coreboot-kgpe-d16/payloads/libpayload/include/usb/dwc2_registers.h

803 lines
19 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Rockchip Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __DWC2_REGISTERS__
#define __DWC2_REGISTERS__
#define MAX_EPS_CHANNELS 16
typedef struct core_reg {
uint32_t gotgctl;
uint32_t gotgint;
uint32_t gahbcfg;
uint32_t gusbcfg;
uint32_t grstctl;
uint32_t gintsts;
uint32_t gintmsk;
uint32_t grxstsr;
uint32_t grxstsp;
uint32_t grxfsiz;
uint32_t gnptxfsiz;
uint32_t gnptxsts;
uint32_t gi2cctl;
uint32_t gpvndctl;
uint32_t ggpio;
uint32_t guid;
uint32_t gsnpsid;
uint32_t ghwcfg1;
uint32_t ghwcfg2;
uint32_t ghwcfg3;
uint32_t ghwcfg4;
uint32_t reserved1[(0x100 - 0x54) / 4];
uint32_t hptxfsiz;
uint32_t dptxfsiz_dieptxf[MAX_EPS_CHANNELS - 1];
uint32_t reserved2[(0x400 - 0x140) / 4];
} core_reg_t;
typedef struct hc_reg {
uint32_t hccharn;
uint32_t hcspltn;
uint32_t hcintn;
uint32_t hcintmaskn;
uint32_t hctsizn;
uint32_t hcdman;
uint32_t reserved[2];
} hc_reg_t;
/* Host Mode Register Structures */
typedef struct host_reg {
uint32_t hcfg;
uint32_t hfir;
uint32_t hfnum;
uint32_t reserved0;
uint32_t hptxsts;
uint32_t haint;
uint32_t haintmsk;
uint32_t reserved1[(0x440 - 0x41c) / 4];
uint32_t hprt;
uint32_t reserved2[(0x500 - 0x444) / 4];
hc_reg_t hchn[MAX_EPS_CHANNELS];
uint32_t reserved3[(0x800 - 0x700) / 4];
} host_reg_t;
typedef struct ep_reg {
uint32_t depctl;
uint32_t reserved04;
uint32_t depint;
uint32_t reserved0c;
uint32_t deptsiz;
uint32_t depdma;
uint32_t reserved18;
uint32_t depdmab;
} dwc2_ep_reg_t;
/* Device Mode Registers Structures */
typedef struct device_reg {
uint32_t dcfg;
uint32_t dctl;
uint32_t dsts;
uint32_t unused;
uint32_t diepmsk;
uint32_t doepmsk;
uint32_t daint;
uint32_t daintmsk;
uint32_t dtknqr1;
uint32_t dtknqr2;
uint32_t dvbusdis;
uint32_t dvbuspulse;
uint32_t dtknqr3_dthrctl;
uint32_t dtknqr4_fifoemptymsk;
uint32_t reserved1[(0x900 - 0x838) / 4];
dwc2_ep_reg_t inep[MAX_EPS_CHANNELS];
dwc2_ep_reg_t outep[MAX_EPS_CHANNELS];
uint32_t reserved8[(0xe00 - 0xd00) / 4];
} device_reg_t;
typedef struct pwr_clk_ctrl_reg {
uint32_t pcgcctl;
uint32_t reserved[(0x1000 - 0xe04) / 4];
} pwr_clk_ctrl_reg_t;
typedef struct data_fifo {
uint32_t dataport;
uint32_t reserved[(0x1000 - 0x004) / 4];
} data_fifo_t;
typedef struct dwc2_otg_reg {
core_reg_t core;
host_reg_t host;
device_reg_t device;
pwr_clk_ctrl_reg_t pcgr;
data_fifo_t dfifo[MAX_EPS_CHANNELS];
uint32_t reserved[(0x40000 - 0x11000) / 4];
} dwc2_reg_t;
/**
* This union represents the bit fields of the Core AHB Configuration
* Register (GAHBCFG).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned glblintrmsk:1;
#define GLBINT_ENABLE 1
unsigned hbstlen:4;
#define DMA_BURST_SINGLE 0
#define DMA_BURST_INCR 1
#define DMA_BURST_INCR4 3
#define DMA_BURST_INCR8 5
#define DMA_BURST_INCR16 7
unsigned dmaen:1;
unsigned reserved:1;
unsigned nptxfemplvl:1;
unsigned ptxfemplvl:1;
unsigned reserved9_31:23;
};
} gahbcfg_t;
/**
* This union represents the bit fields of the Core USB Configuration
* Register (GUSBCFG).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned toutcal:3;
unsigned phyif:1;
unsigned ulpiutmisel:1;
unsigned fsintf:1;
unsigned physel:1;
unsigned ddrsel:1;
unsigned srpcap:1;
unsigned hnpcap:1;
unsigned usbtrdtim:4;
unsigned reserved14:1;
unsigned phylpwrclksel:1;
unsigned otgi2csel:1;
unsigned ulpifsls:1;
unsigned ulpiautores:1;
unsigned ulpiclksusm:1;
unsigned ulpiextvbusdrv:1;
unsigned ulpiextvbusindicator:1;
unsigned termseldlpulse:1;
unsigned reserved23_28:6;
unsigned forcehstmode:1;
unsigned forcedevmode:1;
unsigned cortxpkt:1;
};
} gusbcfg_t;
/**
* This union represents the bit fields of the Core Reset Register
* (GRSTCTL).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
/** Core Soft Reset (CSftRst) (Device and Host)
*
* The application can flush the control logic in the
* entire core using this bit. This bit resets the
* pipelines in the AHB Clock domain as well as the
* PHY Clock domain.
*
* The state machines are reset to an IDLE state, the
* control bits in the CSRs are cleared, all the
* transmit FIFOs and the receive FIFO are flushed.
*
* The status mask bits that control the generation of
* the interrupt, are cleared, to clear the
* interrupt. The interrupt status bits are not
* cleared, so the application can get the status of
* any events that occurred in the core after it has
* set this bit.
*
* Any transactions on the AHB are terminated as soon
* as possible following the protocol. Any
* transactions on the USB are terminated immediately.
*
* The configuration settings in the CSRs are
* unchanged, so the software doesn't have to
* reprogram these registers (Device
* Configuration/Host Configuration/Core System
* Configuration/Core PHY Configuration).
*
* The application can write to this bit, any time it
* wants to reset the core. This is a self clearing
* bit and the core clears this bit after all the
* necessary logic is reset in the core, which may
* take several clocks, depending on the current state
* of the core.
*/
unsigned csftrst:1;
/** Hclk Soft Reset
*
* The application uses this bit to reset the control logic in
* the AHB clock domain. Only AHB clock domain pipelines are
* reset.
*/
unsigned hsftrst:1;
/** Host Frame Counter Reset (Host Only)<br>
*
* The application can reset the (micro)frame number
* counter inside the core, using this bit. When the
* (micro)frame counter is reset, the subsequent SOF
* sent out by the core, will have a (micro)frame
* number of 0.
*/
unsigned frmcntrrst:1;
/** In Token Sequence Learning Queue Flush
* (INTknQFlsh) (Device Only)
*/
unsigned intknqflsh:1;
/** RxFIFO Flush (RxFFlsh) (Device and Host)
*
* The application can flush the entire Receive FIFO
* using this bit. <p>The application must first
* ensure that the core is not in the middle of a
* transaction. <p>The application should write into
* this bit, only after making sure that neither the
* DMA engine is reading from the RxFIFO nor the MAC
* is writing the data in to the FIFO. <p>The
* application should wait until the bit is cleared
* before performing any other operations. This bit
* will takes 8 clocks (slowest of PHY or AHB clock)
* to clear.
*/
unsigned rxfflsh:1;
/** TxFIFO Flush (TxFFlsh) (Device and Host).
*
* This bit is used to selectively flush a single or
* all transmit FIFOs. The application must first
* ensure that the core is not in the middle of a
* transaction. <p>The application should write into
* this bit, only after making sure that neither the
* DMA engine is writing into the TxFIFO nor the MAC
* is reading the data out of the FIFO. <p>The
* application should wait until the core clears this
* bit, before performing any operations. This bit
* will takes 8 clocks (slowest of PHY or AHB clock)
* to clear.
*/
unsigned txfflsh:1;
/** TxFIFO Number (TxFNum) (Device and Host).
*
* This is the FIFO number which needs to be flushed,
* using the TxFIFO Flush bit. This field should not
* be changed until the TxFIFO Flush bit is cleared by
* the core.
* - 0x0 : Non Periodic TxFIFO Flush
* - 0x1 : Periodic TxFIFO #1 Flush in device mode
* or Periodic TxFIFO in host mode
* - 0x2 : Periodic TxFIFO #2 Flush in device mode.
* - ...
* - 0xF : Periodic TxFIFO #15 Flush in device mode
* - 0x10: Flush all the Transmit NonPeriodic and
* Transmit Periodic FIFOs in the core
*/
unsigned txfnum:5;
/** Reserved */
unsigned reserved11_29:19;
/** DMA Request Signal. Indicated DMA request is in
* probress. Used for debug purpose. */
unsigned dmareq:1;
/** AHB Master Idle. Indicates the AHB Master State
* Machine is in IDLE condition. */
unsigned ahbidle:1;
};
} grstctl_t;
/**
* This union represents the bit fields of the Core Interrupt Mask
* Register (GINTMSK).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned curmod:1;
unsigned modemis:1;
unsigned otgint:1;
unsigned sof:1;
unsigned rxflvl:1;
unsigned nptxfemp:1;
unsigned ginnakeff:1;
unsigned goutnakeff:1;
unsigned reserved8:1;
unsigned i2cint:1;
unsigned erlysusp:1;
unsigned usbsusp:1;
unsigned usbrst:1;
unsigned enumdone:1;
unsigned isooutdrop:1;
unsigned eopf:1;
unsigned reserved16:1;
unsigned epmis:1;
unsigned iepint:1;
unsigned oepint:1;
unsigned incompisoin:1;
unsigned incompip:1;
unsigned reserved22_23:2;
unsigned prtint:1;
unsigned hchint:1;
unsigned ptxfemp:1;
unsigned reserved27:1;
unsigned conidstschng:1;
unsigned disconnint:1;
unsigned sessreqint:1;
unsigned wkupint:1;
};
} gintmsk_t;
/**
* This union represents the bit fields of the Core Non-Periodic
* Transmit FIFO Size Register(GNPTXFSIZ).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned nptxfstaddr:16;
unsigned nptxfdep:16;
};
} gnptxfsiz_t;
/**
* This union represents the bit fields of the Core Receive FIFO Size
* Register(GRXFSIZ).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
/*The value in this fieles is in terms of 32-bit words size.
*/
struct {
unsigned rxfdep:16;
unsigned reserved:16;
};
} grxfsiz_t;
/**
* This union represents the bit fields of the Core Device
* Transmit FIFO Size Register(GNPTXFSIZ).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned dtxfstaddr:16;
unsigned dtxfdep:16;
};
} dtxfsiz_t;
/**
* This union represents the bit fields of the Core Interrupt Register
* (GINTSTS).
*/
typedef union {
/* raw register data */
uint32_t d32;
#define SOF_INTR_MASK 0x0008
/* register bits */
struct {
unsigned curmod:1;
#define HOST_MODE 1
#define DEVICE_MODE 0
unsigned modemis:1;
unsigned otgint:1;
unsigned sof:1;
unsigned rxflvl:1;
unsigned nptxfemp:1;
unsigned ginnakeff:1;
unsigned goutnakeff:1;
unsigned reserved8:1;
unsigned i2cint:1;
unsigned erlysusp:1;
unsigned usbsusp:1;
unsigned usbrst:1;
unsigned enumdone:1;
unsigned isooutdrop:1;
unsigned eopf:1;
unsigned reserved16_17:2;
unsigned iepint:1;
unsigned oepint:1;
unsigned reserved20:1;
unsigned incompip:1;
unsigned reserved22_23:2;
unsigned prtint:1;
unsigned hchint:1;
unsigned ptxfemp:1;
unsigned reserved27:1;
unsigned conidstschng:1;
unsigned disconnint:1;
unsigned sessreqint:1;
unsigned wkupint:1;
};
} gintsts_t;
#define GINTSTS_WKUPINT (1 << 31)
#define GINTSTS_SESSREQINT (1 << 30)
#define GINTSTS_DISCONNINT (1 << 29)
#define GINTSTS_CONIDSTSCHNG (1 << 28)
#define GINTSTS_LPMTRANRCVD (1 << 27)
#define GINTSTS_PTXFEMP (1 << 26)
#define GINTSTS_HCHINT (1 << 25)
#define GINTSTS_PRTINT (1 << 24)
#define GINTSTS_RESETDET (1 << 23)
#define GINTSTS_FET_SUSP (1 << 22)
#define GINTSTS_INCOMPL_IP (1 << 21)
#define GINTSTS_INCOMPL_SOIN (1 << 20)
#define GINTSTS_OEPINT (1 << 19)
#define GINTSTS_IEPINT (1 << 18)
#define GINTSTS_EPMIS (1 << 17)
#define GINTSTS_RESTOREDONE (1 << 16)
#define GINTSTS_EOPF (1 << 15)
#define GINTSTS_ISOUTDROP (1 << 14)
#define GINTSTS_ENUMDONE (1 << 13)
#define GINTSTS_USBRST (1 << 12)
#define GINTSTS_USBSUSP (1 << 11)
#define GINTSTS_ERLYSUSP (1 << 10)
#define GINTSTS_I2CINT (1 << 9)
#define GINTSTS_ULPI_CK_INT (1 << 8)
#define GINTSTS_GOUTNAKEFF (1 << 7)
#define GINTSTS_GINNAKEFF (1 << 6)
#define GINTSTS_NPTXFEMP (1 << 5)
#define GINTSTS_RXFLVL (1 << 4)
#define GINTSTS_SOF (1 << 3)
#define GINTSTS_OTGINT (1 << 2)
#define GINTSTS_MODEMIS (1 << 1)
#define GINTSTS_CURMODE_HOST (1 << 0)
/**
* This union represents the bit fields of the User HW Config3 Register
* (GHWCFG3).
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned reserved:16;
unsigned dfifodepth:16;
};
} ghwcfg3_t;
/**
* This union represents the bit fields in the Host Configuration Register.
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
/** FS/LS Phy Clock Select */
unsigned fslspclksel:2;
#define PHYCLK_30_60_MHZ 0
#define PHYCLK_48_MHZ 1
#define PHYCLK_6_MHZ 2
/** FS/LS Only Support */
unsigned fslssupp:1;
};
} hcfg_t;
/**
* This union represents the bit fields in the Host Port Control and status
* Register.
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned prtconnsts:1;
unsigned prtconndet:1;
unsigned prtena:1;
unsigned prtenchng:1;
unsigned prtovrcurract:1;
unsigned prtovrcurrchng:1;
unsigned prtres:1;
unsigned prtsusp:1;
unsigned prtrst:1;
unsigned reserved9:1;
unsigned prtlnsts:2;
unsigned prtpwr:1;
unsigned prttstctl:4;
unsigned prtspd:2;
#define PRTSPD_HIGH 0
#define PRTSPD_FULL 1
#define PRTSPD_LOW 2
unsigned reserved19_31:13;
};
} hprt_t;
/* Mask W1C bits */
#define HPRT_W1C_MASK (~((1 << 1) | (1 << 2) | (1 << 3) | (1 << 5)))
/**
* This union represents the bit fields in the Host Channel Characteristics
* Register.
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
/** Maximum packet size in bytes */
unsigned mps:11;
/** Endpoint number */
unsigned epnum:4;
/** 0: OUT, 1: IN */
unsigned epdir:1;
unsigned reserved:1;
/** 0: Full/high speed device, 1: Low speed device */
unsigned lspddev:1;
/** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
unsigned eptype:2;
/** Packets per frame for periodic transfers. 0 is reserved. */
unsigned multicnt:2;
/** Device address */
unsigned devaddr:7;
/**
* Frame to transmit periodic transaction.
* 0: even, 1: odd
*/
unsigned oddfrm:1;
/** Channel disable */
unsigned chdis:1;
/** Channel enable */
unsigned chen:1;
};
} hcchar_t;
typedef enum {
EPDIR_OUT = 0,
EPDIR_IN,
} ep_dir_t;
/**
* This union represents the bit fields in the Host All Interrupt
* Register.
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
/** Transfer Complete */
unsigned xfercomp:1;
/** Channel Halted */
unsigned chhltd:1;
/** AHB Error */
unsigned ahberr:1;
/** STALL Response Received */
unsigned stall:1;
/** NAK Response Received */
unsigned nak:1;
/** ACK Response Received */
unsigned ack:1;
/** NYET Response Received */
unsigned nyet:1;
/** Transaction Err */
unsigned xacterr:1;
/** Babble Error */
unsigned bblerr:1;
/** Frame Overrun */
unsigned frmovrun:1;
/** Data Toggle Error */
unsigned datatglerr:1;
/** Reserved */
unsigned reserved:21;
};
} hcint_t;
/**
* This union represents the bit fields in the Host Channel Transfer Size
* Register.
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
/* Total transfer size in bytes */
unsigned xfersize:19;
/** Data packets to transfer */
unsigned pktcnt:10;
/**
* Packet ID for next data packet
* 0: DATA0
* 1: DATA2
* 2: DATA1
* 3: MDATA (non-Control), SETUP (Control)
*/
unsigned pid:2;
#define PID_DATA0 0
#define PID_DATA1 2
#define PID_DATA2 1
#define PID_MDATA 3
#define PID_SETUP 3
/* Do PING protocol when 1 */
unsigned dopng:1;
};
} hctsiz_t;
/**
* This union represents the bit fields in the Host Channel Interrupt Mask
* Register.
*/
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned xfercomp:1;
unsigned chhltd:1;
unsigned ahberr:1;
unsigned stall:1;
unsigned nak:1;
unsigned ack:1;
unsigned nyet:1;
unsigned xacterr:1;
unsigned bblerr:1;
unsigned frmovrun:1;
unsigned datatglerr:1;
unsigned reserved:21;
};
} hcintmsk_t;
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned devspd:2;
unsigned nzstsouthshk:1;
unsigned ena32ksusp:1;
unsigned devaddr:7;
unsigned perfrint:2;
unsigned endevoutnak:1;
unsigned reservedi14_17:4;
unsigned epmiscnt:5;
unsigned reserved26_31:9;
};
} dcfg_t;
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned suspsts:1;
unsigned enumspd:2;
unsigned errticerr:1;
unsigned reserved4_31:28;
};
} dsts_t;
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned rmtwkupsig:1;
unsigned sftdiscon:1;
unsigned gnpinnaksts:1;
unsigned goutnaksts:1;
unsigned tstctl:3;
unsigned sgnpinnak:1;
unsigned cgnpinnak:1;
unsigned sgoutnak:1;
unsigned cgoutnak:1;
unsigned pwronprgdone:1;
unsigned reserved12:1;
unsigned gmc:2;
unsigned ignrfrmnum:1;
unsigned nakonbble:1;
unsigned encontbna:1;
unsigned reserved19_31:14;
};
} dctl_t;
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
#define D0EPCTL_MPS_SHIFT 0
#define D0EPCTL_MPS_64 0
#define D0EPCTL_MPS_32 1
#define D0EPCTL_MPS_16 2
#define D0EPCTL_MPS_8 3
unsigned mps:11;
unsigned nextep:4;
unsigned usbactep:1;
unsigned dpid:1;
unsigned naksts:1;
unsigned eptype:2;
unsigned reserved20:1;
unsigned stall:1;
unsigned txfnum:4;
unsigned cnak:1;
unsigned snak:1;
unsigned setd0pid:1;
unsigned setd1pid:1;
unsigned epdis:1;
unsigned epena:1;
};
} depctl_t;
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned xfercompl:1;
unsigned epdisbld:1;
unsigned ahberr:1;
unsigned setup:1;
unsigned reserved4_14:12;
unsigned stuppktrcvd:1;
unsigned reserved16_31:15;
};
} depint_t;
#define DXEPINT_SETUP_RCVD (1 << 15)
#define DXEPINT_INEPNAKEFF (1 << 6)
#define DXEPINT_BACK2BACKSETUP (1 << 6)
#define DXEPINT_INTKNEPMIS (1 << 5)
#define DXEPINT_INTKNTXFEMP (1 << 4)
#define DXEPINT_OUTTKNEPDIS (1 << 4)
#define DXEPINT_TIMEOUT (1 << 3)
#define DXEPINT_SETUP (1 << 3)
#define DXEPINT_AHBERR (1 << 2)
#define DXEPINT_EPDISBLD (1 << 1)
#define DXEPINT_XFERCOMPL (1 << 0)
typedef union {
/* raw register data */
uint32_t d32;
/* register bits */
struct {
unsigned xfersize:19;
unsigned pktcnt:10;
unsigned mc:2;
unsigned reserved31:1;
};
} depsiz_t;
#define DAINT_OUTEP_SHIFT MAX_EPS_CHANNELS
#endif