coreboot-kgpe-d16/src/soc/intel/skylake/me.c

684 lines
19 KiB
C
Raw Normal View History

2016-08-19 09:03:42 +02:00
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2016 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/io.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <device/pci.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <soc/iomap.h>
#include <soc/pci_devs.h>
#include <soc/me.h>
#include <delay.h>
#include <timer.h>
static inline u32 me_read_config32(int offset)
{
return pci_read_config32(PCH_DEV_ME, offset);
}
static inline void me_write_config32(int offset, u32 value)
{
pci_write_config32(PCH_DEV_ME, offset, value);
}
static inline u32 me_read_mmio32(int offset)
{
return read32((void *)(HECI1_BASE_ADDRESS + offset));
}
static inline void me_write_mmio32(u16 offset, u32 value)
{
write32((void *)(HECI1_BASE_ADDRESS + offset), value);
}
/* HFSTS1[3:0] Current Working State Values */
static const char *me_cws_values[] = {
[ME_HFS_CWS_RESET] = "Reset",
[ME_HFS_CWS_INIT] = "Initializing",
[ME_HFS_CWS_REC] = "Recovery",
[3] = "Unknown (3)",
[4] = "Unknown (4)",
[ME_HFS_CWS_NORMAL] = "Normal",
[ME_HFS_CWS_WAIT] = "Platform Disable Wait",
[ME_HFS_CWS_TRANS] = "OP State Transition",
[ME_HFS_CWS_INVALID] = "Invalid CPU Plugged In",
[9] = "Unknown (9)",
[10] = "Unknown (10)",
[11] = "Unknown (11)",
[12] = "Unknown (12)",
[13] = "Unknown (13)",
[14] = "Unknown (14)",
[15] = "Unknown (15)",
};
/* HFSTS1[8:6] Current Operation State Values */
static const char *me_opstate_values[] = {
[ME_HFS_STATE_PREBOOT] = "Preboot",
[ME_HFS_STATE_M0_UMA] = "M0 with UMA",
[ME_HFS_STATE_M3] = "M3 without UMA",
[ME_HFS_STATE_M0] = "M0 without UMA",
[ME_HFS_STATE_BRINGUP] = "Bring up",
[ME_HFS_STATE_ERROR] = "M0 without UMA but with error"
};
/* HFSTS1[19:16] Current Operation Mode Values */
static const char *me_opmode_values[] = {
[ME_HFS_MODE_NORMAL] = "Normal",
[ME_HFS_MODE_DEBUG] = "Debug",
[ME_HFS_MODE_DIS] = "Soft Temporary Disable",
[ME_HFS_MODE_OVER_JMPR] = "Security Override via Jumper",
[ME_HFS_MODE_OVER_MEI] = "Security Override via MEI Message"
};
/* HFSTS1[15:12] Error Code Values */
static const char *me_error_values[] = {
[ME_HFS_ERROR_NONE] = "No Error",
[ME_HFS_ERROR_UNCAT] = "Uncategorized Failure",
[ME_HFS_ERROR_IMAGE] = "Image Failure",
[ME_HFS_ERROR_DEBUG] = "Debug Failure"
};
/* HFSTS2[31:28] ME Progress Code */
static const char *me_progress_values[] = {
[ME_HFS2_PHASE_ROM] = "ROM Phase",
[1] = "Unknown (1)",
[ME_HFS2_PHASE_UKERNEL] = "uKernel Phase",
[ME_HFS2_PHASE_BUP] = "BUP Phase",
[4] = "Unknown (4)",
[5] = "Unknown (5)",
[ME_HFS2_PHASE_HOST_COMM] = "Host Communication",
[7] = "Unknown (7)",
[8] = "Unknown (8)"
};
/* HFSTS2[27:24] Power Management Event */
static const char *me_pmevent_values[] = {
[ME_HFS2_PMEVENT_CLEAN_MOFF_MX_WAKE] =
"Clean Moff->Mx wake",
[ME_HFS2_PMEVENT_MOFF_MX_WAKE_ERROR] =
"Moff->Mx wake after an error",
[ME_HFS2_PMEVENT_CLEAN_GLOBAL_RESET] =
"Clean global reset",
[ME_HFS2_PMEVENT_CLEAN_GLOBAL_RESET_ERROR] =
"Global reset after an error",
[ME_HFS2_PMEVENT_CLEAN_ME_RESET] =
"Clean Intel ME reset",
[ME_HFS2_PMEVENT_ME_RESET_EXCEPTION] =
"Intel ME reset due to exception",
[ME_HFS2_PMEVENT_PSEUDO_ME_RESET] =
"Pseudo-global reset",
[ME_HFS2_PMEVENT_CM0_CM3] =
"CM0->CM3",
[ME_HFS2_PMEVENT_CM3_CM0] =
"CM3->CM0",
[ME_HFS2_PMEVENT_NON_PWR_CYCLE_RESET] =
"Non-power cycle reset",
[ME_HFS2_PMEVENT_PWR_CYCLE_RESET_M3] =
"Power cycle reset through M3",
[ME_HFS2_PMEVENT_PWR_CYCLE_RESET_MOFF] =
"Power cycle reset through Moff",
[ME_HFS2_PMEVENT_CMX_CMOFF] =
"Cx/Mx->Cx/Moff",
[ME_HFS2_PMEVENT_CM0_CM0PG] =
"CM0->CM0PG",
[ME_HFS2_PMEVENT_CM3_CM3PG] =
"CM3->CM3PG",
[ME_HFS2_PMEVENT_CM0PG_CM0] =
"CM0PG->CM0"
};
/* Progress Code 0 states */
static const char *me_progress_rom_values[] = {
[ME_HFS2_STATE_ROM_BEGIN] = "BEGIN",
[ME_HFS2_STATE_ROM_DISABLE] = "DISABLE"
};
/* Progress Code 1 states */
static const char *me_progress_bup_values[] = {
[ME_HFS2_STATE_BUP_INIT] =
"Initialization starts",
[ME_HFS2_STATE_BUP_DIS_HOST_WAKE] =
"Disable the host wake event",
[ME_HFS2_STATE_BUP_CG_ENABLE] =
"Enabling CG for cset",
[ME_HFS2_STATE_BUP_PM_HND_EN] =
"Enabling PM handshaking",
[ME_HFS2_STATE_BUP_FLOW_DET] =
"Flow determination start process",
[ME_HFS2_STATE_BUP_PMC_PATCHING] =
"PMC Patching process",
[ME_HFS2_STATE_BUP_GET_FLASH_VSCC] =
"Get VSCC params",
[ME_HFS2_STATE_BUP_SET_FLASH_VSCC] =
"Set VSCC params",
[ME_HFS2_STATE_BUP_VSCC_ERR] =
"Error reading/matching the VSCC table in the descriptor",
[ME_HFS2_STATE_BUP_EFSS_INIT] =
"Initialize EFFS",
[ME_HFS2_STATE_BUP_CHECK_STRAP] =
"Check to see if straps say ME DISABLED",
[ME_HFS2_STATE_BUP_PWR_OK_TIMEOUT] =
"Timeout waiting for PWROK",
[ME_HFS2_STATE_BUP_STRAP_DIS] =
"EFFS says ME disabled",
[ME_HFS2_STATE_BUP_MANUF_OVRD_STRAP] =
"Possibly handle BUP manufacturing override strap",
[ME_HFS2_STATE_BUP_M3] =
"Bringup in M3",
[ME_HFS2_STATE_BUP_M0] =
"Bringup in M0",
[ME_HFS2_STATE_BUP_FLOW_DET_ERR] =
"Flow detection error",
[ME_HFS2_STATE_BUP_M3_CLK_ERR] =
"M3 clock switching error",
[ME_HFS2_STATE_BUP_CPU_RESET_DID_TIMEOUT_MEM_MISSING] =
"Host error - CPU reset timeout, DID timeout, memory missing",
[ME_HFS2_STATE_BUP_M3_KERN_LOAD] =
"M3 kernel load",
[ME_HFS2_STATE_BUP_T32_MISSING] =
"T34 missing - cannot program ICC",
[ME_HFS2_STATE_BUP_WAIT_DID] =
"Waiting for DID BIOS message",
[ME_HFS2_STATE_BUP_WAIT_DID_FAIL] =
"Waiting for DID BIOS message failure",
[ME_HFS2_STATE_BUP_DID_NO_FAIL] =
"DID reported no error",
[ME_HFS2_STATE_BUP_ENABLE_UMA] =
"Enabling UMA",
[ME_HFS2_STATE_BUP_ENABLE_UMA_ERR] =
"Enabling UMA error",
[ME_HFS2_STATE_BUP_SEND_DID_ACK] =
"Sending DID Ack to BIOS",
[ME_HFS2_STATE_BUP_SEND_DID_ACK_ERR] =
"Sending DID Ack to BIOS error",
[ME_HFS2_STATE_BUP_M0_CLK] =
"Switching clocks in M0",
[ME_HFS2_STATE_BUP_M0_CLK_ERR] =
"Switching clocks in M0 error",
[ME_HFS2_STATE_BUP_TEMP_DIS] =
"ME in temp disable",
[ME_HFS2_STATE_BUP_M0_KERN_LOAD] =
"M0 kernel load",
};
void intel_me_status(void)
{
union me_hfs hfs;
union me_hfs2 hfs2;
union me_hfs3 hfs3;
hfs.data = me_read_config32(PCI_ME_HFSTS1);
hfs2.data = me_read_config32(PCI_ME_HFSTS2);
hfs3.data = me_read_config32(PCI_ME_HFSTS3);
/* Check Current States */
printk(BIOS_DEBUG, "ME: FW Partition Table : %s\n",
hfs.fields.fpt_bad ? "BAD" : "OK");
printk(BIOS_DEBUG, "ME: Bringup Loader Failure : %s\n",
hfs.fields.ft_bup_ld_flr ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Firmware Init Complete : %s\n",
hfs.fields.fw_init_complete ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Manufacturing Mode : %s\n",
hfs.fields.mfg_mode ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Boot Options Present : %s\n",
hfs.fields.boot_options_present ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Update In Progress : %s\n",
hfs.fields.update_in_progress ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: D3 Support : %s\n",
hfs.fields.d3_support_valid ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: D0i3 Support : %s\n",
hfs.fields.d0i3_support_valid ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Low Power State Enabled : %s\n",
hfs2.fields.low_power_state ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Power Gated : %s\n",
hfs2.fields.power_gating_ind ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: CPU Replaced : %s\n",
hfs2.fields.cpu_replaced_sts ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: CPU Replacement Valid : %s\n",
hfs2.fields.cpu_replaced_valid ? "YES" : "NO");
printk(BIOS_DEBUG, "ME: Current Working State : %s\n",
me_cws_values[hfs.fields.working_state]);
printk(BIOS_DEBUG, "ME: Current Operation State : %s\n",
me_opstate_values[hfs.fields.operation_state]);
printk(BIOS_DEBUG, "ME: Current Operation Mode : %s\n",
me_opmode_values[hfs.fields.operation_mode]);
printk(BIOS_DEBUG, "ME: Error Code : %s\n",
me_error_values[hfs.fields.error_code]);
printk(BIOS_DEBUG, "ME: Progress Phase : %s\n",
me_progress_values[hfs2.fields.progress_code]);
printk(BIOS_DEBUG, "ME: Power Management Event : %s\n",
me_pmevent_values[hfs2.fields.current_pmevent]);
printk(BIOS_DEBUG, "ME: Progress Phase State : ");
switch (hfs2.fields.progress_code) {
case ME_HFS2_PHASE_ROM: /* ROM Phase */
printk(BIOS_DEBUG, "%s",
me_progress_rom_values[hfs2.fields.current_state]);
break;
case ME_HFS2_PHASE_UKERNEL: /* uKernel Phase */
printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
break;
case ME_HFS2_PHASE_BUP: /* Bringup Phase */
if (hfs2.fields.current_state < ARRAY_SIZE(me_progress_bup_values)
&& me_progress_bup_values[hfs2.fields.current_state])
printk(BIOS_DEBUG, "%s",
me_progress_bup_values[hfs2.fields.current_state]);
else
printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
break;
case ME_HFS2_PHASE_HOST_COMM: /* Host Communication Phase */
if (!hfs2.fields.current_state)
printk(BIOS_DEBUG, "Host communication established");
else
printk(BIOS_DEBUG, "0x%02x", hfs2.fields.current_state);
break;
default:
printk(BIOS_DEBUG, "Unknown phase: 0x%02x state: 0x%02x",
hfs2.fields.progress_code, hfs2.fields.current_state);
}
printk(BIOS_DEBUG, "\n");
/* Power Down Mitigation Status */
printk(BIOS_DEBUG, "ME: Power Down Mitigation : %s\n",
hfs3.fields.power_down_mitigation ? "YES" : "NO");
if (hfs3.fields.power_down_mitigation) {
printk(BIOS_INFO, "ME: PD Mitigation State : ");
if (hfs3.fields.encrypt_key_override == 1 &&
hfs3.fields.encrypt_key_check == 0 &&
hfs3.fields.pch_config_change == 0)
printk(BIOS_INFO, "Normal Operation");
else if (hfs3.fields.encrypt_key_override == 1 &&
hfs3.fields.encrypt_key_check == 1 &&
hfs3.fields.pch_config_change == 0)
printk(BIOS_INFO, "Issue Detected and Recovered");
else
printk(BIOS_INFO, "Issue Detected but not Recovered");
printk(BIOS_INFO, "\n");
printk(BIOS_DEBUG, "ME: Encryption Key Override : %s\n",
hfs3.fields.encrypt_key_override ? "Workaround Applied" :
"Unable to override");
printk(BIOS_DEBUG, "ME: Encryption Key Check : %s\n",
hfs3.fields.encrypt_key_check ? "FAIL" : "PASS");
printk(BIOS_DEBUG, "ME: PCH Configuration Info : %s\n",
hfs3.fields.pch_config_change ? "Changed" : "No Change");
printk(BIOS_DEBUG, "ME: Firmware SKU : ");
switch (hfs3.fields.fw_sku) {
case ME_HFS3_FW_SKU_CONSUMER:
printk(BIOS_DEBUG, "Consumer\n");
break;
case ME_HFS3_FW_SKU_CORPORATE:
printk(BIOS_DEBUG, "Corporate\n");
break;
default:
printk(BIOS_DEBUG, "Unknown (0x%x)\n", hfs3.fields.fw_sku);
}
}
}
/*
* Aligning a byte length to length in dwords.
*/
static u32 get_dword_length(u32 byte_length)
{
return ALIGN_UP(byte_length, sizeof(uint32_t)) / sizeof(uint32_t);
}
/*
* Get remaining message count in dword from circular buffer based on
* write and read offset.
*/
static u32 get_cb_msg_count(u32 data)
{
u8 read_offset = data >> 8;
u8 write_offset = data >> 16;
return get_dword_length(write_offset - read_offset);
}
static int wait_heci_ready(void)
{
struct stopwatch sw;
int timeout = 0;
union me_csr csr;
stopwatch_init_msecs_expire(&sw, HECI_TIMEOUT);
while (1) {
do {
csr.data = me_read_mmio32(MMIO_ME_CSR);
if (csr.fields.host_ready)
return 0;
} while (!(timeout = stopwatch_expired(&sw)));
printk(BIOS_ERR, "ME_RDY bit is not set after 15 sec");
return -1;
}
}
static int wait_heci_cb_avail(u32 len)
{
struct stopwatch sw;
union host_csr csr;
csr.data = me_read_mmio32(MMIO_HOST_CSR);
/*
* if timeout has happened, return failure as
* the circular buffer is not empty
*/
stopwatch_init_msecs_expire(&sw, HECI_SEND_TIMEOUT);
/* Must have room for message and message header */
while (len > (get_dword_length(csr.fields.me_cir_depth) -
get_cb_msg_count(csr.data))) {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR,
"Circular Buffer never emptied within 5 sec");
return -1;
}
/* wait before trying again */
udelay(HECI_DELAY);
/* read HOST_CSR for next iteration */
csr.data = me_read_mmio32(MMIO_HOST_CSR);
}
return 0;
}
static int send_heci_packet(union mei_header *head, u32 len, u32 *payload)
{
int sts;
int index;
union me_csr csr;
union host_csr hcsr;
/*
* wait until there is sufficient room in CB
*/
sts = wait_heci_cb_avail(len + 1);
if (sts != 0)
return -1;
/* Write message header */
me_write_mmio32(MMIO_ME_CB_WW, head->data);
/* Write message body */
for (index = 0; index < len; index++)
me_write_mmio32(MMIO_ME_CB_WW, payload[index]);
/* Set Interrupt Generate bit */
hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
hcsr.fields.int_gen = 1;
me_write_mmio32(MMIO_HOST_CSR, hcsr.data);
/* Check if ME Ready bit is set, if set to 0 then return fatal error */
csr.data = me_read_mmio32(MMIO_ME_CSR);
if (csr.fields.host_ready)
return 0;
else
return -1;
}
static int recv_heci_packet(union mei_header *head, u32 *packet,
u32 *packet_size)
{
union me_csr csr;
union host_csr hcsr;
int rec_msg = 0;
struct stopwatch sw;
u32 length, index;
/* Clear Interrupt Status bit */
hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
hcsr.fields.int_sts = 1;
me_write_mmio32(MMIO_HOST_CSR, hcsr.data);
/* Check if circular buffer overflow
* if yes then return fatal error
*/
csr.data = me_read_mmio32(MMIO_ME_CSR);
if (get_cb_msg_count(csr.data) >
get_dword_length(csr.fields.me_cir_buff))
return -1;
/*
* if timeout has happened, return failure as
* the circular buffer is not empty
*/
stopwatch_init_msecs_expire(&sw, HECI_READ_TIMEOUT);
/* go until we got message pkt */
do {
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR,
"Circular Buffer not filled within 5 sec");
*packet_size = 0;
return -1;
}
csr.data = me_read_mmio32(MMIO_ME_CSR);
/* Read one message from HECI buffer */
if (get_cb_msg_count(csr.data) > 0) {
head->data = me_read_mmio32(MMIO_ME_CB_RW);
/* calculate the message length in dword */
length = get_dword_length(head->fields.length);
if (head->fields.length == 0) {
*packet_size = 0;
goto SET_IG;
}
/* Make sure, we have enough space to catch all */
if (head->fields.length <= *packet_size) {
csr.data = me_read_mmio32(MMIO_ME_CSR);
/* get complete message into circular buffer */
while (length > get_cb_msg_count(csr.data)) {
udelay(HECI_DELAY);
csr.data = me_read_mmio32(MMIO_ME_CSR);
}
/* here is the message */
for (index = 0; index < length; index++)
packet[index] = me_read_mmio32(MMIO_ME_CB_RW);
rec_msg = 1;
*packet_size = head->fields.length;
} else {
/* Too small buffer */
*packet_size = 0;
return -1;
}
}
} while (!rec_msg);
/*
* Check if ME Ready bit is set, if set to 0 then return fatal error
* because ME might have reset during transaction and we might have
* read a junk data from CB
*/
csr.data = me_read_mmio32(MMIO_ME_CSR);
if (!(csr.fields.host_ready))
return -1;
SET_IG:
/* Set Interrupt Generate bit */
hcsr.data = me_read_mmio32(MMIO_HOST_CSR);
hcsr.fields.int_gen = 1;
me_write_mmio32(MMIO_HOST_CSR, hcsr.data);
return 0;
}
static int
send_heci_message(void *msg, int len, u8 hostaddress, u8 clientaddress)
{
u8 retry;
int status = -1;
u32 cir_buff_depth;
union host_csr csr;
union mei_header head;
int cur = 0;
u32 slength, rlength;
for (retry = 0; retry < MAX_HECI_MESSAGE; retry++) {
if (wait_heci_ready() != 0)
continue;
/* HECI is ready */
csr.data = me_read_mmio32(MMIO_HOST_CSR);
cir_buff_depth = csr.fields.me_cir_depth;
head.fields.client_address = clientaddress;
head.fields.host_address = hostaddress;
while (len > cur) {
rlength = get_dword_length(len - cur);
/*
* Set the message complete bit if this is last packet
* in message needs to be "less than" to account for
* the header OR needs to be exact equal to CB depth
*/
if (rlength <= cir_buff_depth)
head.fields.is_complete = 1;
else
head.fields.is_complete = 0;
/*
* calculate length for message header
* header length = smaller of CB buffer or
* remaining message
*/
slength = ((cir_buff_depth <= rlength)
? ((cir_buff_depth - 1) * 4)
: (len - cur));
head.fields.length = slength;
head.fields.reserved = 0;
/*
* send the current packet
* (cur should be treated as index for message)
*/
status = send_heci_packet(&head,
get_dword_length(head.fields.length), msg);
if (status != 0)
break;
/* update the length information */
cur += slength;
msg += cur;
}
if (!status)
break;
}
return status;
}
static int
recv_heci_message(void *message, u32 * message_size)
{
union mei_header head;
int cur = 0;
u8 retry;
int status = -1;
int msg_complete = 0;
u32 pkt_buff;
for (retry = 0; retry < MAX_HECI_MESSAGE; retry++) {
if (wait_heci_ready() != 0)
continue;
/* HECI is ready */
while ((cur < *message_size) && (msg_complete == 0)) {
pkt_buff = *message_size - cur;
status = recv_heci_packet(&head, message + (cur >> 2),
&pkt_buff);
if (status == -1) {
*message_size = 0;
break;
}
msg_complete = head.fields.is_complete;
if (pkt_buff == 0) {
/* if not in middle of msg and msg complete bit
* is set then this is a valid zero length msg
*/
if ((cur == 0) && (msg_complete == 1))
status = 0;
else
status = -1;
*message_size = 0;
break;
}
cur += pkt_buff;
}
if (!status) {
*message_size = cur;
break;
}
}
return status;
}
static int send_heci_reset_message(void)
{
int status;
struct reset_reply {
u8 group_id;
u8 command;
u8 reserved;
u8 result;
} __attribute__ ((packed)) reply;
struct reset_message {
u8 group_id;
u8 cmd;
u8 reserved;
u8 result;
u8 req_origin;
u8 reset_type;
} __attribute__ ((packed));
struct reset_message msg = {
.cmd = MKHI_GLOBAL_RESET,
.req_origin = GR_ORIGIN_BIOS_POST,
.reset_type = GLOBAL_RST_TYPE
};
u32 reply_size;
status= send_heci_message(&msg, sizeof(msg),
BIOS_HOST_ADD, HECI_MKHI_ADD);
if (status != 0)
return -1;
reply_size = sizeof(reply);
if (recv_heci_message(&reply, &reply_size) == -1)
return -1;
/* get reply result from HECI MSG */
if (reply.result != 0) {
printk(BIOS_DEBUG, "%s: Exit with Failure\n", __func__);
return -1;
} else {
printk(BIOS_DEBUG, "%s: Exit with Success\n", __func__);
return 0;
}
}
int send_global_reset(void)
{
int status = -1;
union me_hfs hfs;
/* Check ME operating mode */
hfs.data = me_read_config32(PCI_ME_HFSTS1);
if (hfs.fields.operation_mode)
goto ret;
/* ME should be in Normal Mode for this command */
status = send_heci_reset_message();
ret:
return status;
}