coreboot-kgpe-d16/util/intelvbttool/intelvbttool.c

1242 lines
28 KiB
C
Raw Normal View History

/*
* Copyright (C) 2014 Vladimir Serbinenko
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdio.h>
#include <sys/mman.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <getopt.h>
#include <errno.h>
#include <stdarg.h>
#include <commonlib/helpers.h>
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
#define DEF_ALLOC 1024
typedef struct {
u16 signature;
u8 size;
u8 entrypoint[4];
u8 checksum;
u8 reserved[16];
u16 pcir_offset;
u16 vbt_offset;
} __attribute__ ((packed)) optionrom_header_t;
typedef struct {
u32 signature;
u16 vendor;
u16 device;
u16 reserved1;
u16 length;
u8 revision;
u8 classcode[3];
u16 imagelength;
u16 coderevision;
u8 codetype;
u8 indicator;
u16 reserved2;
} __attribute__((packed)) optionrom_pcir_t;
struct vbt_header {
u8 signature[20];
u16 version;
u16 header_size;
u16 vbt_size;
u8 vbt_checksum;
u8 reserved0;
u32 bdb_offset;
u32 aim_offset[4];
} __attribute__ ((packed));
struct bdb_header {
u8 signature[16];
u16 version;
u16 header_size;
u16 bdb_size;
};
struct vbios_data {
u8 type; /* 0 == desktop, 1 == mobile */
u8 relstage;
u8 chipset;
u8 lvds_present:1;
u8 tv_present:1;
u8 rsvd2:6; /* finish byte */
u8 rsvd3[4];
u8 signon[155];
u8 copyright[61];
u16 code_segment;
u8 dos_boot_mode;
u8 bandwidth_percent;
u8 rsvd4; /* popup memory size */
u8 resize_pci_bios;
u8 rsvd5; /* is crt already on ddc2 */
} __attribute__ ((packed));
struct bdb_general_features {
/* bits 1 */
u8 panel_fitting:2;
u8 flexaim:1;
u8 msg_enable:1;
u8 clear_screen:3;
u8 color_flip:1;
/* bits 2 */
u8 download_ext_vbt:1;
u8 enable_ssc:1;
u8 ssc_freq:1;
u8 enable_lfp_on_override:1;
u8 disable_ssc_ddt:1;
u8 rsvd7:1;
u8 display_clock_mode:1;
u8 rsvd8:1; /* finish byte */
/* bits 3 */
u8 disable_smooth_vision:1;
u8 single_dvi:1;
u8 rsvd9:1;
u8 fdi_rx_polarity_inverted:1;
u8 rsvd10:4; /* finish byte */
/* bits 4 */
u8 legacy_monitor_detect;
/* bits 5 */
u8 int_crt_support:1;
u8 int_tv_support:1;
u8 int_efp_support:1;
u8 dp_ssc_enb:1; /* PCH attached eDP supports SSC */
u8 dp_ssc_freq:1; /* SSC freq for PCH attached eDP */
u8 rsvd11:3; /* finish byte */
} __attribute__ ((packed));
struct common_child_dev_config {
u16 handle;
u16 device_type;
u8 not_common1[12];
u8 dvo_port;
u8 i2c_pin;
u8 slave_addr;
u8 ddc_pin;
u16 edid_ptr;
u8 not_common3[6];
u8 dvo_wiring;
u8 not_common4[4];
} __attribute__ ((packed));
struct bdb_general_definitions {
/* DDC GPIO */
u8 crt_ddc_gmbus_pin;
/* DPMS bits */
u8 dpms_acpi:1;
u8 skip_boot_crt_detect:1;
u8 dpms_aim:1;
u8 rsvd1:5; /* finish byte */
/* boot device bits */
u8 boot_display[2];
u8 child_dev_size;
/*
* Device info:
* If TV is present, it'll be at devices[0].
* LVDS will be next, either devices[0] or [1], if present.
* On some platforms the number of device is 6. But could be as few as
* 4 if both TV and LVDS are missing.
* And the device num is related with the size of general definition
* block. It is obtained by using the following formula:
* number = (block_size - sizeof(bdb_general_definitions))/
* sizeof(child_device_config);
*/
struct common_child_dev_config devices[0];
} __attribute__ ((packed));
struct bdb_driver_features {
u8 boot_dev_algorithm:1;
u8 block_display_switch:1;
u8 allow_display_switch:1;
u8 hotplug_dvo:1;
u8 dual_view_zoom:1;
u8 int15h_hook:1;
u8 sprite_in_clone:1;
u8 primary_lfp_id:1;
u16 boot_mode_x;
u16 boot_mode_y;
u8 boot_mode_bpp;
u8 boot_mode_refresh;
u16 enable_lfp_primary:1;
u16 selective_mode_pruning:1;
u16 dual_frequency:1;
u16 render_clock_freq:1; /* 0: high freq; 1: low freq */
u16 nt_clone_support:1;
u16 power_scheme_ui:1; /* 0: CUI; 1: 3rd party */
u16 sprite_display_assign:1; /* 0: secondary; 1: primary */
u16 cui_aspect_scaling:1;
u16 preserve_aspect_ratio:1;
u16 sdvo_device_power_down:1;
u16 crt_hotplug:1;
u16 lvds_config:2;
u16 tv_hotplug:1;
u16 hdmi_config:2;
u8 static_display:1;
u8 reserved2:7;
u16 legacy_crt_max_x;
u16 legacy_crt_max_y;
u8 legacy_crt_max_refresh;
u8 hdmi_termination;
u8 custom_vbt_version;
} __attribute__ ((packed));
struct bdb_lvds_options {
u8 panel_type;
u8 rsvd1;
/* LVDS capabilities, stored in a dword */
u8 pfit_mode:2;
u8 pfit_text_mode_enhanced:1;
u8 pfit_gfx_mode_enhanced:1;
u8 pfit_ratio_auto:1;
u8 pixel_dither:1;
u8 lvds_edid:1;
u8 rsvd2:1;
u8 rsvd4;
} __attribute__ ((packed));
struct bdb_sdvo_lvds_options {
u8 panel_backlight;
u8 h40_set_panel_type;
u8 panel_type;
u8 ssc_clk_freq;
u16 als_low_trip;
u16 als_high_trip;
u8 sclalarcoeff_tab_row_num;
u8 sclalarcoeff_tab_row_size;
u8 coefficient[8];
u8 panel_misc_bits_1;
u8 panel_misc_bits_2;
u8 panel_misc_bits_3;
u8 panel_misc_bits_4;
} __attribute__ ((packed));
static const size_t ignore_checksum = 1;
#define BDB_GENERAL_FEATURES 1
#define BDB_GENERAL_DEFINITIONS 2
#define BDB_DRIVER_FEATURES 12
#define BDB_SDVO_LVDS_OPTIONS 22
#define BDB_SDVO_PANEL_DTDS 23
#define BDB_LVDS_OPTIONS 40
#define BDB_LVDS_LFP_DATA_PTRS 41
#define BDB_LVDS_LFP_DATA 42
#define BDB_SKIP 254
/* print helpers */
static void print(const char *format, ...)
{
va_list args;
fprintf(stdout, "VBTTOOL: ");
va_start(args, format);
vfprintf(stdout, format, args);
va_end(args);
}
static void printt(const char *format, ...)
{
va_list args;
fprintf(stdout, "\t");
va_start(args, format);
vfprintf(stdout, format, args);
va_end(args);
}
static void printwarn(const char *format, ...)
{
va_list args;
fprintf(stderr, "VBTTOOL: WARN: ");
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
static void printerr(const char *format, ...)
{
va_list args;
fprintf(stderr, "VBTTOOL: ERR: ");
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
struct fileobject {
unsigned char *data;
size_t size;
};
/* file object helpers */
/*
* Alloc a file object of given size.
* Returns NULL on error.
*/
static struct fileobject *malloc_fo(const size_t size)
{
struct fileobject *fo;
if (!size)
return NULL;
fo = malloc(sizeof(*fo));
if (!fo)
return NULL;
fo->data = malloc(size);
if (!fo->data) {
free(fo);
return NULL;
}
fo->size = size;
return fo;
}
/* Free a fileobject structure */
static void free_fo(struct fileobject *fo)
{
if (fo) {
free(fo->data);
free(fo);
}
}
/* Resize file object and keep memory content */
static struct fileobject *remalloc_fo(struct fileobject *old,
const size_t size)
{
struct fileobject *fo = old;
if (!old || !size)
return NULL;
fo->data = realloc(fo->data, size);
if (!fo->data)
return NULL;
if (fo->size < size)
memset(&fo->data[fo->size], 0, size - fo->size);
fo->size = size;
return fo;
}
/*
* Creates a new subregion copy of fileobject.
* Returns NULL if offset is greater than fileobject size.
* Returns NULL on error.
*/
static struct fileobject *malloc_fo_sub(const struct fileobject *old,
const size_t off)
{
struct fileobject *fo;
if (!old || off > old->size)
return NULL;
fo = malloc_fo(old->size - off);
if (!fo)
return NULL;
memcpy(fo->data, old->data + off, fo->size);
return fo;
}
/* file helpers */
/* Create fileobject from file */
static struct fileobject *read_file(const char *filename)
{
FILE *fd = fopen(filename, "rb");
off_t read_size = DEF_ALLOC;
if (!fd) {
printerr("%s open failed: %s\n", filename, strerror(errno));
return NULL;
}
struct fileobject *fo = malloc_fo(read_size);
if (!fo) {
printerr("malloc failed\n");
fclose(fd);
return NULL;
}
off_t total_bytes_read = 0, bytes_read;
while ((bytes_read = fread(fo->data + total_bytes_read, 1, read_size, fd)) > 0) {
total_bytes_read += bytes_read;
struct fileobject *newfo = remalloc_fo(fo, fo->size + read_size);
if (!newfo) {
fclose(fd);
free_fo(fo);
return NULL;
}
fo = newfo;
}
if (!total_bytes_read) {
fclose(fd);
free_fo(fo);
return NULL;
}
if (fclose(fd)) {
printerr("%s close failed: %s\n", filename, strerror(errno));
free_fo(fo);
return NULL;
}
fo->size = total_bytes_read;
return fo;
}
/* Create fileobject from physical memory at given address of size 64 KiB */
static struct fileobject *read_physmem(size_t addr)
{
const int fd = open("/dev/mem", O_RDONLY);
const size_t size = 64 * 2 * KiB;
if (fd < 0) {
printerr("/dev/mem open failed: %s\n", strerror(errno));
return NULL;
}
const void *data = mmap(0, size, PROT_READ, MAP_SHARED, fd, addr);
if (data == MAP_FAILED) {
close(fd);
printerr("mmap failed: %s\n", strerror(errno));
return NULL;
}
struct fileobject *fo = malloc_fo(size);
if (!fo) {
printerr("malloc failed\n");
munmap((void *)data, size);
close(fd);
return NULL;
}
memcpy(fo->data, data, size);
munmap((void *)data, size);
if (close(fd)) {
printerr("/dev/mem close failed: %s\n", strerror(errno));
free_fo(fo);
return NULL;
}
return fo;
}
/* Write fileobject contents to file */
static int write_file(const char *filename, const struct fileobject *fo)
{
FILE *fd_out = fopen(filename, "wb");
if (!fd_out) {
printerr("%s open failed: %s\n", filename, strerror(errno));
return 1;
}
if (fwrite(fo->data, 1, fo->size, fd_out) != fo->size) {
fclose(fd_out);
return 1;
}
return fclose(fd_out);
}
/* dump VBT contents in human readable form */
static void dump_vbt(const struct fileobject *fo)
{
if (fo->size < sizeof(struct vbt_header))
return;
const struct vbt_header *head = (const struct vbt_header *)fo->data;
const struct bdb_header *bdb;
const u8 *ptr;
int i;
int is_first_skip = 1;
printt("signature: <%20.20s>\n", head->signature);
printt("version: %d.%02d\n", head->version / 100,
head->version % 100);
if (head->header_size != sizeof(struct vbt_header))
printt("header size: 0x%x\n", head->header_size);
printt("VBT size: 0x%x\n", head->vbt_size);
printt("VBT checksum: 0x%x\n", head->vbt_checksum);
if (head->reserved0)
printt("header reserved0: 0x%x\n", head->reserved0);
if (head->bdb_offset != sizeof(struct vbt_header))
printt("BDB offset: 0x%x\n", head->bdb_offset);
for (i = 0; i < 4; i++)
if (head->aim_offset[i])
printt("AIM[%d] offset: 0x%x\n", i,
head->aim_offset[i]);
if (head->bdb_offset + sizeof(*bdb) > fo->size)
return;
bdb = (const void *) (fo->data + head->bdb_offset);
if (memcmp("BIOS_DATA_BLOCK ", bdb->signature, 16) != 0) {
printerr("invalid BDB signature:%s\n",
bdb->signature);
exit(1);
}
printt("BDB version: %d.%02d\n", bdb->version / 100,
bdb->version % 100);
if (bdb->header_size != sizeof(struct bdb_header))
printt("BDB header size: 0x%x\n", bdb->header_size);
if (bdb->bdb_size != head->vbt_size - head->bdb_offset)
printt("BDB size: 0x%x\n", bdb->bdb_size);
for (ptr = (const u8 *) bdb + bdb->header_size;
ptr < (const u8 *) bdb + bdb->bdb_size;) {
u16 secsz = (ptr[1] | (ptr[2] << 8));
u8 sectype = ptr[0];
const u8 *section = ptr + 3;
printt("section type %d, size 0x%x\n", sectype, secsz);
ptr += secsz + 3;
switch (sectype) {
case BDB_GENERAL_FEATURES:{
const struct bdb_general_features *sec =
(const void *) section;
printt("General features:\n");
if (sec->panel_fitting)
printt("\tpanel_fitting = 0x%x\n",
sec->panel_fitting);
if (sec->flexaim)
printt("\tflexaim = 0x%x\n",
sec->flexaim);
if (sec->msg_enable)
printt("\tmsg_enable = 0x%x\n",
sec->msg_enable);
if (sec->clear_screen)
printt("\tclear_screen = 0x%x\n",
sec->clear_screen);
if (sec->color_flip)
printt("\tcolor_flip = 0x%x\n",
sec->color_flip);
if (sec->download_ext_vbt)
printt
("\tdownload_ext_vbt = 0x%x\n",
sec->download_ext_vbt);
printt("\t*enable_ssc = 0x%x\n",
sec->enable_ssc);
printt("\t*ssc_freq = 0x%x\n",
sec->ssc_freq);
if (sec->enable_lfp_on_override)
printt
("\tenable_lfp_on_override = 0x%x\n",
sec->enable_lfp_on_override);
if (sec->disable_ssc_ddt)
printt
("\tdisable_ssc_ddt = 0x%x\n",
sec->disable_ssc_ddt);
if (sec->rsvd7)
printt("\trsvd7 = 0x%x\n",
sec->rsvd7);
printt("\t*display_clock_mode = 0x%x\n",
sec->display_clock_mode);
if (sec->rsvd8)
printt("\trsvd8 = 0x%x\n",
sec->rsvd8);
printt("\tdisable_smooth_vision = 0x%x\n",
sec->disable_smooth_vision);
if (sec->single_dvi)
printt("\tsingle_dvi = 0x%x\n",
sec->single_dvi);
if (sec->rsvd9)
printt("\trsvd9 = 0x%x\n",
sec->rsvd9);
printt
("\t*fdi_rx_polarity_inverted = 0x%x\n",
sec->fdi_rx_polarity_inverted);
if (sec->rsvd10)
printt("\trsvd10 = 0x%x\n",
sec->rsvd10);
if (sec->legacy_monitor_detect)
printt
("\tlegacy_monitor_detect = 0x%x\n",
sec->legacy_monitor_detect);
printt("\t*int_crt_support = 0x%x\n",
sec->int_crt_support);
printt("\t*int_tv_support = 0x%x\n",
sec->int_tv_support);
if (sec->int_efp_support)
printt
("\tint_efp_support = 0x%x\n",
sec->int_efp_support);
if (sec->dp_ssc_enb)
printt("\tdp_ssc_enb = 0x%x\n",
sec->dp_ssc_enb);
if (sec->dp_ssc_freq)
printt("\tdp_ssc_freq = 0x%x\n",
sec->dp_ssc_freq);
if (sec->rsvd11)
printt("\trsvd11 = 0x%x\n",
sec->rsvd11);
break;
}
case BDB_DRIVER_FEATURES:{
const struct bdb_driver_features *sec =
(const void *) section;
printt("\t*LVDS config: %d\n",
sec->lvds_config);
printt("\t*Dual frequency: %d\n",
sec->dual_frequency);
break;
}
case BDB_SDVO_LVDS_OPTIONS:{
const struct bdb_sdvo_lvds_options *sec =
(const void *) section;
printt("\t*Panel type: %d\n",
sec->panel_type);
break;
}
case BDB_GENERAL_DEFINITIONS:{
const struct bdb_general_definitions *sec =
(const void *) section;
int ndev;
printt("\t*CRT DDC GMBUS pin: %d\n",
sec->crt_ddc_gmbus_pin);
printt("\tDPMS ACPI: %d\n",
sec->dpms_acpi);
printt("\tSkip boot CRT detect: %d\n",
sec->skip_boot_crt_detect);
printt("\tDPMS aim: %d\n", sec->dpms_aim);
if (sec->rsvd1)
printt("\trsvd1: 0x%x\n",
sec->rsvd1);
printt("\tboot_display: { %x, %x }\n",
sec->boot_display[0],
sec->boot_display[1]);
if (sec->child_dev_size !=
sizeof(struct common_child_dev_config))
printt("\tchild_dev_size: %d\n",
sec->child_dev_size);
ndev = (secsz - sizeof(*sec)) /
sizeof(struct common_child_dev_config);
printt("\t%d devices\n", ndev);
for (i = 0; i < ndev; i++) {
printt("\t*device type: %x ",
sec->devices[i].
device_type);
#define DEVICE_TYPE_INT_LFP 0x1022
#define DEVICE_TYPE_INT_TV 0x1009
#define DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR 0x6052
switch (sec->devices[i].device_type) {
case DEVICE_TYPE_INT_LFP:
printt("(flat panel)\n");
break;
case DEVICE_TYPE_INT_TV:
printt("(TV)\n");
break;
case DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR:
printt
("(DVI)\n");
break;
case 0:
printt("(Empty)\n");
break;
default:
printt("(Unknown)\n");
break;
}
if (!sec->devices[i].device_type)
continue;
printt("\t *dvo_port: %x\n",
sec->devices[i].dvo_port);
printt("\t *i2c_pin: %x\n",
sec->devices[i].i2c_pin);
printt("\t *slave_addr: %x\n",
sec->devices[i].slave_addr);
printt("\t *ddc_pin: %x\n",
sec->devices[i].ddc_pin);
printt("\t *dvo_wiring: %x\n",
sec->devices[i].dvo_wiring);
printt("\t edid_ptr: %x\n",
sec->devices[i].edid_ptr);
}
break;
}
case BDB_SKIP:{
const struct vbios_data *sec =
(const void *) section;
if (!is_first_skip)
break;
is_first_skip = 0;
printt("\ttype: %x\n", sec->type);
printt("\trelstage: %x\n", sec->relstage);
printt("\tchipset: %x\n", sec->chipset);
printt(sec->lvds_present ? "\tLVDS\n"
: "\tNo LVDS\n");
printt(sec->tv_present ? "\tTV\n"
: "\tNo TV\n");
if (sec->rsvd2)
printt("\trsvd2: 0x%x\n",
sec->rsvd2);
for (i = 0; i < 4; i++)
if (sec->rsvd3[i])
printt
("\trsvd3[%d]: 0x%x\n",
i, sec->rsvd3[i]);
printt("\tSignon: %.155s\n", sec->signon);
printt("\tCopyright: %.155s\n",
sec->copyright);
printt("\tCode segment: %x\n",
sec->code_segment);
printt("\tDOS Boot mode: %x\n",
sec->dos_boot_mode);
printt("\tBandwidth percent: %x\n",
sec->bandwidth_percent);
if (sec->rsvd4)
printt("\trsvd4: 0x%x\n",
sec->rsvd4);
printt("\tBandwidth percent: %x\n",
sec->resize_pci_bios);
if (sec->rsvd5)
printt("\trsvd5: 0x%x\n",
sec->rsvd5);
break;
}
}
}
}
/* Returns a new fileobject containing a valid VBT */
static void parse_vbt(const struct fileobject *fo,
struct fileobject **vbt)
{
*vbt = NULL;
if (fo->size < sizeof(struct vbt_header)) {
printerr("image is to small\n");
return;
}
const struct vbt_header *head =
(const struct vbt_header *)fo->data;
if (memcmp(head->signature, "$VBT", 4) != 0) {
printerr("invalid VBT signature\n");
return;
}
if (!head->vbt_size || head->vbt_size > fo->size) {
printerr("invalid VBT size\n");
return;
}
if (!head->bdb_offset ||
head->bdb_offset > fo->size - sizeof(struct bdb_header)) {
printerr("invalid BDB offset\n");
return;
}
if (!head->header_size || head->header_size > fo->size) {
printerr("invalid header size\n");
return;
}
const struct bdb_header *const bdb_head =
(const struct bdb_header *)((const u8 *)head + head->bdb_offset);
if (memcmp(bdb_head->signature, "BIOS_DATA_BLOCK ", 16) != 0) {
printerr("invalid BDB signature\n");
return;
}
if (!bdb_head->header_size || bdb_head->header_size > fo->size) {
printerr("invalid BDB header size\n");
return;
}
/* Duplicate fo as caller is owner and remalloc frees the object */
struct fileobject *dupfo = malloc_fo_sub(fo, 0);
if (!dupfo) {
printerr("malloc failed\n");
return;
}
struct fileobject *newfo = remalloc_fo(dupfo, head->vbt_size);
if (!newfo) {
printerr("remalloc failed\n");
free_fo(dupfo);
return;
}
*vbt = newfo;
}
/* Option ROM checksum */
static u8 checksum_vbios(const optionrom_header_t *oh)
{
const u8 *ptr = (const u8 *)oh;
size_t i;
u8 cksum = 0;
for (i = 0; i < ((MIN(oh->size, 128)) * 512); i++)
cksum += ptr[i];
return cksum;
}
/* Verify Option ROM contents */
static int is_valid_vbios(const struct fileobject *fo)
{
if (fo->size > 64 * 2 * KiB) {
printerr("VBIOS is to big\n");
return 0;
}
if (fo->size < sizeof(optionrom_header_t)) {
printerr("VBIOS is to small\n");
return 0;
}
const optionrom_header_t *oh = (const optionrom_header_t *)fo->data;
if (oh->signature != 0xaa55) {
printerr("bad oprom signature: 0x%x\n", oh->signature);
return 0;
}
if (oh->size == 0 || oh->size > 0x80 || oh->size * 512 > fo->size) {
printerr("bad oprom size: 0x%x\n", oh->size);
return 0;
}
const u8 cksum = checksum_vbios(oh);
if (cksum) {
if (!ignore_checksum) {
printerr("bad oprom checksum: 0x%x\n", cksum);
return 0;
}
printwarn("bad oprom checksum: 0x%x\n", cksum);
}
if (oh->pcir_offset + sizeof(optionrom_pcir_t) > fo->size) {
printerr("bad pcir offset: 0x%x\n", oh->pcir_offset);
return 0;
}
if (oh->pcir_offset) {
const optionrom_pcir_t *pcir;
pcir = (const optionrom_pcir_t *)
((const u8 *)oh + oh->pcir_offset);
if (pcir->signature != 0x52494350) {
printerr("Invalid PCIR signature\n");
return 0;
}
if (pcir->vendor != 0x8086) {
printerr("Not an Intel VBIOS\n");
return 0;
}
if (pcir->classcode[0] != 0 || pcir->classcode[1] != 0 ||
pcir->classcode[2] != 3) {
printerr("Not a VGA Option Rom\n");
return 0;
}
} else {
printwarn("no PCIR header found\n");
}
return 1;
}
/*
* Parse Option ROM and return a valid VBT fileobject.
* Caller has to make sure that it is a valid VBIOS.
* Return a NULL fileobject on error.
*/
static void parse_vbios(const struct fileobject *fo,
struct fileobject **vbt)
{
const optionrom_header_t *oh = (const optionrom_header_t *)fo->data;
size_t i;
*vbt = NULL;
if (!oh->vbt_offset) {
printerr("no VBT found\n");
return;
}
if (oh->vbt_offset > (fo->size - sizeof(struct vbt_header))) {
printerr("invalid VBT offset\n");
return;
}
struct fileobject *fo_vbt = malloc_fo_sub(fo, oh->vbt_offset);
if (fo_vbt) {
parse_vbt(fo_vbt, vbt);
free_fo(fo_vbt);
if (*vbt)
return;
}
printwarn("VBT wasn't found at specified offset of %04x\n",
oh->vbt_offset);
for (i = sizeof(optionrom_header_t);
i <= fo->size - sizeof(struct vbt_header); i++) {
struct fileobject *fo_vbt = malloc_fo_sub(fo, i);
if (!fo_vbt)
break;
parse_vbt(fo_vbt, vbt);
free_fo(fo_vbt);
if (*vbt)
return;
}
}
/* Short VBT summary in human readable form */
static void print_vbt(const struct fileobject *fo)
{
const struct bdb_header *bdb;
if (fo->size < sizeof(struct vbt_header))
return;
const struct vbt_header *head = (const struct vbt_header *)fo->data;
print("Found VBT:\n");
printt("signature: <%20.20s>\n", head->signature);
printt("version: %d.%02d\n", head->version / 100, head->version % 100);
if (head->header_size != sizeof(struct vbt_header))
printt("header size: 0x%x\n", head->header_size);
printt("VBT size: 0x%x\n", head->vbt_size);
printt("VBT checksum: 0x%x\n", head->vbt_checksum);
if (head->bdb_offset > (fo->size - sizeof(struct bdb_header))) {
printerr("invalid BDB offset\n");
return;
}
bdb = (const struct bdb_header *)
((const char *)head + head->bdb_offset);
if (memcmp("BIOS_DATA_BLOCK ", bdb->signature, 16) != 0) {
printerr("invalid BDB signature:%s\n", bdb->signature);
return;
}
printt("BDB version: %u.%02u\n", bdb->version / 100,
bdb->version % 100);
}
static void print_usage(const char *argv0, struct option *long_options)
{
size_t i = 0;
printf("\nUsage:\n");
printf("%s --<SOURCECMD> [filename] --<DESTCMD> [filename]\n\n", argv0);
printf("SOURCECMD set the VBT source. Supported:\n");
printf(" %-10s: Legacy BIOS area at phys. memory 0xc0000\n",
"inlegacy");
printf(" %-10s: Read raw Intel VBT file\n", "invbt");
printf(" %-10s: Read VBT from Intel Option ROM file\n\n", "inoprom");
printf("DESTCMD set the VBT destination. Supported:\n");
printf(" %-10s: Print VBT in human readable form\n", "outdump");
printf(" %-10s: Write raw Intel VBT file\n", "outvbt");
printf(" %-10s: Patch existing Intel Option ROM\n\n", "patchoprom");
printf("Supported arguments:\n");
while (long_options[i].name) {
printf("\t-%c --%s %s\n", long_options[i].val,
long_options[i].name, long_options[i].has_arg ?
"<path>" : "");
i++;
};
}
/* Fix VBIOS header and PCIR */
static int fix_vbios_header(struct fileobject *fo)
{
if (!fo || fo->size < sizeof(optionrom_header_t))
return 1;
optionrom_header_t *oh = (optionrom_header_t *)fo->data;
/* Fix size alignment */
if (fo->size % 512) {
print("Aligning size to 512\n");
fo = remalloc_fo(fo, (fo->size + 511) / 512 * 512);
if (!fo)
return 1;
oh = (optionrom_header_t *)fo->data;
}
/* Fix size field */
oh->size = fo->size / 512;
/* Fix checksum field */
oh->checksum = -(checksum_vbios(oh) - oh->checksum);
return 0;
}
/* Return the VBT structure size in bytes */
static size_t vbt_size(const struct fileobject *fo)
{
if (!fo || fo->size < sizeof(struct vbt_header))
return 0;
const struct vbt_header *head = (const struct vbt_header *)fo->data;
return head->vbt_size;
}
/*
* Patch an Intel Option ROM with new VBT.
* Caller has to make sure that VBIOS and VBT are valid.
* Return 1 on error.
*/
static int patch_vbios(struct fileobject *fo,
const struct fileobject *fo_vbt)
{
optionrom_header_t *oh = (optionrom_header_t *)fo->data;
struct vbt_header *head;
struct fileobject *old_vbt = NULL;
parse_vbios(fo, &old_vbt);
if (old_vbt) {
if (oh->vbt_offset + vbt_size(old_vbt) == fo->size) {
/* Located at the end of file - reduce file size */
if (fo->size < vbt_size(old_vbt)) {
free_fo(old_vbt);
return 1;
}
fo = remalloc_fo(fo, fo->size - vbt_size(old_vbt));
if (!fo) {
printerr("Failed to allocate memory\n");
free_fo(old_vbt);
return 1;
}
oh = (optionrom_header_t *)fo->data;
oh->vbt_offset = 0;
} else if (vbt_size(old_vbt) < vbt_size(fo_vbt)) {
/* In the middle of the file - Remove old VBT */
memset(fo->data + oh->vbt_offset, 0xff,
vbt_size(old_vbt));
oh->vbt_offset = 0;
} else {
/* New VBT overwrites existing one - Clear memory */
memset(fo->data + oh->vbt_offset, 0xff,
vbt_size(old_vbt));
}
free_fo(old_vbt);
}
if (!oh->vbt_offset) {
print("increasing VBIOS to append VBT\n");
if ((fo->size + vbt_size(fo_vbt)) >= 2 * 64 * KiB) {
printerr("VBT won't fit\n");
return 1;
}
oh->vbt_offset = fo->size;
fo = remalloc_fo(fo, fo->size + vbt_size(fo_vbt));
if (!fo) {
printerr("Failed to allocate memory\n");
return 1;
}
oh = (optionrom_header_t *)fo->data;
}
head = (struct vbt_header *)((u8 *)oh + oh->vbt_offset);
memcpy(head, fo_vbt->data, vbt_size(fo_vbt));
return 0;
}
int main(int argc, char **argv)
{
int opt, ret, option_index = 0;
size_t has_input = 0, has_output = 0;
size_t dump = 0, in_legacy = 0;
char *in_vbt = NULL, *in_oprom = NULL;
char *out_vbt = NULL, *patch_oprom = NULL;
static struct option long_options[] = {
{"help", 0, 0, 'h'},
{"outdump", 0, 0, 'd'},
{"inlegacy", 0, 0, 'l'},
{"invbt", required_argument, 0, 'f'},
{"inoprom", required_argument, 0, 'o'},
{"outvbt", required_argument, 0, 'v'},
{"patchoprom", required_argument, 0, 'p'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(argc, argv, "hdlf:o:v:p:i",
long_options, &option_index)) != EOF) {
switch (opt) {
case 'd':
dump = 1;
has_output = 1;
break;
case 'l':
in_legacy = 1;
has_input = 1;
break;
case 'f':
in_vbt = strdup(optarg);
has_input = 1;
break;
case 'o':
in_oprom = strdup(optarg);
has_input = 1;
break;
case 'v':
out_vbt = strdup(optarg);
has_output = 1;
break;
case 'p':
patch_oprom = strdup(optarg);
has_output = 1;
break;
case '?':
case 'h':
print_usage(argv[0], long_options);
exit(0);
break;
}
}
if (!has_input)
printerr("No input specified !\n");
if (!has_output)
printerr("No output specified !\n");
if (argc < 2 || argc > 6 || !has_input || !has_output) {
print_usage(argv[0], long_options);
return 1;
}
struct fileobject *fo;
if (in_legacy)
fo = read_physmem(0xc0000);
else if (in_vbt)
fo = read_file(in_vbt);
else
fo = read_file(in_oprom);
if (!fo) {
printerr("Failed to read input file\n");
return 1;
}
struct fileobject *vbt = NULL;
if (in_legacy || in_oprom) {
if (!is_valid_vbios(fo)) {
printerr("Invalid input file\n");
free_fo(fo);
return 1;
}
parse_vbios(fo, &vbt);
} else
parse_vbt(fo, &vbt);
free_fo(fo);
if (!vbt) {
printerr("Failed to find VBT.\n");
return 1;
}
if (!dump)
print_vbt(vbt);
ret = 0;
if (dump) {
dump_vbt(vbt);
} else if (out_vbt) {
if (write_file(out_vbt, vbt)) {
printerr("Failed to write VBT\n");
ret = 1;
} else {
print("VBT written to %s\n", out_vbt);
}
} else if (patch_oprom) {
fo = read_file(patch_oprom);
if (!fo) {
printerr("Failed to read input file\n");
ret = 1;
}
if (ret != 1 && !is_valid_vbios(fo)) {
printerr("Invalid input file\n");
ret = 1;
}
if (ret != 1 && patch_vbios(fo, vbt)) {
printerr("Failed to patch VBIOS\n");
ret = 1;
}
if (ret != 1 && fix_vbios_header(fo)) {
printerr("Failed to fix VBIOS header\n");
ret = 1;
}
if (ret != 1 && write_file(patch_oprom, fo)) {
printerr("Failed to write VBIOS\n");
ret = 1;
}
free_fo(fo);
if (ret != 1)
print("VBIOS %s successfully patched\n", patch_oprom);
}
/* cleanup */
if (patch_oprom)
free(patch_oprom);
if (out_vbt)
free(out_vbt);
if (in_vbt)
free(in_vbt);
if (in_oprom)
free(in_oprom);
free_fo(vbt);
return ret;
}