coreboot-kgpe-d16/util/cbmem/cbmem.c

275 lines
6.4 KiB
C
Raw Normal View History

Utility to dump boot timing table Coreboot and u-boot create a table of timestamps which allows to see the boot process performance. The util/cbmem/cbmem.py script allows to access the table after ChromeOS boots up and display its contents on the console. The problem is that shipping images do not include Python interpreter, so there is no way to access the table on a production machine. This change introduces a utility which is a Linux app displaying the timestamp table. Conceivably the output of this utility might be included in one of the ChromeOS :/system sections, so it was attempted to write this procedure 'fail safe', namely reporting errors and not continuing processing if something goes wrong. Including of coreboot/src .h files will allow to keep the firmware timestamp implementation and this utility in sync in the future. Test: . build the utility (run 'make' while in chroot in util/cbmem) . copy `cbmem' and 'cbmem.py' to the target . run both utilities (limiting cbmem.py output to 25 lines or so) . observe that the generated tables are identical (modulo rounding up of int division, resulting in 1 ns discrepancies in some cases) localhost var # ./cbmem 18 entries total: 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) localhost var # ./cbmem.py | head -25 time base 4249800, total entries 18 1:62,080 2:64,569 (2,489) 3:82,520 (17,951) 4:82,695 (174) 8:84,384 (1,688) 9:131,731 (47,347) 10:131,821 (89) 30:131,849 (27) 40:132,618 (769) 50:134,594 (1,975) 60:134,729 (134) 70:363,440 (228,710) 75:363,453 (13) 80:368,165 (4,711) 90:370,018 (1,852) 99:488,217 (118,199) 1000:491,324 (3,107) 1100:760,475 (269,150) Change-Id: I013e594d4afe323106d88e7938dd40b17760621c Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: http://review.coreboot.org/1759 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2012-09-28 04:24:07 +02:00
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2012 The ChromiumOS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "stdlib.h"
#include "boot/coreboot_tables.h"
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#include "cbmem.h"
#include "timestamp.h"
/* File descriptor used to access /dev/mem */
static FILE* fd;
/*
* calculate ip checksum (16 bit quantities) on a passed in buffer. In case
* the buffer length is odd last byte is excluded from the calculation
*/
static u16 ipchcksum(const void *addr, unsigned size)
{
const u16 *p = addr;
unsigned i, n = size / 2; /* don't expect odd sized blocks */
u32 sum = 0;
for (i = 0; i < n; i++)
sum += p[i];
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
sum = ~sum & 0xffff;
return (u16) sum;
}
/*
* Starting at 'offset' read 'size' bytes from the previously opened /dev/mem
* into the 'buffer'.
*
* Return zero on success or exit on any error.
*/
static int readmem(void* buffer, u32 offset, int size)
{
if (fseek(fd, offset, SEEK_SET)) {
fprintf(stderr, "fseek failed(%d) for offset %d\n",
errno, offset);
exit(1);
}
if (fread(buffer, 1, size, fd) != size) {
fprintf(stderr, "failed (%d) to read %d bytes at 0x%x\n",
errno, size, offset);
exit(1);
}
return 0;
}
/*
* Try finding the timestamp table starting from the passed in memory offset.
* Could be called recursively in case a forwarding entry is found.
*
* Returns pointer to a memory buffer containg the timestamp table or zero if
* none found.
*/
static const struct timestamp_table *find_tstamps(u64 address)
{
int i;
/* look at every 16 bytes within 4K of the base */
for (i = 0; i < 0x1000; i += 0x10) {
void *buf;
struct lb_header lbh;
struct lb_record* lbr_p;
int j;
readmem(&lbh, address + i, sizeof(lbh));
if (memcmp(lbh.signature, "LBIO", sizeof(lbh.signature)) ||
!lbh.header_bytes ||
ipchcksum(&lbh, sizeof(lbh)))
continue;
/* good lb_header is found, try reading the table */
buf = malloc(lbh.table_bytes);
if (!buf) {
fprintf(stderr, "failed to allocate %d bytes\n",
lbh.table_bytes);
exit(1);
}
readmem(buf, address + i + lbh.header_bytes, lbh.table_bytes);
if (ipchcksum(buf, lbh.table_bytes) !=
lbh.table_checksum) {
/* False positive or table corrupted... */
free(buf);
continue;
}
for (j = 0; j < lbh.table_bytes; j += lbr_p->size) {
/* look for the timestamp table */
lbr_p = (struct lb_record*) ((char *)buf + j);
switch (lbr_p->tag) {
case LB_TAG_TIMESTAMPS: {
struct lb_cbmem_ref *cbmr_p =
(struct lb_cbmem_ref *) lbr_p;
int new_size;
struct timestamp_table *tst_p;
u32 stamp_addr = (u32)
((u64)cbmr_p->cbmem_addr);
readmem(buf, stamp_addr,
sizeof(struct timestamp_table));
tst_p = (struct timestamp_table *) buf;
new_size = sizeof(struct timestamp_table) +
tst_p->num_entries *
sizeof(struct timestamp_entry);
buf = realloc(buf, new_size);
if (!buf) {
fprintf(stderr,
"failed to reallocate %d bytes\n",
new_size);
exit(1);
}
readmem(buf, stamp_addr, new_size);
return buf;
}
case LB_TAG_FORWARD: {
/*
* This is a forwarding entry - repeat the
* search at the new address.
*/
struct lb_forward *lbf_p =
(struct lb_forward *) lbr_p;
free(buf);
return find_tstamps(lbf_p->forward);
}
default:
break;
}
}
}
return 0;
}
/*
* read CPU frequency from a sysfs file, return an frequency in Kilohertz as
* an int or exit on any error.
*/
static u64 get_cpu_freq_KHz()
{
FILE *cpuf;
char freqs[100];
int size;
char *endp;
u64 rv;
const char* freq_file =
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
cpuf = fopen(freq_file, "r");
if (!cpuf) {
fprintf(stderr, "Could not open %s\n", freq_file);
exit(1);
}
memset(freqs, 0, sizeof(freqs));
size = fread(freqs, 1, sizeof(freqs), cpuf);
if (!size || (size == sizeof(freqs))) {
fprintf(stderr, "Wrong number of bytes(%d) read from %s\n",
size, freq_file);
exit(1);
}
fclose(cpuf);
rv = strtoull(freqs, &endp, 10);
if (*endp == '\0' || *endp == '\n')
return rv;
fprintf(stderr, "Wrong formatted value ^%s^ read from %s\n",
freqs, freq_file);
exit(1);
}
/*
* Print an integer in 'normalized' form - with commas separating every three
* decimal orders. The 'comma' parameter indicates if a comma is needed after
* the value is printed.
*/
static void print_norm(u64 v, int comma)
{
int first_triple = 1;
if (v > 1000) {
/* print the higher order sections first */
print_norm(v / 1000, 1);
first_triple = 0;
}
if (first_triple)
printf("%d", (u32)(v % 1000));
else
printf("%3.3d", (u32)(v % 1000));
if (comma)
printf(",");
}
/* dump the timestamp table */
static void dump_timestamps(const struct timestamp_table *tst_p)
{
int i;
u64 cpu_freq_MHz = get_cpu_freq_KHz() / 1000;
printf("%d entries total:\n\n", tst_p->num_entries);
for (i = 0; i < tst_p->num_entries; i++) {
const struct timestamp_entry *tse_p = tst_p->entries + i;
printf("%4d:", tse_p->entry_id);
print_norm(tse_p->entry_stamp / cpu_freq_MHz, 0);
if (i) {
printf(" (");
print_norm((tse_p->entry_stamp -
tse_p[-1].entry_stamp) /
cpu_freq_MHz, 0);
printf(")");
}
printf("\n");
}
}
int main(int argc, char** argv)
{
int j;
static const int possible_base_addresses[] = {0, 0xf0000};
fd = fopen("/dev/mem", "r");
if (!fd) {
printf("failed to gain memory access\n");
return 1;
}
for (j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
const struct timestamp_table * tst_p =
find_tstamps(possible_base_addresses[j]);
if (tst_p) {
dump_timestamps(tst_p);
free((void*)tst_p);
break;
}
}
fclose(fd);
return 0;
}