coreboot-kgpe-d16/src/lib/imd.c

701 lines
15 KiB
C
Raw Normal View History

/*
* This file is part of the coreboot project.
*
* Copyright 2015 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <cbmem.h>
#include <console/console.h>
#include <imd.h>
#include <stdlib.h>
#include <string.h>
/* For more details on implementation and usage please see the imd.h header. */
static const uint32_t IMD_ROOT_PTR_MAGIC = 0xc0389481;
static const uint32_t IMD_ENTRY_MAGIC = ~0xc0389481;
static const uint32_t SMALL_REGION_ID = CBMEM_ID_IMD_SMALL;
static const size_t LIMIT_ALIGN = 4096;
/* In-memory data structures. */
struct imd_root_pointer {
uint32_t magic;
/* Relative to upper limit/offset. */
int32_t root_offset;
} __attribute__((packed));
struct imd_entry {
uint32_t magic;
/* start is located relative to imd_root */
int32_t start_offset;
uint32_t size;
uint32_t id;
} __attribute__((packed));
struct imd_root {
uint32_t max_entries;
uint32_t num_entries;
uint32_t flags;
uint32_t entry_align;
/* Used for fixing the size of an imd. Relative to the root. */
int32_t max_offset;
struct imd_entry entries[0];
} __attribute__((packed));
#define IMD_FLAG_LOCKED 1
static void *relative_pointer(void *base, ssize_t offset)
{
intptr_t b = (intptr_t)base;
b += offset;
return (void *)b;
}
static bool imd_root_pointer_valid(const struct imd_root_pointer *rp)
{
return !!(rp->magic == IMD_ROOT_PTR_MAGIC);
}
static struct imd_root *imdr_root(const struct imdr *imdr)
{
return imdr->r;
}
/*
* The root pointer is relative to the upper limit of the imd. i.e. It sits
* just below the upper limit.
*/
static struct imd_root_pointer *imdr_get_root_pointer(const struct imdr *imdr)
{
struct imd_root_pointer *rp;
rp = relative_pointer((void *)imdr->limit, -sizeof(*rp));
return rp;
}
static void imd_link_root(struct imd_root_pointer *rp, struct imd_root *r)
{
rp->magic = IMD_ROOT_PTR_MAGIC;
rp->root_offset = (int32_t)((intptr_t)r - (intptr_t)rp);
}
static struct imd_entry *root_last_entry(struct imd_root *r)
{
return &r->entries[r->num_entries - 1];
}
static size_t root_num_entries(size_t root_size)
{
size_t entries_size;
entries_size = root_size;
entries_size -= sizeof(struct imd_root_pointer);
entries_size -= sizeof(struct imd_root);
return entries_size / sizeof(struct imd_entry);
}
static size_t imd_root_data_left(struct imd_root *r)
{
struct imd_entry *last_entry;
last_entry = root_last_entry(r);
if (r->max_offset != 0)
return last_entry->start_offset - r->max_offset;
return ~(size_t)0;
}
static bool root_is_locked(const struct imd_root *r)
{
return !!(r->flags & IMD_FLAG_LOCKED);
}
static void imd_entry_assign(struct imd_entry *e, uint32_t id,
ssize_t offset, size_t size)
{
e->magic = IMD_ENTRY_MAGIC;
e->start_offset = offset;
e->size = size;
e->id = id;
}
static void imdr_init(struct imdr *ir, void *upper_limit)
{
uintptr_t limit = (uintptr_t)upper_limit;
/* Upper limit is aligned down to 4KiB */
ir->limit = ALIGN_DOWN(limit, LIMIT_ALIGN);
ir->r = NULL;
}
static int imdr_create_empty(struct imdr *imdr, size_t root_size,
size_t entry_align)
{
struct imd_root_pointer *rp;
struct imd_root *r;
struct imd_entry *e;
ssize_t root_offset;
if (!imdr->limit)
return -1;
/* root_size and entry_align should be a power of 2. */
assert(IS_POWER_OF_2(root_size));
assert(IS_POWER_OF_2(entry_align));
if (!imdr->limit)
return -1;
/*
* root_size needs to be large enough to accomodate root pointer and
* root book keeping structure. The caller needs to ensure there's
* enough room for tracking individual allocations.
*/
if (root_size < (sizeof(*rp) + sizeof(*r)))
return -1;
/* For simplicity don't allow sizes or alignments to exceed LIMIT_ALIGN. */
if (root_size > LIMIT_ALIGN || entry_align > LIMIT_ALIGN)
return -1;
/* Additionally, don't handle an entry alignment > root_size. */
if (entry_align > root_size)
return -1;
rp = imdr_get_root_pointer(imdr);
root_offset = -(ssize_t)root_size;
/* Set root pointer. */
imdr->r = relative_pointer((void *)imdr->limit, root_offset);
r = imdr_root(imdr);
imd_link_root(rp, r);
memset(r, 0, sizeof(*r));
r->entry_align = entry_align;
/* Calculate size left for entries. */
r->max_entries = root_num_entries(root_size);
/* Fill in first entry covering the root region. */
r->num_entries = 1;
e = &r->entries[0];
imd_entry_assign(e, CBMEM_ID_IMD_ROOT, 0, root_size);
printk(BIOS_DEBUG, "IMD: root @ %p %u entries.\n", r, r->max_entries);
return 0;
}
static int imdr_recover(struct imdr *imdr)
{
struct imd_root_pointer *rp;
struct imd_root *r;
uintptr_t low_limit;
size_t i;
if (!imdr->limit)
return -1;
rp = imdr_get_root_pointer(imdr);
if (!imd_root_pointer_valid(rp))
return -1;
r = relative_pointer(rp, rp->root_offset);
/* Confirm the root and root pointer are just under the limit. */
if (ALIGN_UP((uintptr_t)&r->entries[r->max_entries], LIMIT_ALIGN) !=
imdr->limit)
return -1;
if (r->num_entries > r->max_entries)
return -1;
/* Entry alignment should be power of 2. */
if (!IS_POWER_OF_2(r->entry_align))
return -1;
low_limit = (uintptr_t)relative_pointer(r, r->max_offset);
/* If no max_offset then lowest limit is 0. */
if (low_limit == (uintptr_t)r)
low_limit = 0;
for (i = 0; i < r->num_entries; i++) {
uintptr_t start_addr;
const struct imd_entry *e = &r->entries[i];
if (e->magic != IMD_ENTRY_MAGIC)
return -1;
start_addr = (uintptr_t)relative_pointer(r, e->start_offset);
if (start_addr < low_limit)
return -1;
if (start_addr >= imdr->limit ||
(start_addr + e->size) > imdr->limit)
return -1;
}
/* Set root pointer. */
imdr->r = r;
return 0;
}
static const struct imd_entry *imdr_entry_find(const struct imdr *imdr,
uint32_t id)
{
struct imd_root *r;
struct imd_entry *e;
size_t i;
r = imdr_root(imdr);
if (r == NULL)
return NULL;
e = NULL;
/* Skip first entry covering the root. */
for (i = 1; i < r->num_entries; i++) {
if (id != r->entries[i].id)
continue;
e = &r->entries[i];
break;
}
return e;
}
static int imdr_limit_size(struct imdr *imdr, size_t max_size)
{
struct imd_root *r;
ssize_t smax_size;
size_t root_size;
r = imdr_root(imdr);
if (r == NULL)
return -1;
root_size = imdr->limit - (uintptr_t)r;
if (max_size < root_size)
return -1;
/* Take into account the root size. */
smax_size = max_size - root_size;
smax_size = -smax_size;
r->max_offset = smax_size;
return 0;
}
static size_t imdr_entry_size(const struct imdr *imdr,
const struct imd_entry *e)
{
return e->size;
}
static void *imdr_entry_at(const struct imdr *imdr, const struct imd_entry *e)
{
return relative_pointer(imdr_root(imdr), e->start_offset);
}
static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id,
size_t size)
{
struct imd_entry *entry;
struct imd_entry *last_entry;
ssize_t e_offset;
size_t used_size;
if (r->num_entries == r->max_entries)
return NULL;
/* Determine total size taken up by entry. */
used_size = ALIGN_UP(size, r->entry_align);
/* See if size overflows imd total size. */
if (used_size > imd_root_data_left(r))
return NULL;
/*
* Determine if offset field overflows. All offsets should be lower
* than the previous one.
*/
last_entry = root_last_entry(r);
e_offset = last_entry->start_offset;
e_offset -= (ssize_t)used_size;
if (e_offset > last_entry->start_offset)
return NULL;
entry = root_last_entry(r) + 1;
r->num_entries++;
imd_entry_assign(entry, id, e_offset, size);
return entry;
}
static const struct imd_entry *imdr_entry_add(const struct imdr *imdr,
uint32_t id, size_t size)
{
struct imd_root *r;
r = imdr_root(imdr);
if (r == NULL)
return NULL;
if (root_is_locked(r))
return NULL;
return imd_entry_add_to_root(r, id, size);
}
static bool imdr_has_entry(const struct imdr *imdr, const struct imd_entry *e)
{
struct imd_root *r;
size_t idx;
r = imdr_root(imdr);
if (r == NULL)
return false;
/* Determine if the entry is within this root structure. */
idx = e - &r->entries[0];
if (idx >= r->num_entries)
return false;
return true;
}
static const struct imdr *imd_entry_to_imdr(const struct imd *imd,
const struct imd_entry *entry)
{
if (imdr_has_entry(&imd->lg, entry))
return &imd->lg;
if (imdr_has_entry(&imd->sm, entry))
return &imd->sm;
return NULL;
}
/* Initialize imd handle. */
void imd_handle_init(struct imd *imd, void *upper_limit)
{
imdr_init(&imd->lg, upper_limit);
imdr_init(&imd->sm, NULL);
}
void imd_handle_init_partial_recovery(struct imd *imd)
{
const struct imd_entry *e;
struct imd_root_pointer *rp;
struct imdr *imdr;
if (imd->lg.limit == 0)
return;
imd_handle_init(imd, (void *)imd->lg.limit);
/* Initialize root pointer for the large regions. */
imdr = &imd->lg;
rp = imdr_get_root_pointer(imdr);
imdr->r = relative_pointer(rp, rp->root_offset);
e = imdr_entry_find(imdr, SMALL_REGION_ID);
if (e == NULL)
return;
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
imd->sm.limit += imdr_entry_size(imdr, e);
imdr = &imd->sm;
rp = imdr_get_root_pointer(imdr);
imdr->r = relative_pointer(rp, rp->root_offset);
}
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
{
return imdr_create_empty(&imd->lg, root_size, entry_align);
}
int imd_create_tiered_empty(struct imd *imd,
size_t lg_root_size, size_t lg_entry_align,
size_t sm_root_size, size_t sm_entry_align)
{
size_t sm_region_size;;
const struct imd_entry *e;
struct imdr *imdr;
imdr = &imd->lg;
if (imdr_create_empty(imdr, lg_root_size, lg_entry_align) != 0)
return -1;
/* Calculate the size of the small region to request. */
sm_region_size = root_num_entries(sm_root_size) * sm_entry_align;
sm_region_size += sm_root_size;
sm_region_size = ALIGN_UP(sm_region_size, lg_entry_align);
/* Add a new entry to the large region to cover the root and entries. */
e = imdr_entry_add(imdr, SMALL_REGION_ID, sm_region_size);
if (e == NULL)
goto fail;
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
imd->sm.limit += sm_region_size;
if (imdr_create_empty(&imd->sm, sm_root_size, sm_entry_align) != 0 ||
imdr_limit_size(&imd->sm, sm_region_size))
goto fail;
return 0;
fail:
imd_handle_init(imd, (void *)imdr->limit);
return -1;
}
int imd_recover(struct imd *imd)
{
const struct imd_entry *e;
uintptr_t small_upper_limit;
struct imdr *imdr;
imdr = &imd->lg;
if (imdr_recover(imdr) != 0)
return -1;
/* Determine if small region is region is present. */
e = imdr_entry_find(imdr, SMALL_REGION_ID);
if (e == NULL)
return 0;
small_upper_limit = (uintptr_t)imdr_entry_at(imdr, e);
small_upper_limit += imdr_entry_size(imdr, e);
imd->sm.limit = small_upper_limit;
/* Tear down any changes on failure. */
if (imdr_recover(&imd->sm) != 0) {
imd_handle_init(imd, (void *)imd->lg.limit);
return -1;
}
return 0;
}
int imd_limit_size(struct imd *imd, size_t max_size)
{
return imdr_limit_size(&imd->lg, max_size);
}
int imd_lockdown(struct imd *imd)
{
struct imd_root *r;
r = imdr_root(&imd->lg);
if (r == NULL)
return -1;
r->flags |= IMD_FLAG_LOCKED;
r = imdr_root(&imd->sm);
if (r != NULL)
r->flags |= IMD_FLAG_LOCKED;
return 0;
}
int imd_region_used(struct imd *imd, void **base, size_t *size)
{
struct imd_root *r;
struct imd_entry *e;
void *low_addr;
size_t sz_used;
if (!imd->lg.limit)
return -1;
r = imdr_root(&imd->lg);
if (r == NULL)
return -1;
/* Use last entry to obtain lowest address. */
e = root_last_entry(r);
low_addr = relative_pointer(r, e->start_offset);
/* Total size used is the last entry's base up to the limit. */
sz_used = imd->lg.limit - (uintptr_t)low_addr;
*base = low_addr;
*size = sz_used;
return 0;
}
const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id,
size_t size)
{
struct imd_root *r;
const struct imdr *imdr;
const struct imd_entry *e = NULL;
/*
* Determine if requested size is less than 1/4 of small data
* region is left.
*/
imdr = &imd->sm;
r = imdr_root(imdr);
/* No small region. Use the large region. */
if (r == NULL)
return imdr_entry_add(&imd->lg, id, size);
else if (size <= r->entry_align || size <= imd_root_data_left(r) / 4)
e = imdr_entry_add(imdr, id, size);
/* Fall back on large region allocation. */
if (e == NULL)
e = imdr_entry_add(&imd->lg, id, size);
return e;
}
const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id)
{
const struct imd_entry *e;
/* Many of the smaller allocations are used a lot. Therefore, try
* the small region first. */
e = imdr_entry_find(&imd->sm, id);
if (e == NULL)
e = imdr_entry_find(&imd->lg, id);
return e;
}
const struct imd_entry *imd_entry_find_or_add(const struct imd *imd,
uint32_t id, size_t size)
{
const struct imd_entry *e;
e = imd_entry_find(imd, id);
if (e != NULL)
return e;
return imd_entry_add(imd, id, size);
}
size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry)
{
return imdr_entry_size(NULL, entry);
}
void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry)
{
const struct imdr *imdr;
imdr = imd_entry_to_imdr(imd, entry);
if (imdr == NULL)
return NULL;
return imdr_entry_at(imdr, entry);
}
int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry)
{
struct imd_root *r;
const struct imdr *imdr;
imdr = imd_entry_to_imdr(imd, entry);
if (imdr == NULL)
return - 1;
r = imdr_root(imdr);
if (r == NULL)
return -1;
if (root_is_locked(r))
return -1;
if (entry != root_last_entry(r))
return -1;
r->num_entries--;
return 0;
}
static void imdr_print_entries(const struct imdr *imdr, const char *indent,
const struct imd_lookup *lookup, size_t size)
{
struct imd_root *r;
size_t i;
size_t j;
if (imdr == NULL)
return;
r = imdr_root(imdr);
for (i = 0; i < r->num_entries; i++) {
const char *name = NULL;
const struct imd_entry *e = &r->entries[i];
for (j = 0; j < size; j++) {
if (lookup[j].id == e->id) {
name = lookup[j].name;
break;
}
}
printk(BIOS_DEBUG, "%s", indent);
if (name == NULL)
printk(BIOS_DEBUG, "%08x ", e->id);
else
printk(BIOS_DEBUG, "%s", name);
printk(BIOS_DEBUG, "%2zu. ", i);
printk(BIOS_DEBUG, "%p ", imdr_entry_at(imdr, e));
printk(BIOS_DEBUG, "%08zx\n", imdr_entry_size(imdr, e));
}
}
int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
size_t size)
{
if (imdr_root(&imd->lg) == NULL)
return -1;
imdr_print_entries(&imd->lg, "", lookup, size);
if (imdr_root(&imd->sm) != NULL) {
printk(BIOS_DEBUG, "IMD small region:\n");
imdr_print_entries(&imd->sm, " ", lookup, size);
}
return 0;
}