2009-04-14 09:40:01 +02:00
|
|
|
/*
|
|
|
|
* This file is part of the coreboot project.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008, Jordan Crouse <jordan@cosmicpenguin.net>
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
* Copyright (C) 2013 The Chromium OS Authors. All rights reserved.
|
2009-04-14 09:40:01 +02:00
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; version 2 of the License.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
#ifdef LIBPAYLOAD
|
|
|
|
# include <libpayload-config.h>
|
|
|
|
# ifdef CONFIG_LZMA
|
|
|
|
# include <lzma.h>
|
|
|
|
# define CBFS_CORE_WITH_LZMA
|
|
|
|
# endif
|
|
|
|
# define CBFS_MINI_BUILD
|
|
|
|
#elif defined(__SMM__)
|
|
|
|
# define CBFS_MINI_BUILD
|
2013-01-31 18:09:24 +01:00
|
|
|
#elif defined(__BOOT_BLOCK__)
|
|
|
|
/* No LZMA in boot block. */
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
#else
|
|
|
|
# define CBFS_CORE_WITH_LZMA
|
|
|
|
# include <lib.h>
|
|
|
|
#endif
|
|
|
|
|
2009-04-14 09:40:01 +02:00
|
|
|
#include <cbfs.h>
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
#include <string.h>
|
2013-02-09 00:28:04 +01:00
|
|
|
#include <cbmem.h>
|
2009-04-14 09:40:01 +02:00
|
|
|
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
#ifdef LIBPAYLOAD
|
|
|
|
# include <stdio.h>
|
|
|
|
# define DEBUG(x...)
|
|
|
|
# define LOG(x...) printf(x)
|
|
|
|
# define ERROR(x...) printf(x)
|
|
|
|
#else
|
|
|
|
# include <console/console.h>
|
|
|
|
# define ERROR(x...) printk(BIOS_ERR, "CBFS: " x)
|
|
|
|
# define LOG(x...) printk(BIOS_INFO, "CBFS: " x)
|
|
|
|
# if CONFIG_DEBUG_CBFS
|
|
|
|
# define DEBUG(x...) printk(BIOS_SPEW, "CBFS: " x)
|
|
|
|
# else
|
|
|
|
# define DEBUG(x...)
|
|
|
|
# endif
|
2011-07-21 15:11:40 +02:00
|
|
|
#endif
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
|
|
|
|
#if defined(CONFIG_CBFS_HEADER_ROM_OFFSET) && (CONFIG_CBFS_HEADER_ROM_OFFSET)
|
|
|
|
# define CBFS_HEADER_ROM_ADDRESS (CONFIG_CBFS_HEADER_ROM_OFFSET)
|
2012-05-03 01:33:18 +02:00
|
|
|
#else
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
// Indirect address: only works on 32bit top-aligned systems.
|
|
|
|
# define CBFS_HEADER_ROM_ADDRESS (*(uint32_t *)0xfffffffc)
|
2012-05-03 01:33:18 +02:00
|
|
|
#endif
|
2011-07-21 15:11:40 +02:00
|
|
|
|
|
|
|
#include "cbfs_core.c"
|
2009-04-14 09:40:01 +02:00
|
|
|
|
2013-03-02 00:12:26 +01:00
|
|
|
#if CONFIG_VBOOT_VERIFY_FIRMWARE
|
|
|
|
#include <vendorcode/google/chromeos/chromeos.h>
|
|
|
|
#else
|
|
|
|
static inline void *vboot_get_payload(int *len) { return NULL; }
|
|
|
|
#endif
|
|
|
|
|
2011-06-12 14:35:11 +02:00
|
|
|
#ifndef __SMM__
|
2010-03-01 09:34:19 +01:00
|
|
|
static inline int tohex4(unsigned int c)
|
2009-08-20 16:48:03 +02:00
|
|
|
{
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
return (c <= 9) ? (c + '0') : (c - 10 + 'a');
|
2009-08-20 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void tohex16(unsigned int val, char* dest)
|
|
|
|
{
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
dest[0] = tohex4(val>>12);
|
|
|
|
dest[1] = tohex4((val>>8) & 0xf);
|
|
|
|
dest[2] = tohex4((val>>4) & 0xf);
|
|
|
|
dest[3] = tohex4(val & 0xf);
|
2009-08-20 16:48:03 +02:00
|
|
|
}
|
|
|
|
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
void *cbfs_load_optionrom(struct cbfs_media *media, uint16_t vendor,
|
|
|
|
uint16_t device, void *dest)
|
2009-04-14 09:40:01 +02:00
|
|
|
{
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
char name[17] = "pciXXXX,XXXX.rom";
|
2009-04-14 09:40:01 +02:00
|
|
|
struct cbfs_optionrom *orom;
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
uint8_t *src;
|
2009-04-14 09:40:01 +02:00
|
|
|
|
2009-08-20 16:48:03 +02:00
|
|
|
tohex16(vendor, name+3);
|
|
|
|
tohex16(device, name+8);
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
orom = (struct cbfs_optionrom *)
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
cbfs_get_file_content(media, name, CBFS_TYPE_OPTIONROM);
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
if (orom == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
2010-04-27 08:56:47 +02:00
|
|
|
/* They might have specified a dest address. If so, we can decompress.
|
2009-04-14 09:40:01 +02:00
|
|
|
* If not, there's not much hope of decompressing or relocating the rom.
|
|
|
|
* in the common case, the expansion rom is uncompressed, we
|
2010-04-27 08:56:47 +02:00
|
|
|
* pass 0 in for the dest, and all we have to do is find the rom and
|
|
|
|
* return a pointer to it.
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
*/
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
/* BUG: the cbfstool is (not yet) including a cbfs_optionrom header */
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
src = (uint8_t *)orom; // + sizeof(struct cbfs_optionrom);
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
if (! dest)
|
|
|
|
return src;
|
|
|
|
|
|
|
|
if (cbfs_decompress(ntohl(orom->compression),
|
|
|
|
src,
|
|
|
|
dest,
|
|
|
|
ntohl(orom->len)))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
return dest;
|
|
|
|
}
|
|
|
|
|
2013-02-09 00:28:04 +01:00
|
|
|
#if CONFIG_RELOCATABLE_RAMSTAGE && defined(__PRE_RAM__)
|
|
|
|
|
|
|
|
#include <rmodule.h>
|
|
|
|
#include <romstage_handoff.h>
|
|
|
|
/* When CONFIG_RELOCATABLE_RAMSTAGE is enabled and this file is being compiled
|
2013-02-28 05:50:12 +01:00
|
|
|
* for the romstage, the rmodule loader is used. */
|
2013-02-16 06:26:52 +01:00
|
|
|
void __attribute__((weak))
|
2013-02-28 05:50:12 +01:00
|
|
|
cache_loaded_ramstage(struct romstage_handoff *handoff,
|
|
|
|
const struct cbmem_entry *ramstage, void *entry_point)
|
2013-02-16 06:26:52 +01:00
|
|
|
{
|
2013-02-28 05:50:12 +01:00
|
|
|
uint32_t ramstage_size;
|
|
|
|
const struct cbmem_entry *entry;
|
|
|
|
|
2013-02-16 06:26:52 +01:00
|
|
|
if (handoff == NULL)
|
|
|
|
return;
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
ramstage_size = cbmem_entry_size(ramstage);
|
|
|
|
/* cbmem_entry_add() does a find() before add(). */
|
|
|
|
entry = cbmem_entry_add(CBMEM_ID_RAMSTAGE_CACHE, ramstage_size);
|
2013-02-16 06:26:52 +01:00
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
if (entry == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Keep track of the entry point in the handoff structure. */
|
|
|
|
handoff->ramstage_entry_point = (uint32_t)entry_point;
|
2013-02-16 06:26:52 +01:00
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
memcpy(cbmem_entry_start(entry), cbmem_entry_start(ramstage),
|
|
|
|
ramstage_size);
|
2013-02-16 06:26:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void * __attribute__((weak))
|
2013-02-28 05:50:12 +01:00
|
|
|
load_cached_ramstage(struct romstage_handoff *handoff,
|
|
|
|
const struct cbmem_entry *ramstage)
|
2013-02-16 06:26:52 +01:00
|
|
|
{
|
2013-02-28 05:50:12 +01:00
|
|
|
const struct cbmem_entry *entry_cache;
|
2013-02-16 06:26:52 +01:00
|
|
|
|
|
|
|
if (handoff == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
entry_cache = cbmem_entry_find(CBMEM_ID_RAMSTAGE_CACHE);
|
|
|
|
|
|
|
|
if (entry_cache == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* Load the cached ramstage copy into the to-be-run region. */
|
|
|
|
memcpy(cbmem_entry_start(ramstage), cbmem_entry_start(entry_cache),
|
|
|
|
cbmem_entry_size(ramstage));
|
2013-02-16 06:26:52 +01:00
|
|
|
|
|
|
|
return (void *)handoff->ramstage_entry_point;
|
|
|
|
}
|
|
|
|
|
ramstage: cache relocated ramstage in RAM
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.
This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.
The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.
e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16
The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.
With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:
13 entries total:
1:95,965
2:97,191 (1,225)
3:131,755 (34,564)
4:132,890 (1,135)
8:135,165 (2,274)
9:135,840 (675)
10:135,973 (132)
30:136,016 (43)
40:136,581 (564)
50:138,280 (1,699)
60:138,381 (100)
70:204,538 (66,157)
98:204,615 (77)
Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-02-12 07:50:47 +01:00
|
|
|
static void *load_stage_from_cbfs(struct cbfs_media *media, const char *name,
|
|
|
|
struct romstage_handoff *handoff)
|
2013-02-09 00:28:04 +01:00
|
|
|
{
|
|
|
|
struct cbfs_stage *stage;
|
|
|
|
struct rmodule ramstage;
|
ramstage: cache relocated ramstage in RAM
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.
This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.
The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.
e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16
The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.
With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:
13 entries total:
1:95,965
2:97,191 (1,225)
3:131,755 (34,564)
4:132,890 (1,135)
8:135,165 (2,274)
9:135,840 (675)
10:135,973 (132)
30:136,016 (43)
40:136,581 (564)
50:138,280 (1,699)
60:138,381 (100)
70:204,538 (66,157)
98:204,615 (77)
Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-02-12 07:50:47 +01:00
|
|
|
void *entry_point;
|
2013-02-28 05:50:12 +01:00
|
|
|
size_t region_size;
|
|
|
|
char *ramstage_region;
|
|
|
|
int rmodule_offset;
|
|
|
|
int load_offset;
|
|
|
|
const struct cbmem_entry *ramstage_entry;
|
2013-02-09 00:28:04 +01:00
|
|
|
|
|
|
|
stage = (struct cbfs_stage *)
|
|
|
|
cbfs_get_file_content(media, name, CBFS_TYPE_STAGE);
|
|
|
|
|
|
|
|
if (stage == NULL)
|
|
|
|
return (void *) -1;
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
rmodule_offset =
|
|
|
|
rmodule_calc_region(DYN_CBMEM_ALIGN_SIZE,
|
|
|
|
stage->memlen, ®ion_size, &load_offset);
|
|
|
|
|
|
|
|
ramstage_entry = cbmem_entry_add(CBMEM_ID_RAMSTAGE, region_size);
|
|
|
|
|
|
|
|
if (ramstage_entry == NULL)
|
2013-02-09 00:28:04 +01:00
|
|
|
return (void *) -1;
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
ramstage_region = cbmem_entry_start(ramstage_entry);
|
2013-02-09 00:28:04 +01:00
|
|
|
|
|
|
|
LOG("Decompressing stage %s @ 0x%p (%d bytes)\n",
|
2013-02-28 05:50:12 +01:00
|
|
|
name, &ramstage_region[rmodule_offset], stage->memlen);
|
2013-02-09 00:28:04 +01:00
|
|
|
|
|
|
|
if (cbfs_decompress(stage->compression, &stage[1],
|
2013-02-28 05:50:12 +01:00
|
|
|
&ramstage_region[rmodule_offset], stage->len))
|
2013-02-09 00:28:04 +01:00
|
|
|
return (void *) -1;
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
if (rmodule_parse(&ramstage_region[rmodule_offset], &ramstage))
|
2013-02-09 00:28:04 +01:00
|
|
|
return (void *) -1;
|
|
|
|
|
|
|
|
/* The ramstage is responsible for clearing its own bss. */
|
2013-02-28 05:50:12 +01:00
|
|
|
if (rmodule_load(&ramstage_region[load_offset], &ramstage))
|
2013-02-09 00:28:04 +01:00
|
|
|
return (void *) -1;
|
|
|
|
|
ramstage: cache relocated ramstage in RAM
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.
This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.
The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.
e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16
The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.
With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:
13 entries total:
1:95,965
2:97,191 (1,225)
3:131,755 (34,564)
4:132,890 (1,135)
8:135,165 (2,274)
9:135,840 (675)
10:135,973 (132)
30:136,016 (43)
40:136,581 (564)
50:138,280 (1,699)
60:138,381 (100)
70:204,538 (66,157)
98:204,615 (77)
Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-02-12 07:50:47 +01:00
|
|
|
entry_point = rmodule_entry(&ramstage);
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
cache_loaded_ramstage(handoff, ramstage_entry, entry_point);
|
ramstage: cache relocated ramstage in RAM
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.
This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.
The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.
e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16
The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.
With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:
13 entries total:
1:95,965
2:97,191 (1,225)
3:131,755 (34,564)
4:132,890 (1,135)
8:135,165 (2,274)
9:135,840 (675)
10:135,973 (132)
30:136,016 (43)
40:136,581 (564)
50:138,280 (1,699)
60:138,381 (100)
70:204,538 (66,157)
98:204,615 (77)
Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-02-12 07:50:47 +01:00
|
|
|
|
|
|
|
return entry_point;
|
|
|
|
}
|
|
|
|
|
|
|
|
void * cbfs_load_stage(struct cbfs_media *media, const char *name)
|
|
|
|
{
|
|
|
|
struct romstage_handoff *handoff;
|
2013-02-28 05:50:12 +01:00
|
|
|
const struct cbmem_entry *ramstage;
|
2013-02-16 06:26:52 +01:00
|
|
|
void *entry;
|
ramstage: cache relocated ramstage in RAM
Accessing the flash part where the ramstage resides can be slow
when loading it. In order to save time in the S3 resume path a copy
of the relocated ramstage is saved just below the location the ramstage
was loaded. Then on S3 resume the cached version of the relocated
ramstage is copied back to the loaded address.
This is achieved by saving the ramstage entry point in the
romstage_handoff structure as reserving double the amount of memory
required for ramstage. This approach saves the engineering time to make
the ramstage reentrant.
The fast path in this change will only be taken when the chipset's
romstage code properly initializes the s3_resume field in the
romstage_handoff structure. If that is never set up properly then the
fast path will never be taken.
e820 entries from Linux:
BIOS-e820: [mem 0x000000007bf21000-0x000000007bfbafff] reserved
BIOS-e820: [mem 0x000000007bfbb000-0x000000007bffffff] type 16
The type 16 is the cbmem table and the reserved section contains the two
copies of the ramstage; one has been executed already and one is
the cached relocated program.
With this change the S3 resume path on the basking ridge CRB shows
to be ~200ms to hand off to the kernel:
13 entries total:
1:95,965
2:97,191 (1,225)
3:131,755 (34,564)
4:132,890 (1,135)
8:135,165 (2,274)
9:135,840 (675)
10:135,973 (132)
30:136,016 (43)
40:136,581 (564)
50:138,280 (1,699)
60:138,381 (100)
70:204,538 (66,157)
98:204,615 (77)
Change-Id: I9c7a6d173afc758eef560e09d2aef5f90a25187a
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2800
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-02-12 07:50:47 +01:00
|
|
|
|
|
|
|
handoff = romstage_handoff_find_or_add();
|
|
|
|
|
|
|
|
if (handoff == NULL) {
|
|
|
|
LOG("Couldn't find or allocate romstage handoff.\n");
|
|
|
|
return load_stage_from_cbfs(media, name, handoff);
|
|
|
|
} else if (!handoff->s3_resume)
|
|
|
|
return load_stage_from_cbfs(media, name, handoff);
|
|
|
|
|
2013-02-28 05:50:12 +01:00
|
|
|
ramstage = cbmem_entry_find(CBMEM_ID_RAMSTAGE);
|
|
|
|
|
|
|
|
if (ramstage == NULL)
|
|
|
|
return load_stage_from_cbfs(name, handoff);
|
|
|
|
|
2013-02-16 06:26:52 +01:00
|
|
|
/* S3 resume path. Load a cached copy of the loaded ramstage. If
|
|
|
|
* return value is NULL load from cbfs. */
|
2013-02-28 05:50:12 +01:00
|
|
|
entry = load_cached_ramstage(handoff, ramstage);
|
2013-02-16 06:26:52 +01:00
|
|
|
if (entry == NULL)
|
|
|
|
return load_stage_from_cbfs(name, handoff);
|
2013-02-09 00:28:04 +01:00
|
|
|
|
2013-02-16 06:26:52 +01:00
|
|
|
return entry;
|
2013-02-09 00:28:04 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
void * cbfs_load_stage(struct cbfs_media *media, const char *name)
|
2009-04-14 09:40:01 +02:00
|
|
|
{
|
|
|
|
struct cbfs_stage *stage = (struct cbfs_stage *)
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
cbfs_get_file_content(media, name, CBFS_TYPE_STAGE);
|
2009-04-14 09:40:01 +02:00
|
|
|
/* this is a mess. There is no ntohll. */
|
|
|
|
/* for now, assume compatible byte order until we solve this. */
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
uint32_t entry;
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
if (stage == NULL)
|
|
|
|
return (void *) -1;
|
|
|
|
|
2012-05-03 01:33:18 +02:00
|
|
|
LOG("loading stage %s @ 0x%x (%d bytes), entry @ 0x%llx\n",
|
2009-07-18 16:20:39 +02:00
|
|
|
name,
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
(uint32_t) stage->load, stage->memlen,
|
2009-04-14 09:40:01 +02:00
|
|
|
stage->entry);
|
2013-03-20 19:49:27 +01:00
|
|
|
/* Stages rely the below clearing so that the bss is initialized. */
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
memset((void *) (uint32_t) stage->load, 0, stage->memlen);
|
2009-04-14 09:40:01 +02:00
|
|
|
|
2009-05-27 16:19:31 +02:00
|
|
|
if (cbfs_decompress(stage->compression,
|
2009-04-14 09:40:01 +02:00
|
|
|
((unsigned char *) stage) +
|
|
|
|
sizeof(struct cbfs_stage),
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
(void *) (uint32_t) stage->load,
|
2009-05-27 16:19:31 +02:00
|
|
|
stage->len))
|
2009-04-14 09:40:01 +02:00
|
|
|
return (void *) -1;
|
2009-10-26 18:15:53 +01:00
|
|
|
|
2012-05-03 01:33:18 +02:00
|
|
|
DEBUG("stage loaded.\n");
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
entry = stage->entry;
|
2011-10-17 18:51:15 +02:00
|
|
|
// entry = ntohll(stage->entry);
|
2009-10-26 18:15:53 +01:00
|
|
|
|
2009-04-14 09:40:01 +02:00
|
|
|
return (void *) entry;
|
|
|
|
}
|
2013-02-09 00:28:04 +01:00
|
|
|
#endif /* CONFIG_RELOCATABLE_RAMSTAGE */
|
2009-04-14 09:40:01 +02:00
|
|
|
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
int cbfs_execute_stage(struct cbfs_media *media, const char *name)
|
2009-04-14 09:40:01 +02:00
|
|
|
{
|
|
|
|
struct cbfs_stage *stage = (struct cbfs_stage *)
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
cbfs_get_file_content(media, name, CBFS_TYPE_STAGE);
|
2009-04-14 09:40:01 +02:00
|
|
|
|
|
|
|
if (stage == NULL)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if (ntohl(stage->compression) != CBFS_COMPRESS_NONE) {
|
2012-05-03 01:33:18 +02:00
|
|
|
LOG("Unable to run %s: Compressed file"
|
2009-04-14 09:40:01 +02:00
|
|
|
"Not supported for in-place execution\n", name);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* FIXME: This isn't right */
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
LOG("run @ %p\n", (void *) ntohl((uint32_t) stage->entry));
|
|
|
|
return run_address((void *)(uintptr_t)ntohll(stage->entry));
|
|
|
|
}
|
|
|
|
|
2013-01-22 20:22:02 +01:00
|
|
|
#if !CONFIG_ALT_CBFS_LOAD_PAYLOAD
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
void *cbfs_load_payload(struct cbfs_media *media, const char *name)
|
|
|
|
{
|
2013-03-02 00:12:26 +01:00
|
|
|
struct cbfs_payload *payload;
|
|
|
|
|
|
|
|
payload = vboot_get_payload(NULL);
|
|
|
|
if (payload != NULL)
|
|
|
|
return payload;
|
|
|
|
|
|
|
|
payload = (struct cbfs_payload *)cbfs_get_file_content(
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
media, name, CBFS_TYPE_PAYLOAD);
|
2013-03-02 00:12:26 +01:00
|
|
|
return payload;
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
}
|
2013-01-22 20:22:02 +01:00
|
|
|
#endif
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
|
|
|
|
/* Simple buffer */
|
|
|
|
|
|
|
|
void *cbfs_simple_buffer_map(struct cbfs_simple_buffer *buffer,
|
|
|
|
struct cbfs_media *media,
|
|
|
|
size_t offset, size_t count) {
|
|
|
|
void *address = buffer->buffer + buffer->allocated;;
|
2013-02-06 05:25:27 +01:00
|
|
|
DEBUG("simple_buffer_map(offset=%zd, count=%zd): "
|
|
|
|
"allocated=%zd, size=%zd, last_allocate=%zd\n",
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
offset, count, buffer->allocated, buffer->size,
|
|
|
|
buffer->last_allocate);
|
|
|
|
if (buffer->allocated + count >= buffer->size)
|
|
|
|
return CBFS_MEDIA_INVALID_MAP_ADDRESS;
|
|
|
|
if (media->read(media, address, offset, count) != count) {
|
|
|
|
ERROR("simple_buffer: fail to read %zd bytes from 0x%zx\n",
|
|
|
|
count, offset);
|
|
|
|
return CBFS_MEDIA_INVALID_MAP_ADDRESS;
|
|
|
|
}
|
|
|
|
buffer->allocated += count;
|
|
|
|
buffer->last_allocate = count;
|
|
|
|
return address;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *cbfs_simple_buffer_unmap(struct cbfs_simple_buffer *buffer,
|
|
|
|
const void *address) {
|
|
|
|
// TODO Add simple buffer management so we can free more than last
|
|
|
|
// allocated one.
|
|
|
|
DEBUG("simple_buffer_unmap(address=0x%p): "
|
2013-02-06 05:25:27 +01:00
|
|
|
"allocated=%zd, size=%zd, last_allocate=%zd\n",
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
address, buffer->allocated, buffer->size,
|
|
|
|
buffer->last_allocate);
|
|
|
|
if ((buffer->buffer + buffer->allocated - buffer->last_allocate) ==
|
|
|
|
address) {
|
|
|
|
buffer->allocated -= buffer->last_allocate;
|
|
|
|
buffer->last_allocate = 0;
|
|
|
|
}
|
|
|
|
return NULL;
|
2009-04-14 09:40:01 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* run_address is passed the address of a function taking no parameters and
|
2010-04-27 08:56:47 +02:00
|
|
|
* jumps to it, returning the result.
|
|
|
|
* @param f the address to call as a function.
|
|
|
|
* @return value returned by the function.
|
2009-04-14 09:40:01 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
int run_address(void *f)
|
|
|
|
{
|
|
|
|
int (*v) (void);
|
|
|
|
v = f;
|
|
|
|
return v();
|
|
|
|
}
|
Extend CBFS to support arbitrary ROM source media.
Summary:
Isolate CBFS underlying I/O to board/arch-specific implementations as
"media stream", to allow loading and booting romstage on non-x86.
CBFS functions now all take a new "media source" parameter; use
CBFS_DEFAULT_MEDIA if you simply want to load from main firmware.
API Changes:
cbfs_find => cbfs_get_file.
cbfs_find_file => cbfs_get_file_content.
cbfs_get_file => cbfs_get_file_content with correct type.
CBFS used to work only on memory-mapped ROM (all x86). For platforms like ARM,
the ROM may come from USB, UART, or SPI -- any serial devices and not available
for memory mapping.
To support these devices (and allowing CBFS to read from multiple source
at the same time), CBFS operations are now virtual-ized into "cbfs_media". To
simplify porting existing code, every media source must support both "reading
into pre-allocated memory (read)" and "read and return an allocated buffer
(map)". For devices without native memory-mapped ROM, "cbfs_simple_buffer*"
provides simple memory mapping simulation.
Every CBFS function now takes a cbfs_media* as parameter. CBFS_DEFAULT_MEDIA
is defined for CBFS functions to automatically initialize a per-board default
media (CBFS will internally calls init_default_cbfs_media). Also revised CBFS
function names relying on memory mapped backend (ex, "cbfs_find" => actually
loads files). Now we only have two getters:
struct cbfs_file *entry = cbfs_get_file(media, name);
void *data = cbfs_get_file_content(CBFS_DEFAULT_MEDIA, name, type);
Test results:
- Verified to work on x86/qemu.
- Compiles on ARM, and follow up commit will provide working SPI driver.
Change-Id: Iac911ded25a6f2feffbf3101a81364625bb07746
Signed-off-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-on: http://review.coreboot.org/2182
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2013-01-22 11:57:56 +01:00
|
|
|
|
2011-06-12 14:35:11 +02:00
|
|
|
#endif
|