390 lines
12 KiB
C
390 lines
12 KiB
C
|
/*
|
||
|
* This file is part of the coreboot project.
|
||
|
*
|
||
|
* Copyright 2013 Google Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; version 2 of the License.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#include <types.h>
|
||
|
#include <string.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <device/device.h>
|
||
|
#include <device/device.h>
|
||
|
#include <device/pci_def.h>
|
||
|
#include <device/pci_ops.h>
|
||
|
#include <console/console.h>
|
||
|
#include <delay.h>
|
||
|
#include <pc80/mc146818rtc.h>
|
||
|
#include <arch/acpi.h>
|
||
|
#include <arch/io.h>
|
||
|
#include <arch/interrupt.h>
|
||
|
#include <boot/coreboot_tables.h>
|
||
|
#include "hda_verb.h"
|
||
|
#include <smbios.h>
|
||
|
#include <device/pci.h>
|
||
|
#include <ec/google/chromeec/ec.h>
|
||
|
#include <cbfs_core.h>
|
||
|
|
||
|
#include <cpu/x86/tsc.h>
|
||
|
#include <cpu/x86/cache.h>
|
||
|
#include <cpu/x86/mtrr.h>
|
||
|
#include <cpu/x86/msr.h>
|
||
|
#include <edid.h>
|
||
|
#include <drivers/intel/gma/i915.h>
|
||
|
#include "mainboard.h"
|
||
|
|
||
|
/*
|
||
|
* Here is the rough outline of how we bring up the display:
|
||
|
* 1. Upon power-on Sink generates a hot plug detection pulse thru HPD
|
||
|
* 2. Source determines video mode by reading DPCD receiver capability field
|
||
|
* (DPCD 00000h to 0000Dh) including eDP CP capability register (DPCD
|
||
|
* 0000Dh).
|
||
|
* 3. Sink replies DPCD receiver capability field.
|
||
|
* 4. Source starts EDID read thru I2C-over-AUX.
|
||
|
* 5. Sink replies EDID thru I2C-over-AUX.
|
||
|
* 6. Source determines link configuration, such as MAX_LINK_RATE and
|
||
|
* MAX_LANE_COUNT. Source also determines which type of eDP Authentication
|
||
|
* method to use and writes DPCD link configuration field (DPCD 00100h to
|
||
|
* 0010Ah) including eDP configuration set (DPCD 0010Ah).
|
||
|
* 7. Source starts link training. Sink does clock recovery and equalization.
|
||
|
* 8. Source reads DPCD link status field (DPCD 00200h to 0020Bh).
|
||
|
* 9. Sink replies DPCD link status field. If main link is not stable, Source
|
||
|
* repeats Step 7.
|
||
|
* 10. Source sends MSA (Main Stream Attribute) data. Sink extracts video
|
||
|
* parameters and recovers stream clock.
|
||
|
* 11. Source sends video data.
|
||
|
*/
|
||
|
|
||
|
/* how many bytes do we need for the framebuffer?
|
||
|
* Well, this gets messy. To get an exact answer, we have
|
||
|
* to ask the panel, but we'd rather zero the memory
|
||
|
* and set up the gtt while the panel powers up. So,
|
||
|
* we take a reasonable guess, secure in the knowledge that the
|
||
|
* MRC has to overestimate the number of bytes used.
|
||
|
* 8 MiB is a very safe guess. There may be a better way later, but
|
||
|
* fact is, the initial framebuffer is only very temporary. And taking
|
||
|
* a little long is ok; this is done much faster than the AUX
|
||
|
* channel is ready for IO.
|
||
|
*/
|
||
|
#define FRAME_BUFFER_BYTES (8*MiB)
|
||
|
/* how many 4096-byte pages do we need for the framebuffer?
|
||
|
* There are hard ways to get this, and easy ways:
|
||
|
* there are FRAME_BUFFER_BYTES/4096 pages, since pages are 4096
|
||
|
* on this chip (and in fact every Intel graphics chip we've seen).
|
||
|
*/
|
||
|
#define FRAME_BUFFER_PAGES (FRAME_BUFFER_BYTES/(4096))
|
||
|
|
||
|
static unsigned int *mmio;
|
||
|
static unsigned int graphics;
|
||
|
static unsigned int physbase;
|
||
|
|
||
|
void ug1(int);
|
||
|
void ug2(int);
|
||
|
void ug22(int);
|
||
|
void ug3(int);
|
||
|
|
||
|
/* GTT is the Global Translation Table for the graphics pipeline.
|
||
|
* It is used to translate graphics addresses to physical
|
||
|
* memory addresses. As in the CPU, GTTs map 4K pages.
|
||
|
* The setgtt function adds a further bit of flexibility:
|
||
|
* it allows you to set a range (the first two parameters) to point
|
||
|
* to a physical address (third parameter);the physical address is
|
||
|
* incremented by a count (fourth parameter) for each GTT in the
|
||
|
* range.
|
||
|
* Why do it this way? For ultrafast startup,
|
||
|
* we can point all the GTT entries to point to one page,
|
||
|
* and set that page to 0s:
|
||
|
* memset(physbase, 0, 4096);
|
||
|
* setgtt(0, 4250, physbase, 0);
|
||
|
* this takes about 2 ms, and is a win because zeroing
|
||
|
* the page takes a up to 200 ms.
|
||
|
* This call sets the GTT to point to a linear range of pages
|
||
|
* starting at physbase.
|
||
|
*/
|
||
|
|
||
|
#define GTT_PTE_BASE (2 << 20)
|
||
|
|
||
|
static void
|
||
|
setgtt(int start, int end, unsigned long base, int inc)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for(i = start; i < end; i++){
|
||
|
u32 word = base + i*inc;
|
||
|
/* note: we've confirmed by checking
|
||
|
* the values that mrc does no
|
||
|
* useful setup before we run this.
|
||
|
*/
|
||
|
gtt_write(GTT_PTE_BASE + i * 4, word|1);
|
||
|
gtt_read(GTT_PTE_BASE + i * 4);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int i915_init_done = 0;
|
||
|
|
||
|
/* fill the palette. */
|
||
|
static void palette(void)
|
||
|
{
|
||
|
int i;
|
||
|
unsigned long color = 0;
|
||
|
|
||
|
for(i = 0; i < 256; i++, color += 0x010101){
|
||
|
gtt_write(_LGC_PALETTE_A + (i<<2),color);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dp_init_dim_regs(struct intel_dp *dp);
|
||
|
void dp_init_dim_regs(struct intel_dp *dp)
|
||
|
{
|
||
|
struct edid *edid = &(dp->edid);
|
||
|
|
||
|
dp->bytes_per_pixel = edid->framebuffer_bits_per_pixel / 8;
|
||
|
|
||
|
dp->stride = edid->bytes_per_line;
|
||
|
|
||
|
dp->htotal = (edid->ha - 1) | ((edid->ha + edid->hbl - 1) << 16);
|
||
|
|
||
|
dp->hblank = (edid->ha - 1) | ((edid->ha + edid->hbl - 1) << 16);
|
||
|
|
||
|
dp->hsync = (edid->ha + edid->hso - 1) |
|
||
|
((edid->ha + edid->hso + edid->hspw - 1) << 16);
|
||
|
|
||
|
dp->vtotal = (edid->va - 1) | ((edid->va + edid->vbl - 1) << 16);
|
||
|
|
||
|
dp->vblank = (edid->va - 1) | ((edid->va + edid->vbl - 1) << 16);
|
||
|
|
||
|
dp->vsync = (edid->va + edid->vso - 1) |
|
||
|
((edid->va + edid->vso + edid->vspw - 1) << 16);
|
||
|
|
||
|
/* PIPEASRC is wid-1 x ht-1 */
|
||
|
dp->pipesrc = (edid->ha-1)<<16 | (edid->va-1);
|
||
|
|
||
|
dp->pfa_pos = 0;
|
||
|
|
||
|
dp->pfa_ctl = 0x80800000;
|
||
|
|
||
|
dp->pfa_sz = (edid->ha << 16) | (edid->va);
|
||
|
|
||
|
dp->flags = intel_ddi_calc_transcoder_flags(3 * 6, /* bits per color is 6 */
|
||
|
dp->port,
|
||
|
dp->pipe,
|
||
|
dp->type,
|
||
|
dp->lane_count,
|
||
|
dp->pfa_sz,
|
||
|
dp->edid.phsync == '+'?1:0,
|
||
|
dp->edid.pvsync == '+'?1:0);
|
||
|
|
||
|
dp->transcoder = intel_ddi_get_transcoder(dp->port,
|
||
|
dp->pipe);
|
||
|
|
||
|
intel_dp_compute_m_n(dp->pipe_bits_per_pixel,
|
||
|
dp->lane_count,
|
||
|
dp->edid.pixel_clock,
|
||
|
dp->edid.link_clock,
|
||
|
&dp->m_n);
|
||
|
|
||
|
printk(BIOS_SPEW, "dp->stride = 0x%08x\n",dp->stride);
|
||
|
printk(BIOS_SPEW, "dp->htotal = 0x%08x\n", dp->htotal);
|
||
|
printk(BIOS_SPEW, "dp->hblank = 0x%08x\n", dp->hblank);
|
||
|
printk(BIOS_SPEW, "dp->hsync = 0x%08x\n", dp->hsync);
|
||
|
printk(BIOS_SPEW, "dp->vtotal = 0x%08x\n", dp->vtotal);
|
||
|
printk(BIOS_SPEW, "dp->vblank = 0x%08x\n", dp->vblank);
|
||
|
printk(BIOS_SPEW, "dp->vsync = 0x%08x\n", dp->vsync);
|
||
|
printk(BIOS_SPEW, "dp->pipesrc = 0x%08x\n", dp->pipesrc);
|
||
|
printk(BIOS_SPEW, "dp->pfa_pos = 0x%08x\n", dp->pfa_pos);
|
||
|
printk(BIOS_SPEW, "dp->pfa_ctl = 0x%08x\n", dp->pfa_ctl);
|
||
|
printk(BIOS_SPEW, "dp->pfa_sz = 0x%08x\n", dp->pfa_sz);
|
||
|
printk(BIOS_SPEW, "dp->link_m = 0x%08x\n", dp->m_n.link_m);
|
||
|
printk(BIOS_SPEW, "dp->link_n = 0x%08x\n", dp->m_n.link_n);
|
||
|
printk(BIOS_SPEW, "0x6f030 = 0x%08x\n", TU_SIZE(dp->m_n.tu) | dp->m_n.gmch_m);
|
||
|
printk(BIOS_SPEW, "0x6f030 = 0x%08x\n", dp->m_n.gmch_m);
|
||
|
printk(BIOS_SPEW, "0x6f034 = 0x%08x\n", dp->m_n.gmch_n);
|
||
|
printk(BIOS_SPEW, "dp->flags = 0x%08x\n", dp->flags);
|
||
|
}
|
||
|
|
||
|
void mainboard_train_link(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
u8 read_val;
|
||
|
u8 link_status[DP_LINK_STATUS_SIZE];
|
||
|
|
||
|
gtt_write(DP_TP_CTL(intel_dp->port),DP_TP_CTL_ENABLE | DP_TP_CTL_ENHANCED_FRAME_ENABLE);
|
||
|
gtt_write(DP_A, DP_PORT_EN | DP_LINK_TRAIN_PAT_1 | DP_LINK_TRAIN_PAT_1_CPT | DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0 | DP_PORT_WIDTH_1 | DP_PLL_FREQ_270MHZ | DP_SYNC_VS_HIGH |0x80000011);
|
||
|
|
||
|
intel_dp_get_training_pattern(intel_dp, &read_val);
|
||
|
intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_1 | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
|
||
|
intel_dp_get_lane_count(intel_dp, &read_val);
|
||
|
intel_dp_set_training_lane0(intel_dp, DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0);
|
||
|
intel_dp_get_link_status(intel_dp, link_status);
|
||
|
|
||
|
gtt_write(DP_TP_CTL(intel_dp->port),DP_TP_CTL_ENABLE | DP_TP_CTL_ENHANCED_FRAME_ENABLE | DP_TP_CTL_LINK_TRAIN_PAT2);
|
||
|
|
||
|
intel_dp_get_training_pattern(intel_dp, &read_val);
|
||
|
intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_2 | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
|
||
|
intel_dp_get_link_status(intel_dp, link_status);
|
||
|
intel_dp_get_lane_align_status(intel_dp, &read_val);
|
||
|
intel_dp_get_training_pattern(intel_dp, &read_val);
|
||
|
intel_dp_set_training_pattern(intel_dp, DP_TRAINING_PATTERN_DISABLE | DP_LINK_QUAL_PATTERN_DISABLE | DP_SYMBOL_ERROR_COUNT_BOTH);
|
||
|
}
|
||
|
|
||
|
#define TEST_GFX 0
|
||
|
|
||
|
#if TEST_GFX
|
||
|
static void test_gfx(struct intel_dp *dp)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
/* This is a sanity test code which fills the screen with two bands --
|
||
|
green and blue. It is very useful to ensure all the initializations
|
||
|
are made right. Thus, to be used only for testing, not otherwise
|
||
|
*/
|
||
|
for (i = 0; i < (dp->edid.va - 4); i++) {
|
||
|
u32 *l;
|
||
|
int j;
|
||
|
u32 tcolor = 0x0ff;
|
||
|
for (j = 0; j < (dp->edid.ha-4); j++) {
|
||
|
if (j == (dp->edid.ha/2)) {
|
||
|
tcolor = 0xff00;
|
||
|
}
|
||
|
l = (u32*)(graphics + i * dp->stride + j * sizeof(tcolor));
|
||
|
memcpy(l,&tcolor,sizeof(tcolor));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
static void test_gfx(struct intel_dp *dp) {}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void mainboard_set_port_clk_dp(struct intel_dp *intel_dp)
|
||
|
{
|
||
|
u32 ddi_pll_sel = 0;
|
||
|
|
||
|
switch (intel_dp->link_bw) {
|
||
|
case DP_LINK_BW_1_62:
|
||
|
ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
|
||
|
break;
|
||
|
case DP_LINK_BW_2_7:
|
||
|
ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
|
||
|
break;
|
||
|
case DP_LINK_BW_5_4:
|
||
|
ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
|
||
|
break;
|
||
|
default:
|
||
|
printk(BIOS_ERR, "invalid link bw %d\n", intel_dp->link_bw);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gtt_write(PORT_CLK_SEL(intel_dp->port), ddi_pll_sel);
|
||
|
}
|
||
|
|
||
|
int i915lightup(unsigned int pphysbase, unsigned int pmmio,
|
||
|
unsigned int pgfx, unsigned int init_fb)
|
||
|
{
|
||
|
int must_cycle_power = 0;
|
||
|
struct intel_dp adp, *dp = &adp;
|
||
|
int i;
|
||
|
int edid_ok;
|
||
|
int pixels = FRAME_BUFFER_BYTES/64;
|
||
|
|
||
|
mmio = (void *)pmmio;
|
||
|
physbase = pphysbase;
|
||
|
graphics = pgfx;
|
||
|
printk(BIOS_SPEW,
|
||
|
"i915lightup: graphics %p mmio %p"
|
||
|
"physbase %08x\n",
|
||
|
(void *)graphics, mmio, physbase);
|
||
|
|
||
|
void runio(struct intel_dp *dp);
|
||
|
void runlinux(struct intel_dp *dp);
|
||
|
dp->gen = 8; // This is gen 8 which we believe is Haswell
|
||
|
dp->is_haswell = 1;
|
||
|
dp->DP = 0x2;
|
||
|
/* These values are used for training the link */
|
||
|
dp->lane_count = 2;
|
||
|
dp->link_bw = DP_LINK_BW_2_7;
|
||
|
dp->panel_power_down_delay = 600;
|
||
|
dp->panel_power_up_delay = 200;
|
||
|
dp->panel_power_cycle_delay = 600;
|
||
|
dp->pipe = PIPE_A;
|
||
|
dp->port = PORT_A;
|
||
|
dp->plane = PLANE_A;
|
||
|
dp->clock = 160000;
|
||
|
dp->pipe_bits_per_pixel = 32;
|
||
|
dp->type = INTEL_OUTPUT_EDP;
|
||
|
dp->output_reg = DP_A;
|
||
|
/* observed from YABEL. */
|
||
|
dp->aux_clock_divider = 0xe1;
|
||
|
dp->precharge = 3;
|
||
|
|
||
|
/* 1. Normal mode: Set the first page to zero and make
|
||
|
all GTT entries point to the same page
|
||
|
2. Developer/Recovery mode: We do not zero out all
|
||
|
the pages pointed to by GTT in order to avoid wasting time */
|
||
|
if (init_fb)
|
||
|
setgtt(0, FRAME_BUFFER_PAGES, physbase, 4096);
|
||
|
else {
|
||
|
setgtt(0, FRAME_BUFFER_PAGES, physbase, 0);
|
||
|
memset((void*)graphics, 0, 4096);
|
||
|
}
|
||
|
|
||
|
dp->address = 0x50;
|
||
|
|
||
|
if ( !intel_dp_get_dpcd(dp) )
|
||
|
goto fail;
|
||
|
|
||
|
intel_dp_i2c_aux_ch(dp, MODE_I2C_WRITE, 0, NULL);
|
||
|
for(dp->edidlen = i = 0; i < sizeof(dp->rawedid); i++){
|
||
|
if (intel_dp_i2c_aux_ch(dp, MODE_I2C_READ,
|
||
|
0x50, &dp->rawedid[i]) < 0)
|
||
|
break;
|
||
|
dp->edidlen++;
|
||
|
}
|
||
|
|
||
|
edid_ok = decode_edid(dp->rawedid, dp->edidlen, &dp->edid);
|
||
|
printk(BIOS_SPEW, "decode edid returns %d\n", edid_ok);
|
||
|
|
||
|
dp->edid.link_clock = intel_dp_bw_code_to_link_rate(dp->link_bw);
|
||
|
|
||
|
printk(BIOS_SPEW, "pixel_clock is %i, link_clock is %i\n",dp->edid.pixel_clock, dp->edid.link_clock);
|
||
|
|
||
|
dp_init_dim_regs(dp);
|
||
|
|
||
|
intel_ddi_set_pipe_settings(dp);
|
||
|
|
||
|
runio(dp);
|
||
|
|
||
|
palette();
|
||
|
|
||
|
pixels = dp->edid.ha * (dp->edid.va-4) * 4;
|
||
|
printk(BIOS_SPEW, "ha=%d, va=%d\n",dp->edid.ha, dp->edid.va);
|
||
|
|
||
|
test_gfx(dp);
|
||
|
|
||
|
set_vbe_mode_info_valid(&dp->edid, graphics);
|
||
|
i915_init_done = 1;
|
||
|
return i915_init_done;
|
||
|
|
||
|
fail:
|
||
|
printk(BIOS_SPEW, "Graphics could not be started;");
|
||
|
if (0 && must_cycle_power){
|
||
|
printk(BIOS_SPEW, "Turn off power and wait ...");
|
||
|
gtt_write(PCH_PP_CONTROL,0xabcd0000);
|
||
|
udelay(600000);
|
||
|
gtt_write(PCH_PP_CONTROL,0xabcd000f);
|
||
|
}
|
||
|
printk(BIOS_SPEW, "Returning.\n");
|
||
|
return 0;
|
||
|
}
|