coreboot-kgpe-d16/util/cbfstool/cbfs_image.c

932 lines
28 KiB
C
Raw Normal View History

/*
* CBFS Image Manipulation
*
* Copyright (C) 2013 The Chromium OS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <inttypes.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "cbfs_image.h"
/* The file name align is not defined in CBFS spec -- only a preference by
* (old) cbfstool. */
#define CBFS_FILENAME_ALIGN (16)
/* To make CBFS more friendly to ROM, fill -1 (0xFF) instead of zero. */
#define CBFS_CONTENT_DEFAULT_VALUE (-1)
/* Type and format */
struct typedesc_t {
uint32_t type;
const char *name;
};
static const struct typedesc_t types_cbfs_entry[] = {
{CBFS_COMPONENT_STAGE, "stage"},
{CBFS_COMPONENT_PAYLOAD, "payload"},
{CBFS_COMPONENT_OPTIONROM, "optionrom"},
{CBFS_COMPONENT_BOOTSPLASH, "bootsplash"},
{CBFS_COMPONENT_RAW, "raw"},
{CBFS_COMPONENT_VSA, "vsa"},
{CBFS_COMPONENT_MBI, "mbi"},
{CBFS_COMPONENT_MICROCODE, "microcode"},
{CBFS_COMPONENT_CMOS_DEFAULT, "cmos_default"},
{CBFS_COMPONENT_CMOS_LAYOUT, "cmos_layout"},
{CBFS_COMPONENT_DELETED, "deleted"},
{CBFS_COMPONENT_NULL, "null"},
{0, NULL},
};
static const struct typedesc_t types_cbfs_compression[] = {
{CBFS_COMPRESS_NONE, "none"},
{CBFS_COMPRESS_LZMA, "LZMA"},
{0, NULL},
};
static uint32_t align_up(uint32_t value, uint32_t align)
{
if (value % align)
value += align - (value % align);
return value;
}
uint32_t lookup_type_by_name(const struct typedesc_t *desc, const char *name,
uint32_t default_value)
{
int i;
for (i = 0; desc[i].name; i++)
if (strcmp(desc[i].name, name) == 0)
return desc[i].type;
return default_value;
}
const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
const char *default_value)
{
int i;
for (i = 0; desc[i].name; i++)
if (desc[i].type == type)
return desc[i].name;
return default_value;
}
uint32_t get_cbfs_entry_type(const char *name, uint32_t default_value)
{
return lookup_type_by_name(types_cbfs_entry, name, default_value);
}
const char *get_cbfs_entry_type_name(uint32_t type)
{
return lookup_name_by_type(types_cbfs_entry, type, "(unknown)");
}
uint32_t get_cbfs_compression(const char *name, uint32_t unknown)
{
return lookup_type_by_name(types_cbfs_compression, name, unknown);
}
/* CBFS image */
static int cbfs_calculate_file_header_size(const char *name)
{
return (sizeof(struct cbfs_file) +
align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN));
}
static int cbfs_fix_legacy_size(struct cbfs_image *image)
{
// A bug in old cbfstool may produce extra few bytes (by alignment) and
// cause cbfstool to overwrite things after free space -- which is
// usually CBFS header on x86. We need to workaround that.
struct cbfs_file *entry, *first = NULL, *last = NULL;
for (first = entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
last = entry;
}
if ((char *)first < (char *)image->header &&
(char *)entry > (char *)image->header) {
WARN("CBFS image was created with old cbfstool with size bug. "
"Fixing size in last entry...\n");
last->len = htonl(ntohl(last->len) -
ntohl(image->header->align));
DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
cbfs_get_entry_addr(image, entry),
cbfs_get_entry_addr(image,
cbfs_find_next_entry(image, last)));
}
return 0;
}
int cbfs_image_create(struct cbfs_image *image,
uint32_t arch,
size_t size,
uint32_t align,
struct buffer *bootblock,
int32_t bootblock_offset,
int32_t header_offset,
int32_t entries_offset)
{
struct cbfs_header *header;
struct cbfs_file *entry;
uint32_t cbfs_len;
size_t entry_header_len;
DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
"header=0x%x+0x%zx, entries_offset=0x%x\n",
bootblock_offset, bootblock->size,
header_offset, sizeof(*header), entries_offset);
if (buffer_create(&image->buffer, size, "(new)") != 0)
return -1;
image->header = NULL;
memset(image->buffer.data, CBFS_CONTENT_DEFAULT_VALUE, size);
// Adjust legcay top-aligned address to ROM offset.
if (IS_TOP_ALIGNED_ADDRESS(entries_offset))
entries_offset += (int32_t)size;
if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset))
bootblock_offset += (int32_t)size;
if (IS_TOP_ALIGNED_ADDRESS(header_offset))
header_offset += (int32_t) size;
DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
"header=0x%x, entries_offset=0x%x\n",
bootblock_offset, header_offset, entries_offset);
if (align == 0)
align = 64; // default align size.
// Prepare bootblock
if (bootblock_offset + bootblock->size > size) {
ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
bootblock_offset, bootblock->size, size);
return -1;
}
if (entries_offset > bootblock_offset &&
entries_offset < bootblock->size) {
ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
bootblock_offset, bootblock->size, entries_offset);
return -1;
}
memcpy(image->buffer.data + bootblock_offset, bootblock->data,
bootblock->size);
// Prepare header
if (header_offset + sizeof(*header) > size) {
ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
header_offset, sizeof(*header), size);
return -1;
}
header = (struct cbfs_header *)(image->buffer.data + header_offset);
image->header = header;
header->magic = htonl(CBFS_HEADER_MAGIC);
header->version = htonl(CBFS_HEADER_VERSION);
header->romsize = htonl(size);
header->bootblocksize = htonl(bootblock->size);
header->align = htonl(align);
header->offset = htonl(entries_offset);
header->architecture = htonl(arch);
// Prepare entries
if (align_up(entries_offset, align) != entries_offset) {
ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
entries_offset, align);
return -1;
}
entry_header_len = cbfs_calculate_file_header_size("");
if (entries_offset + entry_header_len > size) {
ERROR("Offset (0x%x+0x%zx) exceed ROM size(0x%zx)\n",
entries_offset, entry_header_len, size);
return -1;
}
entry = (struct cbfs_file *)(image->buffer.data + entries_offset);
// To calculate available length, find
// e = min(bootblock, header, size) where e > entries_offset.
cbfs_len = size;
if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
cbfs_len = bootblock_offset;
if (header_offset > entries_offset && header_offset < cbfs_len)
cbfs_len = header_offset;
cbfs_len -= entries_offset + align + entry_header_len;
cbfs_create_empty_entry(image, entry, cbfs_len, "");
LOG("Created CBFS image (capacity = %d bytes)\n", cbfs_len);
return 0;
}
int cbfs_image_from_file(struct cbfs_image *image, const char *filename)
{
if (buffer_from_file(&image->buffer, filename) != 0)
return -1;
DEBUG("read_cbfs_image: %s (%zd bytes)\n", image->buffer.name,
image->buffer.size);
image->header = cbfs_find_header(image->buffer.data,
image->buffer.size);
if (!image->header) {
ERROR("%s does not have CBFS master header.\n", filename);
cbfs_image_delete(image);
return -1;
}
cbfs_fix_legacy_size(image);
return 0;
}
int cbfs_image_write_file(struct cbfs_image *image, const char *filename)
{
assert(image && image->buffer.data);
return buffer_write_file(&image->buffer, filename);
}
int cbfs_image_delete(struct cbfs_image *image)
{
buffer_delete(&image->buffer);
image->header = NULL;
return 0;
}
/* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
static int cbfs_add_entry_at(struct cbfs_image *image,
struct cbfs_file *entry,
uint32_t size,
const char *name,
uint32_t type,
const void *data,
uint32_t content_offset)
{
struct cbfs_file *next = cbfs_find_next_entry(image, entry);
uint32_t addr = cbfs_get_entry_addr(image, entry),
addr_next = cbfs_get_entry_addr(image, next);
uint32_t header_size = cbfs_calculate_file_header_size(name),
min_entry_size = cbfs_calculate_file_header_size("");
uint32_t len, target;
uint32_t align = ntohl(image->header->align);
target = content_offset - header_size;
if (target % align)
target -= target % align;
if (target < addr) {
ERROR("No space to hold cbfs_file header.");
return -1;
}
// Process buffer BEFORE content_offset.
if (target - addr > min_entry_size) {
DEBUG("|min|...|header|content|... <create new entry>\n");
len = target - addr - min_entry_size;
cbfs_create_empty_entry(image, entry, len, "");
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
entry = cbfs_find_next_entry(image, entry);
addr = cbfs_get_entry_addr(image, entry);
}
len = size + (content_offset - addr - header_size);
cbfs_create_empty_entry(image, entry, len, name);
if (len != size) {
DEBUG("|..|header|content|... <use offset to create entry>\n");
DEBUG("before: offset=0x%x, len=0x%x\n",
ntohl(entry->offset), ntohl(entry->len));
// TODO reset expanded name buffer to 0xFF.
entry->offset = htonl(ntohl(entry->offset) + (len - size));
entry->len = htonl(size);
DEBUG("after: offset=0x%x, len=0x%x\n",
ntohl(entry->offset), ntohl(entry->len));
}
// Ready to fill data into entry.
assert(ntohl(entry->len) == size);
entry->type = htonl(type);
DEBUG("content_offset: 0x%x, entry location: %x\n",
content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
image->buffer.data));
assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
content_offset);
memcpy(CBFS_SUBHEADER(entry), data, size);
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
// Process buffer AFTER entry.
entry = cbfs_find_next_entry(image, entry);
addr = cbfs_get_entry_addr(image, entry);
assert(addr < addr_next);
if (addr_next - addr < min_entry_size) {
DEBUG("No space after content to keep CBFS structure.\n");
return -1;
}
len = addr_next - addr - min_entry_size;
cbfs_create_empty_entry(image, entry, len, "");
if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
return 0;
}
int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
const char *name, uint32_t type, uint32_t content_offset)
{
uint32_t entry_type;
uint32_t addr, addr_next;
struct cbfs_file *entry, *next;
uint32_t header_size, need_size, new_size;
header_size = cbfs_calculate_file_header_size(name);
need_size = header_size + buffer->size;
DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
name, content_offset, header_size, buffer->size, need_size);
if (IS_TOP_ALIGNED_ADDRESS(content_offset)) {
// legacy cbfstool takes top-aligned address.
uint32_t romsize = ntohl(image->header->romsize);
INFO("Converting top-aligned address 0x%x to offset: 0x%x\n",
content_offset, content_offset + romsize);
content_offset += romsize;
}
// Merge empty entries.
DEBUG("(trying to merge empty entries...)\n");
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
entry_type = ntohl(entry->type);
if (entry_type != CBFS_COMPONENT_NULL)
continue;
addr = cbfs_get_entry_addr(image, entry);
next = cbfs_find_next_entry(image, entry);
addr_next = cbfs_get_entry_addr(image, next);
DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
addr, addr_next - addr, addr_next - addr);
/* Will the file fit? Don't yet worry if we have space for a new
* "empty" entry. We take care of that later.
*/
if (addr + need_size > addr_next)
continue;
// Can we simply put object here?
if (!content_offset || content_offset == addr + header_size) {
DEBUG("Filling new entry data (%zd bytes).\n",
buffer->size);
cbfs_create_empty_entry(image, entry, buffer->size,
name);
entry->type = htonl(type);
memcpy(CBFS_SUBHEADER(entry), buffer->data, buffer->size);
if (verbose)
cbfs_print_entry_info(image, entry, stderr);
// setup new entry
DEBUG("Setting new empty entry.\n");
entry = cbfs_find_next_entry(image, entry);
new_size = (cbfs_get_entry_addr(image, next) -
cbfs_get_entry_addr(image, entry));
/* Entry was added and no space for new "empty" entry */
if (new_size < cbfs_calculate_file_header_size("")) {
DEBUG("No need for new \"empty\" entry\n");
/* No need to increase the size of the just
* stored file to extend to next file. Alignment
* of next file takes care of this.
*/
return 0;
}
new_size -= cbfs_calculate_file_header_size("");
DEBUG("new size: %d\n", new_size);
cbfs_create_empty_entry(image, entry, new_size, "");
if (verbose)
cbfs_print_entry_info(image, entry, stderr);
return 0;
}
// We need to put content here, and the case is really
// complicated...
assert(content_offset);
if (addr_next < content_offset) {
DEBUG("Not for specified offset yet");
continue;
} else if (addr > content_offset) {
DEBUG("Exceed specified content_offset.");
break;
} else if (addr + header_size > content_offset) {
ERROR("Not enough space for header.\n");
break;
} else if (content_offset + buffer->size > addr_next) {
ERROR("Not enough space for content.\n");
break;
}
// TODO there are more few tricky cases that we may
// want to fit by altering offset.
DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
addr, addr_next - addr, content_offset);
if (cbfs_add_entry_at(image, entry, buffer->size, name, type,
buffer->data, content_offset) == 0) {
return 0;
}
break;
}
ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
buffer->name, buffer->size, buffer->size / 1024, content_offset);
return -1;
}
struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
{
struct cbfs_file *entry;
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
if (strcasecmp(CBFS_NAME(entry), name) == 0) {
DEBUG("cbfs_get_entry: found %s\n", name);
return entry;
}
}
return NULL;
}
int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
const char *filename)
{
struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
struct buffer buffer;
if (!entry) {
ERROR("File not found: %s\n", entry_name);
return -1;
}
LOG("Found file %.30s at 0x%x, type %.12s, size %d\n",
entry_name, cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)), ntohl(entry->len));
if (ntohl(entry->type) != CBFS_COMPONENT_RAW) {
WARN("Only 'raw' files are safe to extract.\n");
}
buffer.data = CBFS_SUBHEADER(entry);
buffer.size = ntohl(entry->len);
buffer.name = "(cbfs_export_entry)";
if (buffer_write_file(&buffer, filename) != 0) {
ERROR("Failed to write %s into %s.\n",
entry_name, filename);
return -1;
}
INFO("Successfully dumped the file to: %s\n", filename);
return 0;
}
int cbfs_remove_entry(struct cbfs_image *image, const char *name)
{
struct cbfs_file *entry, *next;
size_t len;
entry = cbfs_get_entry(image, name);
if (!entry) {
ERROR("CBFS file %s not found.\n", name);
return -1;
}
next = cbfs_find_next_entry(image, entry);
assert(next);
DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
CBFS_NAME(entry), cbfs_get_entry_addr(image, entry));
entry->type = htonl(CBFS_COMPONENT_DELETED);
len = (cbfs_get_entry_addr(image, next) -
cbfs_get_entry_addr(image, entry));
entry->offset = htonl(cbfs_calculate_file_header_size(""));
entry->len = htonl(len - ntohl(entry->offset));
memset(CBFS_NAME(entry), 0, ntohl(entry->offset) - sizeof(*entry));
memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE,
ntohl(entry->len));
return 0;
}
int cbfs_print_header_info(struct cbfs_image *image)
{
char *name = strdup(image->buffer.name);
assert(image && image->header);
printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
"alignment: %d bytes\n\n",
basename(name),
image->buffer.size / 1024,
ntohl(image->header->bootblocksize),
ntohl(image->header->romsize),
ntohl(image->header->offset),
ntohl(image->header->align));
free(name);
return 0;
}
static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp)
{
fprintf(fp,
" %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
"length: %d/%d\n",
lookup_name_by_type(types_cbfs_compression,
stage->compression, "(unknown)"),
stage->entry,
stage->load,
stage->len,
stage->memlen);
return 0;
}
static int cbfs_print_payload_segment_info(struct cbfs_payload_segment *payload,
FILE *fp)
{
switch(payload->type) {
case PAYLOAD_SEGMENT_CODE:
case PAYLOAD_SEGMENT_DATA:
fprintf(fp, " %s (%s compression, offset: 0x%x, "
"load: 0x%" PRIx64 ", length: %d/%d)\n",
(payload->type == PAYLOAD_SEGMENT_CODE ?
"code " : "data"),
lookup_name_by_type(types_cbfs_compression,
ntohl(payload->compression),
"(unknown)"),
ntohl(payload->offset),
ntohll(payload->load_addr),
ntohl(payload->len), ntohl(payload->mem_len));
break;
case PAYLOAD_SEGMENT_ENTRY:
fprintf(fp, " entry (0x%" PRIx64 ")\n",
ntohll(payload->load_addr));
break;
case PAYLOAD_SEGMENT_BSS:
fprintf(fp, " BSS (address 0x%016" PRIx64 ", "
"length 0x%x)\n",
ntohll(payload->load_addr),
ntohl(payload->len));
break;
case PAYLOAD_SEGMENT_PARAMS:
fprintf(fp, " parameters\n");
break;
default:
fprintf(fp, " 0x%x (%s compression, offset: 0x%x, "
"load: 0x%" PRIx64 ", length: %d/%d\n",
payload->type,
lookup_name_by_type(types_cbfs_compression,
payload->compression,
"(unknown)"),
ntohl(payload->offset),
ntohll(payload->load_addr),
ntohl(payload->len),
ntohl(payload->mem_len));
break;
}
return 0;
}
int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
void *arg)
{
const char *name = CBFS_NAME(entry);
struct cbfs_payload_segment *payload;
FILE *fp = (FILE *)arg;
if (!cbfs_is_valid_entry(image, entry)) {
ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
cbfs_get_entry_addr(image, entry));
return -1;
}
if (!fp)
fp = stdout;
fprintf(fp, "%-30s 0x%-8x %-12s %d\n",
*name ? name : "(empty)",
cbfs_get_entry_addr(image, entry),
get_cbfs_entry_type_name(ntohl(entry->type)),
ntohl(entry->len));
if (!verbose)
return 0;
DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
cbfs_get_entry_addr(image, entry), ntohl(entry->offset),
cbfs_get_entry_addr(image, entry) + ntohl(entry->offset),
ntohl(entry->len));
/* note the components of the subheader may be in host order ... */
switch (ntohl(entry->type)) {
case CBFS_COMPONENT_STAGE:
cbfs_print_stage_info((struct cbfs_stage *)
CBFS_SUBHEADER(entry), fp);
break;
case CBFS_COMPONENT_PAYLOAD:
payload = (struct cbfs_payload_segment *)
CBFS_SUBHEADER(entry);
while (payload) {
cbfs_print_payload_segment_info(payload, fp);
if (payload->type == PAYLOAD_SEGMENT_ENTRY)
break;
else
payload ++;
}
break;
default:
break;
}
return 0;
}
int cbfs_print_directory(struct cbfs_image *image)
{
cbfs_print_header_info(image);
printf("%-30s %-10s %-12s Size\n", "Name", "Offset", "Type");
cbfs_walk(image, cbfs_print_entry_info, NULL);
return 0;
}
int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
void *arg)
{
struct cbfs_file *next;
uint32_t type, addr, last_addr;
type = ntohl(entry->type);
if (type == CBFS_COMPONENT_DELETED) {
// Ready to be recycled.
type = CBFS_COMPONENT_NULL;
entry->type = htonl(type);
}
if (type != CBFS_COMPONENT_NULL)
return 0;
next = cbfs_find_next_entry(image, entry);
while (next && cbfs_is_valid_entry(image, next)) {
type = ntohl(next->type);
if (type == CBFS_COMPONENT_DELETED) {
type = CBFS_COMPONENT_NULL;
next->type = htonl(type);
}
if (type != CBFS_COMPONENT_NULL)
return 0;
addr = cbfs_get_entry_addr(image, entry);
last_addr = cbfs_get_entry_addr(
image, cbfs_find_next_entry(image, next));
// Now, we find two deleted/empty entries; try to merge now.
DEBUG("join_empty_entry: combine 0x%x+0x%x and 0x%x+0x%x.\n",
cbfs_get_entry_addr(image, entry), ntohl(entry->len),
cbfs_get_entry_addr(image, next), ntohl(next->len));
cbfs_create_empty_entry(image, entry,
(last_addr - addr -
cbfs_calculate_file_header_size("")),
"");
DEBUG("new empty entry: length=0x%x\n", ntohl(entry->len));
next = cbfs_find_next_entry(image, entry);
}
return 0;
}
int cbfs_walk(struct cbfs_image *image, cbfs_entry_callback callback,
void *arg)
{
int count = 0;
struct cbfs_file *entry;
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
count ++;
if (callback(image, entry, arg) != 0)
break;
}
return count;
}
struct cbfs_header *cbfs_find_header(char *data, size_t size)
{
size_t offset;
int found = 0;
uint32_t x86sig;
struct cbfs_header *header, *result = NULL;
// Try x86 style (check signature in bottom) header first.
x86sig = *(uint32_t *)(data + size - sizeof(uint32_t));
offset = (x86sig + (uint32_t)size);
DEBUG("x86sig: 0x%x, offset: 0x%zx\n", x86sig, offset);
if (offset >= size - sizeof(*header) ||
ntohl(((struct cbfs_header *)(data + offset))->magic) !=
CBFS_HEADER_MAGIC)
offset = 0;
for (; offset + sizeof(*header) < size; offset++) {
header = (struct cbfs_header *)(data + offset);
if (ntohl(header->magic) !=(CBFS_HEADER_MAGIC))
continue;
if (ntohl(header->version) != CBFS_HEADER_VERSION1 &&
ntohl(header->version) != CBFS_HEADER_VERSION2) {
// Probably not a real CBFS header?
continue;
}
found++;
result = header;
}
if (found > 1) {
ERROR("multiple (%d) CBFS headers found!\n",
found);
result = NULL;
}
return result;
}
struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
{
assert(image && image->header);
return (struct cbfs_file *)(image->buffer.data +
ntohl(image->header->offset));
}
struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
struct cbfs_file *entry)
{
uint32_t addr = cbfs_get_entry_addr(image, entry);
int align = ntohl(image->header->align);
assert(entry && cbfs_is_valid_entry(image, entry));
addr += ntohl(entry->offset) + ntohl(entry->len);
addr = align_up(addr, align);
return (struct cbfs_file *)(image->buffer.data + addr);
}
uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
{
assert(image && image->buffer.data && entry);
return (int32_t)((char *)entry - image->buffer.data);
}
int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
{
return (entry &&
(char *)entry >= image->buffer.data &&
(char *)entry + sizeof(entry->magic) <
image->buffer.data + image->buffer.size &&
memcmp(entry->magic, CBFS_FILE_MAGIC,
sizeof(entry->magic)) == 0);
}
int cbfs_init_entry(struct cbfs_file *entry,
struct buffer *buffer)
{
memset(entry, 0, sizeof(*entry));
memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
entry->len = htonl(buffer->size);
entry->offset = htonl(sizeof(*entry) + strlen(buffer->name) + 1);
return 0;
}
int cbfs_create_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
size_t len, const char *name)
{
memset(entry, CBFS_CONTENT_DEFAULT_VALUE, sizeof(*entry));
memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
entry->type = htonl(CBFS_COMPONENT_NULL);
entry->len = htonl(len);
entry->checksum = 0; // TODO Build a checksum algorithm.
entry->offset = htonl(cbfs_calculate_file_header_size(name));
memset(CBFS_NAME(entry), 0, ntohl(entry->offset) - sizeof(*entry));
strcpy(CBFS_NAME(entry), name);
memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
return 0;
}
/* Finds a place to hold whole data in same memory page. */
static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
{
if (!page)
return 1;
return (start / page) == (start + size - 1) / page;
}
/* Tests if data can fit in a range by given offset:
* start ->| header_len | offset (+ size) |<- end
*/
static int is_in_range(uint32_t start, uint32_t end, uint32_t header_len,
uint32_t offset, uint32_t size)
{
return (offset >= start + header_len && offset + size <= end);
}
int32_t cbfs_locate_entry(struct cbfs_image *image, const char *name,
uint32_t size, uint32_t page_size, uint32_t align)
{
struct cbfs_file *entry;
size_t need_len;
uint32_t addr, addr_next, addr2, addr3, offset, header_len;
/* Default values: allow fitting anywhere in ROM. */
if (!page_size)
page_size = ntohl(image->header->romsize);
if (!align)
align = 1;
if (size > page_size)
ERROR("Input file size (%d) greater than page size (%d).\n",
size, page_size);
if (page_size % ntohl(image->header->align))
WARN("%s: Page size (%#x) not aligned with CBFS image (%#x).\n",
__func__, page_size, ntohl(image->header->align));
/* TODO Old cbfstool always assume input is a stage file (and adding
* sizeof(cbfs_stage) for header. We should fix that by adding "-t"
* (type) param in future. For right now, we assume cbfs_stage is the
* largest structure and add it into header size. */
assert(sizeof(struct cbfs_stage) >= sizeof(struct cbfs_payload));
header_len = (cbfs_calculate_file_header_size(name) +
sizeof(struct cbfs_stage));
need_len = header_len + size;
// Merge empty entries to build get max available space.
cbfs_walk(image, cbfs_merge_empty_entry, NULL);
/* Three cases of content location on memory page:
* case 1.
* | PAGE 1 | PAGE 2 |
* | <header><content>| Fit. Return start of content.
*
* case 2.
* | PAGE 1 | PAGE 2 |
* | <header><content> | Fits when we shift content to align
* shift-> | <header>|<content> | at starting of PAGE 2.
*
* case 3. (large content filling whole page)
* | PAGE 1 | PAGE 2 | PAGE 3 |
* | <header>< content > | Can't fit. If we shift content to
* |trial-> <header>< content > | PAGE 2, header can't fit in free
* | shift-> <header><content> space, so we must use PAGE 3.
*
* The returned address can be then used as "base-address" (-b) in add-*
* commands (will be re-calculated and positioned by cbfs_add_entry_at).
* For stage targets, the address is also used to re-link stage before
* being added into CBFS.
*/
for (entry = cbfs_find_first_entry(image);
entry && cbfs_is_valid_entry(image, entry);
entry = cbfs_find_next_entry(image, entry)) {
uint32_t type = ntohl(entry->type);
if (type != CBFS_COMPONENT_NULL)
continue;
addr = cbfs_get_entry_addr(image, entry);
addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
image, entry));
if (addr_next - addr < need_len)
continue;
offset = align_up(addr + header_len, align);
if (is_in_same_page(offset, size, page_size) &&
is_in_range(addr, addr_next, header_len, offset, size)) {
DEBUG("cbfs_locate_entry: FIT (PAGE1).");
return offset;
}
addr2 = align_up(addr, page_size);
offset = align_up(addr2, align);
if (is_in_range(addr, addr_next, header_len, offset, size)) {
DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
return offset;
}
/* Assume page_size >= header_len so adding one page will
* definitely provide the space for header. */
assert(page_size >= header_len);
addr3 = addr2 + page_size;
offset = align_up(addr3, align);
if (is_in_range(addr, addr_next, header_len, offset, size)) {
DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
return offset;
}
}
return -1;
}