2020-05-29 21:56:37 +02:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
|
|
|
|
#include <acpi/acpigen.h>
|
|
|
|
#include <acpi/acpigen_dptf.h>
|
|
|
|
|
|
|
|
/* Hardcoded paths */
|
|
|
|
#define TOPLEVEL_DPTF_SCOPE "\\_SB.DPTF"
|
|
|
|
|
|
|
|
/* Defaults */
|
|
|
|
enum {
|
|
|
|
ART_REVISION = 0,
|
2020-05-29 22:10:53 +02:00
|
|
|
DEFAULT_PRIORITY = 100,
|
2020-05-29 21:56:37 +02:00
|
|
|
DEFAULT_WEIGHT = 100,
|
|
|
|
DPTF_MAX_ART_THRESHOLDS = 10,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Convert degrees C to 1/10 degree Kelvin for ACPI */
|
|
|
|
static int to_acpi_temp(int deg_c)
|
|
|
|
{
|
|
|
|
return deg_c * 10 + 2732;
|
|
|
|
}
|
|
|
|
|
2020-05-29 22:10:53 +02:00
|
|
|
/* Converts ms to 1/10th second for ACPI */
|
|
|
|
static int to_acpi_time(int ms)
|
|
|
|
{
|
|
|
|
return ms / 100;
|
|
|
|
}
|
|
|
|
|
2020-05-29 21:56:37 +02:00
|
|
|
/* Writes out a 0-argument non-Serialized Method that returns an Integer */
|
|
|
|
static void write_simple_return_method(const char *name, int value)
|
|
|
|
{
|
|
|
|
acpigen_write_method(name, 0);
|
|
|
|
acpigen_write_return_integer(value);
|
|
|
|
acpigen_pop_len(); /* Method */
|
|
|
|
}
|
|
|
|
|
2020-05-29 22:10:53 +02:00
|
|
|
/* Writes out 'count' ZEROs in a row */
|
|
|
|
static void write_zeros(int count)
|
|
|
|
{
|
|
|
|
for (; count; --count)
|
|
|
|
acpigen_write_integer(0);
|
|
|
|
}
|
|
|
|
|
2020-05-29 21:56:37 +02:00
|
|
|
/* Return the assigned namestring of any participant */
|
|
|
|
static const char *namestring_of(enum dptf_participant participant)
|
|
|
|
{
|
|
|
|
switch (participant) {
|
|
|
|
case DPTF_CPU:
|
|
|
|
return "TCPU";
|
|
|
|
case DPTF_CHARGER:
|
|
|
|
return "TCHG";
|
|
|
|
case DPTF_FAN:
|
|
|
|
return "TFN1";
|
|
|
|
case DPTF_TEMP_SENSOR_0:
|
|
|
|
return "TSR0";
|
|
|
|
case DPTF_TEMP_SENSOR_1:
|
|
|
|
return "TSR1";
|
|
|
|
case DPTF_TEMP_SENSOR_2:
|
|
|
|
return "TSR2";
|
|
|
|
case DPTF_TEMP_SENSOR_3:
|
|
|
|
return "TSR3";
|
|
|
|
default:
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper to get Scope for participants underneath \_SB.DPTF */
|
|
|
|
static const char *scope_of(enum dptf_participant participant)
|
|
|
|
{
|
|
|
|
static char scope[16];
|
|
|
|
|
|
|
|
if (participant == DPTF_CPU)
|
|
|
|
snprintf(scope, sizeof(scope), "\\_SB.%s", namestring_of(participant));
|
|
|
|
else
|
|
|
|
snprintf(scope, sizeof(scope), TOPLEVEL_DPTF_SCOPE ".%s",
|
|
|
|
namestring_of(participant));
|
|
|
|
|
|
|
|
return scope;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Write out scope of a participant */
|
|
|
|
void dptf_write_scope(enum dptf_participant participant)
|
|
|
|
{
|
|
|
|
acpigen_write_scope(scope_of(participant));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This table describes active cooling relationships between the system's fan and the
|
|
|
|
* temperature sensors that it can have an effect on. As ever-increasing temperature thresholds
|
|
|
|
* are crossed (_AC9.._AC0, low to high), the corresponding fan percentages listed in this table
|
|
|
|
* are used to increase the speed of the fan in order to speed up cooling.
|
|
|
|
*/
|
|
|
|
static void write_active_relationship_table(const struct dptf_active_policy *policies,
|
|
|
|
int max_count)
|
|
|
|
{
|
|
|
|
char *pkg_count;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/* Nothing to do */
|
|
|
|
if (!max_count || policies[0].target == DPTF_NONE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
acpigen_write_scope(TOPLEVEL_DPTF_SCOPE);
|
|
|
|
acpigen_write_method("_ART", 0);
|
|
|
|
|
|
|
|
/* Return this package */
|
|
|
|
acpigen_emit_byte(RETURN_OP);
|
|
|
|
|
|
|
|
/* Keep track of items added to the package */
|
|
|
|
pkg_count = acpigen_write_package(1); /* The '1' here is for the revision */
|
|
|
|
acpigen_write_integer(ART_REVISION);
|
|
|
|
|
|
|
|
for (i = 0; i < max_count; ++i) {
|
|
|
|
/*
|
|
|
|
* These have to be filled out from AC0 down to AC9, filling in only as many
|
|
|
|
* as are used. As soon as one isn't filled in, we're done.
|
|
|
|
*/
|
|
|
|
if (policies[i].target == DPTF_NONE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
(*pkg_count)++;
|
|
|
|
|
|
|
|
/* Source, Target, Percent, Fan % for each of _AC0 ... _AC9 */
|
|
|
|
acpigen_write_package(13);
|
|
|
|
acpigen_emit_namestring(namestring_of(DPTF_FAN));
|
|
|
|
acpigen_emit_namestring(namestring_of(policies[i].target));
|
|
|
|
acpigen_write_integer(DEFAULT_IF_0(policies[i].weight, DEFAULT_WEIGHT));
|
|
|
|
|
|
|
|
/* Write out fan %; corresponds with target's _ACx methods */
|
|
|
|
for (j = 0; j < DPTF_MAX_ART_THRESHOLDS; ++j)
|
|
|
|
acpigen_write_integer(policies[i].thresholds[j].fan_pct);
|
|
|
|
|
|
|
|
acpigen_pop_len(); /* inner Package */
|
|
|
|
}
|
|
|
|
|
|
|
|
acpigen_pop_len(); /* outer Package */
|
|
|
|
acpigen_pop_len(); /* Method _ART */
|
|
|
|
acpigen_pop_len(); /* Scope */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* _AC9 through _AC0 represent temperature thresholds, in increasing order, defined from _AC0
|
|
|
|
* down, that, when reached, DPTF will activate TFN1 in order to actively cool the temperature
|
|
|
|
* sensor(s). As increasing thresholds are reached, the fan is spun faster.
|
|
|
|
*/
|
|
|
|
static void write_active_cooling_methods(const struct dptf_active_policy *policies,
|
|
|
|
int max_count)
|
|
|
|
{
|
|
|
|
char name[5];
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
/* Nothing to do */
|
|
|
|
if (!max_count || policies[0].target == DPTF_NONE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < max_count; ++i) {
|
|
|
|
if (policies[i].target == DPTF_NONE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
dptf_write_scope(policies[i].target);
|
|
|
|
|
|
|
|
/* Write out as many of _AC0 through _AC9 that are applicable */
|
|
|
|
for (j = 0; j < DPTF_MAX_ACX; ++j) {
|
|
|
|
if (!policies[i].thresholds[j].temp)
|
|
|
|
break;
|
|
|
|
|
|
|
|
snprintf(name, sizeof(name), "_AC%1X", j);
|
|
|
|
write_simple_return_method(name, to_acpi_temp(
|
|
|
|
policies[i].thresholds[j].temp));
|
|
|
|
}
|
|
|
|
|
|
|
|
acpigen_pop_len(); /* Scope */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void dptf_write_active_policies(const struct dptf_active_policy *policies, int max_count)
|
|
|
|
{
|
|
|
|
write_active_relationship_table(policies, max_count);
|
|
|
|
write_active_cooling_methods(policies, max_count);
|
|
|
|
}
|
2020-05-29 22:10:53 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This writes out the Thermal Relationship Table, which describes the thermal relationships
|
|
|
|
* between participants in a thermal zone. This information is used to passively cool (i.e.,
|
|
|
|
* throttle) the Source (source of heat), in order to indirectly cool the Target (temperature
|
|
|
|
* sensor).
|
|
|
|
*/
|
|
|
|
static void write_thermal_relationship_table(const struct dptf_passive_policy *policies,
|
|
|
|
int max_count)
|
|
|
|
{
|
|
|
|
char *pkg_count;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Nothing to do */
|
|
|
|
if (!max_count || policies[0].source == DPTF_NONE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
acpigen_write_scope(TOPLEVEL_DPTF_SCOPE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A _TRT Revision (TRTR) of 1 means that the 'Priority' field is an arbitrary priority
|
|
|
|
* value to be used for this specific relationship. The priority value determines the
|
|
|
|
* order in which various sources are used in a passive thermal action for a given
|
|
|
|
* target.
|
|
|
|
*/
|
|
|
|
acpigen_write_name_integer("TRTR", 1);
|
|
|
|
|
|
|
|
/* Thermal Relationship Table */
|
|
|
|
acpigen_write_method("_TRT", 0);
|
|
|
|
|
|
|
|
/* Return this package */
|
|
|
|
acpigen_emit_byte(RETURN_OP);
|
|
|
|
pkg_count = acpigen_write_package(0);
|
|
|
|
|
|
|
|
for (i = 0; i < max_count; ++i) {
|
|
|
|
/* Stop writing the table once an entry is empty */
|
|
|
|
if (policies[i].source == DPTF_NONE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Keep track of outer package item count */
|
|
|
|
(*pkg_count)++;
|
|
|
|
|
|
|
|
acpigen_write_package(8);
|
|
|
|
|
|
|
|
/* Source, Target, Priority, Sampling Period */
|
|
|
|
acpigen_emit_namestring(namestring_of(policies[i].source));
|
|
|
|
acpigen_emit_namestring(namestring_of(policies[i].target));
|
|
|
|
acpigen_write_integer(DEFAULT_IF_0(policies[i].priority, DEFAULT_PRIORITY));
|
|
|
|
acpigen_write_integer(to_acpi_time(policies[i].period));
|
|
|
|
|
|
|
|
/* Reserved */
|
|
|
|
write_zeros(4);
|
|
|
|
|
|
|
|
acpigen_pop_len(); /* Package */
|
|
|
|
}
|
|
|
|
|
|
|
|
acpigen_pop_len(); /* Package */
|
|
|
|
acpigen_pop_len(); /* Method */
|
|
|
|
acpigen_pop_len(); /* Scope */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When a temperature sensor measures above its the temperature returned in its _PSV Method,
|
|
|
|
* DPTF will begin throttling Sources in order to indirectly cool the sensor.
|
|
|
|
*/
|
|
|
|
static void write_all_PSV(const struct dptf_passive_policy *policies, int max_count)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < max_count; ++i) {
|
|
|
|
if (policies[i].source == DPTF_NONE)
|
|
|
|
break;
|
|
|
|
|
|
|
|
dptf_write_scope(policies[i].target);
|
|
|
|
write_simple_return_method("_PSV", to_acpi_temp(policies[i].temp));
|
|
|
|
acpigen_pop_len(); /* Scope */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void dptf_write_passive_policies(const struct dptf_passive_policy *policies, int max_count)
|
|
|
|
{
|
|
|
|
write_thermal_relationship_table(policies, max_count);
|
|
|
|
write_all_PSV(policies, max_count);
|
|
|
|
}
|