coreboot-kgpe-d16/util/x86emu/biosemu.c

590 lines
15 KiB
C
Raw Normal View History

/*
* This software and ancillary information (herein called SOFTWARE )
* called LinuxBIOS is made available under the terms described
* here. The SOFTWARE has been approved for release with associated
* LA-CC Number 00-34 . Unless otherwise indicated, this SOFTWARE has
* been authored by an employee or employees of the University of
* California, operator of the Los Alamos National Laboratory under
* Contract No. W-7405-ENG-36 with the U.S. Department of Energy. The
* U.S. Government has rights to use, reproduce, and distribute this
* SOFTWARE. The public may copy, distribute, prepare derivative works
* and publicly display this SOFTWARE without charge, provided that this
* Notice and any statement of authorship are reproduced on all copies.
* Neither the Government nor the University makes any warranty, express
* or implied, or assumes any liability or responsibility for the use of
* this SOFTWARE. If SOFTWARE is modified to produce derivative works,
* such modified SOFTWARE should be clearly marked, so as not to confuse
* it with the version available from LANL.
*/
/*
* This file is part of the coreboot project.
*
* (c) Copyright 2000, Ron Minnich, Advanced Computing Lab, LANL
* Copyright (C) 2009 coresystems GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#ifdef CONFIG_COREBOOT_V2
#include <arch/io.h>
#include <console/console.h>
#else
#include <io.h>
#include <console.h>
#endif
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <x86emu/x86emu.h>
#include "x86emu/prim_ops.h"
#define DATA_SEGMENT 0x2000
#define STACK_SEGMENT 0x1000 //1000:xxxx
#define STACK_START_OFFSET 0xfffe
#define INITIAL_EBDA_SEGMENT 0xF600 // segment of the Extended BIOS Data Area
#define INITIAL_EBDA_SIZE 0x400 // size of the EBDA (at least 1KB!! since size is stored in KB!)
enum {
PCI_BIOS_PRESENT = 0xB101,
FIND_PCI_DEVICE = 0xB102,
FIND_PCI_CLASS_CODE = 0xB103,
GENERATE_SPECIAL_CYCLE = 0xB106,
READ_CONFIG_BYTE = 0xB108,
READ_CONFIG_WORD = 0xB109,
READ_CONFIG_DWORD = 0xB10A,
WRITE_CONFIG_BYTE = 0xB10B,
WRITE_CONFIG_WORD = 0xB10C,
WRITE_CONFIG_DWORD = 0xB10D,
GET_IRQ_ROUTING_OPTIONS = 0xB10E,
SET_PCI_IRQ = 0xB10F
};
enum {
SUCCESSFUL = 0x00,
FUNC_NOT_SUPPORTED = 0x81,
BAD_VENDOR_ID = 0x83,
DEVICE_NOT_FOUND = 0x86,
BAD_REGISTER_NUMBER = 0x87,
SET_FAILED = 0x88,
BUFFER_TOO_SMALL = 0x89
};
#define MEM_WB(where, what) wrb(where, what)
#define MEM_WW(where, what) wrw(where, what)
#define MEM_WL(where, what) wrl(where, what)
#define MEM_RB(where) rdb(where)
#define MEM_RW(where) rdw(where)
#define MEM_RL(where) rdl(where)
static u8 biosemu_inb(u16 port)
{
u8 val;
val = inb(port);
#ifdef CONFIG_DEBUG
if (port != 0x40)
printk("inb(0x%04x) = 0x%02x\n", port, val);
#endif
return val;
}
static u16 biosemu_inw(u16 port)
{
u16 val;
val = inw(port);
#ifdef CONFIG_DEBUG
printk("inw(0x%04x) = 0x%04x\n", port, val);
#endif
return val;
}
static u32 biosemu_inl(u16 port)
{
u32 val;
val = inl(port);
#ifdef CONFIG_DEBUG
printk("inl(0x%04x) = 0x%08x\n", port, val);
#endif
return val;
}
static void biosemu_outb(u16 port, u8 val)
{
#ifdef CONFIG_DEBUG
if (port != 0x43)
printk("outb(0x%02x, 0x%04x)\n", val, port);
#endif
outb(val, port);
}
static void biosemu_outw(u16 port, u16 val)
{
#ifdef CONFIG_DEBUG
printk("outw(0x%04x, 0x%04x)\n", val, port);
#endif
outw(val, port);
}
static void biosemu_outl(u16 port, u32 val)
{
#ifdef CONFIG_DEBUG
printk("outl(0x%08x, 0x%04x)\n", val, port);
#endif
outl(val, port);
}
static X86EMU_pioFuncs biosemu_piofuncs = {
biosemu_inb, biosemu_inw, biosemu_inl,
biosemu_outb, biosemu_outw, biosemu_outl
};
/* Interrupt Handlers */
static int int15_handler(void)
{
/* This int15 handler is VIA Tech. and Intel specific. Other chipsets need other
* handlers. The right way to do this is to move this handler code into
* the mainboard or northbridge code.
*/
switch (X86_AX) {
case 0x5f19:
X86_EFLAGS |= FB_CF; /* set carry flag */
break;
case 0x5f18:
X86_EAX = 0x5f;
// MCLK = 133, 32M frame buffer, 256 M main memory
X86_EBX = 0x545;
X86_ECX = 0x060;
X86_EFLAGS &= ~FB_CF;
break;
case 0x5f00:
X86_EAX = 0x8600;
X86_EFLAGS |= FB_CF; /* set carry flag */
break;
case 0x5f01:
X86_EAX = 0x5f;
X86_ECX = (X86_ECX & 0xffffff00 ) | 2; // panel type = 2 = 1024 * 768
X86_EFLAGS &= ~FB_CF;
break;
case 0x5f02:
X86_EAX = 0x5f;
X86_EBX = (X86_EBX & 0xffff0000) | 2;
X86_ECX = (X86_ECX & 0xffff0000) | 0x401; // PAL + crt only
X86_EDX = (X86_EDX & 0xffff0000) | 0; // TV Layout - default
X86_EFLAGS &= ~FB_CF;
break;
case 0x5f0f:
X86_EAX = 0x860f;
X86_EFLAGS |= FB_CF; /* set carry flag */
break;
/* And now Intel IGD code */
#define BOOT_DISPLAY_DEFAULT 0
#define BOOT_DISPLAY_CRT (1 << 0)
#define BOOT_DISPLAY_TV (1 << 1)
#define BOOT_DISPLAY_EFP (1 << 2)
#define BOOT_DISPLAY_LCD (1 << 3)
#define BOOT_DISPLAY_CRT2 (1 << 4)
#define BOOT_DISPLAY_TV2 (1 << 5)
#define BOOT_DISPLAY_EFP2 (1 << 6)
#define BOOT_DISPLAY_LCD2 (1 << 7)
case 0x5f35:
X86_EAX = 0x5f;
X86_ECX = BOOT_DISPLAY_DEFAULT;
X86_EFLAGS &= ~FB_CF;
break;
case 0x5f40:
X86_EAX = 0x5f;
X86_ECX = 3; // This is mainboard specific
printk("DISPLAY=%x\n", X86_ECX);
X86_EFLAGS &= ~FB_CF;
break;
default:
printk("Unknown INT15 function %04x!\n", X86_AX);
X86_EFLAGS |= FB_CF; /* set carry flag */
}
return 1;
}
static int int1a_handler(void)
{
int ret = 0;
struct device *dev = 0;
switch (X86_AX) {
case PCI_BIOS_PRESENT:
X86_AH = 0x00; /* no config space/special cycle support */
X86_AL = 0x01; /* config mechanism 1 */
X86_EDX = 'P' | 'C' << 8 | 'I' << 16 | ' ' << 24;
X86_EBX = 0x0210; /* Version 2.10 */
X86_ECX = 0xFF00; /* FIXME: Max bus number */
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
break;
case FIND_PCI_DEVICE:
/* FIXME: support SI != 0 */
#ifdef CONFIG_COREBOOT_V2
dev = dev_find_device(X86_DX, X86_CX, dev);
#else
dev = dev_find_pci_device(X86_DX, X86_CX, dev);
#endif
if (dev != 0) {
X86_BH = dev->bus->secondary;
X86_BL = dev->path.pci.devfn;
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case FIND_PCI_CLASS_CODE:
/* FixME: support SI != 0 */
dev = dev_find_class(X86_ECX, dev);
if (dev != 0) {
X86_BH = dev->bus->secondary;
X86_BL = dev->path.pci.devfn;
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case READ_CONFIG_BYTE:
dev = dev_find_slot(X86_BH, X86_BL);
if (dev != 0) {
X86_CL = pci_read_config8(dev, X86_DI);
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case READ_CONFIG_WORD:
dev = dev_find_slot(X86_BH, X86_BL);
if (dev != 0) {
X86_CX = pci_read_config16(dev, X86_DI);
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case READ_CONFIG_DWORD:
dev = dev_find_slot(X86_BH, X86_BL);
if (dev != 0) {
X86_ECX = pci_read_config32(dev, X86_DI);
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case WRITE_CONFIG_BYTE:
dev = dev_find_slot(X86_BH, X86_BL);
if (dev != 0) {
pci_write_config8(dev, X86_DI, X86_CL);
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case WRITE_CONFIG_WORD:
dev = dev_find_slot(X86_BH, X86_BL);
if (dev != 0) {
pci_write_config16(dev, X86_DI, X86_CX);
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
case WRITE_CONFIG_DWORD:
dev = dev_find_slot(X86_BH, X86_BL);
if (dev != 0) {
pci_write_config16(dev, X86_DI, X86_ECX);
X86_AH = SUCCESSFUL;
X86_EFLAGS &= ~FB_CF; /* clear carry flag */
ret = 1;
} else {
X86_AH = DEVICE_NOT_FOUND;
X86_EFLAGS |= FB_CF; /* set carry flag */
ret = 0;
}
break;
default:
X86_AH = FUNC_NOT_SUPPORTED;
X86_EFLAGS |= FB_CF;
break;
}
return ret;
}
/* Interrupt multiplexer */
/* Find base address of interrupt handler */
static u32 getIntVect(int num)
{
return MEM_RW(num << 2) + (MEM_RW((num << 2) + 2) << 4);
}
static int run_bios_int(int num)
{
u32 eflags;
eflags = X86_EFLAGS;
push_word(eflags);
push_word(X86_CS);
push_word(X86_IP);
X86_CS = MEM_RW((num << 2) + 2);
X86_IP = MEM_RW(num << 2);
return 1;
}
static void do_int(int num)
{
int ret = 0;
printk("int%x (AX=%04x) vector at %x\n", num, X86_AX, getIntVect(num));
switch (num) {
case 0x10:
case 0x42:
case 0x6D:
if (getIntVect(num) == 0x0000) {
printk("uninitialized interrupt vector\n");
ret = 1;
}
if (getIntVect(num) == 0xFF065) {
//ret = int42_handler();
ret = 1;
}
break;
case 0x15:
ret = int15_handler();
ret = 1;
break;
case 0x16:
//ret = int16_handler();
ret = 0;
break;
case 0x1A:
ret = int1a_handler();
ret = 1;
break;
case 0xe6:
//ret = intE6_handler();
ret = 0;
break;
default:
break;
}
if (!ret)
ret = run_bios_int(num);
}
/*
* here we are really paranoid about faking a "real"
* BIOS. Most of this information was pulled from
* dosemu.
*/
static void setup_system_bios(void)
{
int i;
/* Set up Interrupt Vectors. The IVT starts at 0x0000:0x0000
* Additionally, we put some stub code into the F segment for
* those pesky little buggers that jmp to the hard coded addresses
* instead of calling int XX. This stub code looks like this
*
* CD XX int 0xXX
* C3 ret
* F4 hlt
*/
/* int 05 default location (Bound Exceeded) */
MEM_WL(0x05 << 2, 0xf000ff54);
MEM_WL(0xfff54, 0xf4c305cd);
/* int 08 default location (Double Fault) */
MEM_WL(0x08 << 2, 0xf000fea5);
MEM_WL(0xffea5, 0xf4c308cd);
/* int 0E default location (Page Fault) */
MEM_WL(0x0e << 2, 0xf000ef57);
MEM_WL(0xfef57, 0xf4c30ecd);
/* int 10 default location */
MEM_WL(0x10 << 2, 0xf000f065);
MEM_WL(0xff065, 0xf4c310cd);
/* int 11 default location (Get Equipment Configuration) */
MEM_WL(0x11 << 2, 0xf000f84d);
MEM_WL(0xff84d, 0xf4c311cd);
/* int 12 default location (Get Conventional Memory Size) */
MEM_WL(0x12 << 2, 0xf000f841);
MEM_WL(0xff841, 0xf4c312cd);
/* int 13 default location (Disk) */
MEM_WL(0x13 << 2, 0xf000ec59);
MEM_WL(0xfec59, 0xf4c313cd);
/* int 14 default location (Disk) */
MEM_WL(0x14 << 2, 0xf000e739);
MEM_WL(0xfe739, 0xf4c314cd);
/* int 15 default location (I/O System Extensions) */
MEM_WL(0x15 << 2, 0xf000f859);
MEM_WL(0xf859, 0xf4c315cd);
/* int 16 default location */
MEM_WL(0x16 << 2, 0xf000e82e);
MEM_WL(0xfe82e, 0xf4c316cd);
/* int 17 default location (Parallel Port) */
MEM_WL(0x17 << 2, 0xf000efd2);
MEM_WL(0xfefd2, 0xf4c317cd);
/* int 1A default location (RTC, PCI and others) */
MEM_WL(0x1a << 2, 0xf000fe6e);
MEM_WL(0xffe6e, 0xf4c31acd);
/* int 1E default location (FDD table) */
MEM_WL(0x1e << 2, 0xf000efc7);
MEM_WL(0xfefc7, 0xf4c31ecd);
/* font tables default location (int 1F) */
MEM_WL(0x1f << 2, 0xf000fa6e);
MEM_WL(0xffa6e, 0xf4c31fcd);
/* int 42 default location */
MEM_WL(0x42 << 2, 0xf000f065);
/* int 6D default location */
MEM_WL(0x6D << 2, 0xf000f065);
/* Clear EBDA */
for (i=(INITIAL_EBDA_SEGMENT << 4);
i<(INITIAL_EBDA_SEGMENT << 4) + INITIAL_EBDA_SIZE; i++)
MEM_WB(i, 0);
/* at offset 0h in EBDA is the size of the EBDA in KB */
MEM_WW((INITIAL_EBDA_SEGMENT << 4) + 0x0, INITIAL_EBDA_SIZE / 1024);
/* Clear BDA */
for (i=0x400; i<0x500; i+=4)
MEM_WL(i, 0);
/* Set up EBDA */
MEM_WW(0x40e, INITIAL_EBDA_SEGMENT);
/* Set RAM size to 16MB (fake) */
MEM_WW(0x413, 16384);
// TODO Set up more of BDA here
/* setup original ROM BIOS Area (F000:xxxx) */
const char *date = "06/23/99";
for (i = 0; date[i]; i++)
MEM_WB(0xffff5 + i, date[i]);
/* set up eisa ident string */
const char *ident = "PCI_ISA";
for (i = 0; ident[i]; i++)
MEM_WB(0xfffd9 + i, ident[i]);
// write system model id for IBM-AT
// according to "Ralf Browns Interrupt List" Int15 AH=C0 Table 515,
// model FC is the original AT and also used in all DOSEMU Versions.
MEM_WB(0xFFFFE, 0xfc);
}
#define BIOSEMU_MEM_BASE 0x00000000
#define BIOSEMU_MEM_SIZE 0x00100000
void run_bios(struct device * dev, unsigned long addr)
{
int i;
u16 initialcs = (addr & 0xF0000) >> 4;
u16 initialip = (addr + 3) & 0xFFFF;
u16 devfn = (dev->bus->secondary << 8) | dev->path.pci.devfn;
X86EMU_intrFuncs intFuncs[256];
X86EMU_setMemBase(BIOSEMU_MEM_BASE, BIOSEMU_MEM_SIZE);
X86EMU_setupPioFuncs(&biosemu_piofuncs);
for (i = 0; i < 256; i++)
intFuncs[i] = do_int;
X86EMU_setupIntrFuncs(intFuncs);
setup_system_bios();
/* cpu setup */
X86_AX = devfn ? devfn : 0xff;
X86_DX = 0x80;
X86_EIP = initialip;
X86_CS = initialcs;
/* Initialize stack and data segment */
X86_SS = STACK_SEGMENT;
X86_SP = STACK_START_OFFSET;;
X86_DS = DATA_SEGMENT;
/* We need a sane way to return from bios
* execution. A hlt instruction and a pointer
* to it, both kept on the stack, will do.
*/
push_word(0xf4f4); /* hlt; hlt */
push_word(X86_SS);
push_word(X86_SP + 2);
#ifdef CONFIG_DEBUG
//X86EMU_trace_on();
#endif
printk("Executing Initialization Vector...\n");
X86EMU_exec();
printk("Option ROM Exit Status: %04x\n", X86_AX);
/* Check whether the stack is "clean" i.e. containing the HLT
* instruction we pushed before executing and pointing to the original
* stack address... indicating that the initialization probably was
* successful
*/
if ((pop_word() == 0xf4f4) && (X86_SS == STACK_SEGMENT)
&& (X86_SP == STACK_START_OFFSET)) {
printk("Stack is clean, initialization successfull!\n");
} else {
printk("Stack unclean, initialization probably NOT COMPLETE!!\n");
printk("SS:SP = %04x:%04x, expected: %04x:%04x\n",
X86_SS, X86_SP, STACK_SEGMENT, STACK_START_OFFSET);
}
}