coreboot-kgpe-d16/src/lib/gpio.c

99 lines
2.5 KiB
C
Raw Normal View History

Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
Remove address from GPLv2 headers As per discussion with lawyers[tm], it's not a good idea to shorten the license header too much - not for legal reasons but because there are tools that look for them, and giving them a standard pattern simplifies things. However, we got confirmation that we don't have to update every file ever added to coreboot whenever the FSF gets a new lease, but can drop the address instead. util/kconfig is excluded because that's imported code that we may want to synchronize every now and then. $ find * -type f -exec sed -i "s:Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *MA[, ]*02110-1301[, ]*USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 59 Temple Place[-, ]*Suite 330, Boston, MA *02111-1307[, ]*USA:Foundation, Inc.:" {} + $ find * -type f -exec sed -i "s:Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.:Foundation, Inc.:" {} + $ find * -type f -a \! -name \*.patch \ -a \! -name \*_shipped \ -a \! -name LICENSE_GPL \ -a \! -name LGPL.txt \ -a \! -name COPYING \ -a \! -name DISCLAIMER \ -exec sed -i "/Foundation, Inc./ N;s:Foundation, Inc.* USA\.* *:Foundation, Inc. :;s:Foundation, Inc. $:Foundation, Inc.:" {} + Change-Id: Icc968a5a5f3a5df8d32b940f9cdb35350654bef9 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Reviewed-on: http://review.coreboot.org/9233 Tested-by: build bot (Jenkins) Reviewed-by: Vladimir Serbinenko <phcoder@gmail.com>
2015-03-26 15:17:45 +01:00
* Foundation, Inc.
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
*/
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
#include <base3.h>
#include <console/console.h>
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
#include <delay.h>
gpio: Extend common GPIO header, simplify function names We've had gpiolib.h which defines a few common GPIO access functions for a while, but it wasn't really complete. This patch adds the missing gpio_output() function, and also renames the unwieldy gpio_get_in_value() and gpio_set_out_value() to the much easier to handle gpio_get() and gpio_set(). The header is renamed to the simpler gpio.h while we're at it (there was never really anything "lib" about it, and it was presumably just chosen due to the IPQ806x include/ conflict problem that is now resolved). It also moves the definition of gpio_t into SoC-specific code, so that different implementations are free to encode their platform-specific GPIO parameters in those 4 bytes in the most convenient way (such as the rk3288 with a bitfield struct). Every SoC intending to use this common API should supply a <soc/gpio.h> that typedefs gpio_t to a type at most 4 bytes in length. Files accessing the API only need to include <gpio.h> which may pull in additional things (like a gpio_t creation macro) from <soc/gpio.h> on its own. For now the API is still only used on non-x86 SoCs. Whether it makes sense to expand it to x86 as well should be separately evaluated at a later point (by someone who understands those systems better). Also, Exynos retains its old, incompatible GPIO API even though it would be a prime candidate, because it's currently just not worth the effort. BUG=None TEST=Compiled on Daisy, Peach_Pit, Nyan_Blaze, Rush_Ryu, Storm and Veyron_Pinky. Change-Id: Ieee77373c2bd13d07ece26fa7f8b08be324842fe Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 9e04902ada56b929e3829f2c3b4aeb618682096e Original-Change-Id: I6c1e7d1e154d9b02288aabedb397e21e1aadfa15 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/220975 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9400 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
#include <gpio.h>
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
int gpio_base2_value(gpio_t gpio[], int num_gpio)
{
int i, result = 0;
for (i = 0; i < num_gpio; i++)
gpio_input(gpio[i]);
/* Wait until signals become stable */
udelay(10);
for (i = 0; i < num_gpio; i++)
result |= gpio_get(gpio[i]) << i;
return result;
}
int gpio_base3_value(gpio_t gpio[], int num_gpio)
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
{
/*
* GPIOs which are tied to stronger external pull up or pull down
* will stay there regardless of the internal pull up or pull
* down setting.
*
* GPIOs which are floating will go to whatever level they're
* internally pulled to.
*/
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
static const char tristate_char[] = {[0] = '0', [1] = '1', [Z] = 'Z'};
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
int temp;
int index;
int result = 0;
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
char value[num_gpio];
/* Enable internal pull up */
for (index = 0; index < num_gpio; ++index)
gpio_input_pullup(gpio[index]);
/* Wait until signals become stable */
udelay(10);
/* Get gpio values at internal pull up */
for (index = 0; index < num_gpio; ++index)
gpio: Extend common GPIO header, simplify function names We've had gpiolib.h which defines a few common GPIO access functions for a while, but it wasn't really complete. This patch adds the missing gpio_output() function, and also renames the unwieldy gpio_get_in_value() and gpio_set_out_value() to the much easier to handle gpio_get() and gpio_set(). The header is renamed to the simpler gpio.h while we're at it (there was never really anything "lib" about it, and it was presumably just chosen due to the IPQ806x include/ conflict problem that is now resolved). It also moves the definition of gpio_t into SoC-specific code, so that different implementations are free to encode their platform-specific GPIO parameters in those 4 bytes in the most convenient way (such as the rk3288 with a bitfield struct). Every SoC intending to use this common API should supply a <soc/gpio.h> that typedefs gpio_t to a type at most 4 bytes in length. Files accessing the API only need to include <gpio.h> which may pull in additional things (like a gpio_t creation macro) from <soc/gpio.h> on its own. For now the API is still only used on non-x86 SoCs. Whether it makes sense to expand it to x86 as well should be separately evaluated at a later point (by someone who understands those systems better). Also, Exynos retains its old, incompatible GPIO API even though it would be a prime candidate, because it's currently just not worth the effort. BUG=None TEST=Compiled on Daisy, Peach_Pit, Nyan_Blaze, Rush_Ryu, Storm and Veyron_Pinky. Change-Id: Ieee77373c2bd13d07ece26fa7f8b08be324842fe Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 9e04902ada56b929e3829f2c3b4aeb618682096e Original-Change-Id: I6c1e7d1e154d9b02288aabedb397e21e1aadfa15 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/220975 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9400 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
value[index] = gpio_get(gpio[index]);
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/* Enable internal pull down */
for (index = 0; index < num_gpio; ++index)
gpio_input_pulldown(gpio[index]);
/* Wait until signals become stable */
udelay(10);
/*
* Get gpio values at internal pull down.
* Compare with gpio pull up value and then
* determine a gpio final value/state:
* 0: pull down
* 1: pull up
* 2: floating
*/
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
printk(BIOS_DEBUG, "Reading tristate GPIOs: ");
for (index = num_gpio - 1; index >= 0; --index) {
gpio: Extend common GPIO header, simplify function names We've had gpiolib.h which defines a few common GPIO access functions for a while, but it wasn't really complete. This patch adds the missing gpio_output() function, and also renames the unwieldy gpio_get_in_value() and gpio_set_out_value() to the much easier to handle gpio_get() and gpio_set(). The header is renamed to the simpler gpio.h while we're at it (there was never really anything "lib" about it, and it was presumably just chosen due to the IPQ806x include/ conflict problem that is now resolved). It also moves the definition of gpio_t into SoC-specific code, so that different implementations are free to encode their platform-specific GPIO parameters in those 4 bytes in the most convenient way (such as the rk3288 with a bitfield struct). Every SoC intending to use this common API should supply a <soc/gpio.h> that typedefs gpio_t to a type at most 4 bytes in length. Files accessing the API only need to include <gpio.h> which may pull in additional things (like a gpio_t creation macro) from <soc/gpio.h> on its own. For now the API is still only used on non-x86 SoCs. Whether it makes sense to expand it to x86 as well should be separately evaluated at a later point (by someone who understands those systems better). Also, Exynos retains its old, incompatible GPIO API even though it would be a prime candidate, because it's currently just not worth the effort. BUG=None TEST=Compiled on Daisy, Peach_Pit, Nyan_Blaze, Rush_Ryu, Storm and Veyron_Pinky. Change-Id: Ieee77373c2bd13d07ece26fa7f8b08be324842fe Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 9e04902ada56b929e3829f2c3b4aeb618682096e Original-Change-Id: I6c1e7d1e154d9b02288aabedb397e21e1aadfa15 Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/220975 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9400 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
temp = gpio_get(gpio[index]);
gpio: Remove non-ternary tristate mode, make ternaries easier The function to read board IDs from tristate GPIOs currently supports two output modes: a normal base-3 integer, or a custom format where every two bits represent one tristate pin. Each board decides which representation to use on its own, which is inconsistent and provides another possible gotcha to trip over when reading unfamiliar code. The two-bits-per-pin format creates the additional problem that a complete list of IDs (such as some boards use to build board-ID tables) necessarily has "holes" in them (since 0b11 does not correspond to a possible pin state), which makes them extremely tricky to write, read and expand. It's also very unintuitive in my opinion, although it was intended to make it easier to read individual pin states from a hex representation. This patch switches all boards over to base-3 and removes the other format to improve consistency. The tristate reading function will just print the pin states as they are read to make it easier to debug them, and we add a new BASE3() macro that can generate ternary numbers from pin states. Also change the order of all static initializers of board ID pin lists to write the most significant bit first, hoping that this can help clear up confusion about the endianness of the pins. CQ-DEPEND=CL:219902 BUG=None TEST=Booted on a Nyan_Blaze (with board ID 1, unfortunately the only one I have). Compiled on Daisy, Peach_Pit, Nyan, Nyan_Big, Nyan_Blaze, Rush, Rush_Ryu, Storm, Veryon_Pinky and Falco for good measure. Change-Id: I3ce5a0829f260db7d7df77e6788c2c6d13901b8f Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: 2fa9545ac431c9af111ee4444d593ee4cf49554d Original-Change-Id: I6133cdaf01ed6590ae07e88d9e85a33dc013211a Original-Signed-off-by: Julius Werner <jwerner@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/219901 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/9401 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2014-09-25 00:40:49 +02:00
temp |= ((value[index] ^ temp) << 1);
printk(BIOS_DEBUG, "%c ", tristate_char[temp]);
result = (result * 3) + temp;
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
}
printk(BIOS_DEBUG, "= %d\n", result);
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
/* Disable pull up / pull down to conserve power */
for (index = 0; index < num_gpio; ++index)
gpio_input(gpio[index]);
return result;
Generalize revision number calculation function Some platforms use tertiary interpretation of GPIO input state to increase number of distinct values represented by a limited number of GPIOs. The three states are - external pull down (interpreted as 0) - external pull up (1) - not connected (2) This has been required by Nvidia devices so far, but Exynos and Ipq8086 platforms need this too. This patch moves the function reading the tertiary state into the library and exposes the necessary GPIO API functions in a new include file. The functions are still supposed to be provided by platform specific modules. The function interpreting the GPIO states has been modified to allow to interpret the state either as a true tertiary number or as a set two bit fields. Since linker garbage collection is not happening when building x86 targets, a new configuration option is being added to include the new module only when needed. BUG=chrome-os-partner:30489 TEST=verified that nyan_big still reports proper revision ID. Change-Id: Ib55122c359629b58288c1022da83e6c63dc2264d Original-Change-Id: I243c9f43c82bd4a41de2154bbdbd07df0a241046 Original-Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/209673 Original-Reviewed-by: Aaron Durbin <adurbin@chromium.org> (cherry picked from commit c79ef1c545d073eaad69e6c8c629f9656b8c2f3e) Signed-off-by: Marc Jones <marc.jones@se-eng.com> Reviewed-on: http://review.coreboot.org/8717 Tested-by: build bot (Jenkins) Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2014-07-23 18:40:02 +02:00
}