core of the algorithm.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
|
|
|
|
{
|
|
|
|
u_int32_t a, b, c, d, e;
|
|
|
|
u_int8_t workspace[SHA1_BLOCK_LENGTH];
|
|
|
|
typedef union {
|
|
|
|
u_int8_t c[64];
|
|
|
|
u_int32_t l[16];
|
|
|
|
} CHAR64LONG16;
|
|
|
|
CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
|
|
|
|
|
|
|
|
(void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
|
|
|
|
|
|
|
|
/* Copy context->state[] to working vars */
|
|
|
|
a = state[0];
|
|
|
|
b = state[1];
|
|
|
|
c = state[2];
|
|
|
|
d = state[3];
|
|
|
|
e = state[4];
|
|
|
|
|
|
|
|
/* 4 rounds of 20 operations each. Loop unrolled. */
|
|
|
|
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
|
|
|
|
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
|
|
|
|
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
|
|
|
|
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
|
|
|
|
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
|
|
|
|
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
|
|
|
|
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
|
|
|
|
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
|
|
|
|
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
|
|
|
|
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
|
|
|
|
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
|
|
|
|
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
|
|
|
|
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
|
|
|
|
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
|
|
|
|
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
|
|
|
|
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
|
|
|
|
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
|
|
|
|
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
|
|
|
|
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
|
|
|
|
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
|
|
|
|
|
|
|
|
/* Add the working vars back into context.state[] */
|
|
|
|
state[0] += a;
|
|
|
|
state[1] += b;
|
|
|
|
state[2] += c;
|
|
|
|
state[3] += d;
|
|
|
|
state[4] += e;
|
|
|
|
|
|
|
|
/* Wipe variables */
|
|
|
|
a = b = c = d = e = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SHA1Init - Initialize new context
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
SHA1Init(SHA1_CTX *context)
|
|
|
|
{
|
|
|
|
|
|
|
|
/* SHA1 initialization constants */
|
|
|
|
context->count = 0;
|
|
|
|
context->state[0] = 0x67452301;
|
|
|
|
context->state[1] = 0xEFCDAB89;
|
|
|
|
context->state[2] = 0x98BADCFE;
|
|
|
|
context->state[3] = 0x10325476;
|
|
|
|
context->state[4] = 0xC3D2E1F0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Run your data through this.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
|
|
|
|
{
|
|
|
|
size_t i, j;
|
|
|
|
|
|
|
|
j = (size_t)((context->count >> 3) & 63);
|
|
|
|
context->count += (len << 3);
|
|
|
|
if ((j + len) > 63) {
|
|
|
|
(void)memcpy(&context->buffer[j], data, (i = 64-j));
|
|
|
|
SHA1Transform(context->state, context->buffer);
|
|
|
|
for ( ; i + 63 < len; i += 64)
|
|
|
|
SHA1Transform(context->state, (u_int8_t *)&data[i]);
|
|
|
|
j = 0;
|
|
|
|
} else {
|
|
|
|
i = 0;
|
|
|
|
}
|
|
|
|
(void)memcpy(&context->buffer[j], &data[i], len - i);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add padding and return the message digest.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
SHA1Pad(SHA1_CTX *context)
|
|
|
|
{
|
|
|
|
u_int8_t finalcount[8];
|
|
|
|
u_int i;
|
|
|
|
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
|
|
finalcount[i] = (u_int8_t)((context->count >>
|
|
|
|
((7 - (i & 7)) * 8)) & 255); /* Endian independent */
|
|
|
|
}
|
|
|
|
SHA1Update(context, (u_int8_t *)"\200", 1);
|
|
|
|
while ((context->count & 504) != 448)
|
|
|
|
SHA1Update(context, (u_int8_t *)"\0", 1);
|
|
|
|
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
|
|
|
|
{
|
|
|
|
u_int i;
|
|
|
|
|
|
|
|
SHA1Pad(context);
|
|
|
|
if (digest) {
|
|
|
|
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
|
|
|
|
digest[i] = (u_int8_t)
|
|
|
|
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
|
|
|
|
}
|
|
|
|
memset(context, 0, sizeof(*context));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute the SHA-1 hash of the given data as specified by the 'data' and
|
|
|
|
* 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the
|
|
|
|
* specified output buffer 'buf'.
|
|
|
|
*
|
|
|
|
* @param data Pointer to the input data that shall be hashed.
|
|
|
|
* @param len Length of the input data (in bytes).
|
|
|
|
* @param buf Buffer which will hold the resulting hash (must be at
|
|
|
|
* least 20 bytes in size).
|
|
|
|
* @return Pointer to the output buffer where the hash is stored.
|
|
|
|
*/
|
|
|
|
u8 *sha1(const u8 *data, size_t len, u8 *buf)
|
|
|
|
{
|
|
|
|
SHA1_CTX ctx;
|
|
|
|
|
|
|
|
SHA1Init(&ctx);
|
|
|
|
SHA1Update(&ctx, data, len);
|
|
|
|
SHA1Final(buf, &ctx);
|
|
|
|
|
|
|
|
return buf;
|
|
|
|
}
|