coreboot-kgpe-d16/toolchain.inc

125 lines
4 KiB
PHP
Raw Normal View History

Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
##
## This file is part of the coreboot project.
##
## Copyright (C) 2014 Google Inc
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# ccache integration
ifeq ($(CONFIG_CCACHE),y)
CCACHE:=$(word 1,$(wildcard $(addsuffix /ccache,$(subst :, ,$(PATH)))))
ifeq ($(CCACHE),)
$(error ccache selected, but not found in PATH)
endif
export CCACHE_COMPILERCHECK=content
export CCACHE_BASEDIR=$(top)
$(foreach arch,$(ARCH_SUPPORTED), \
$(eval CC_$(arch):=$(CCACHE) $(CC_$(arch))))
HOSTCC:=$(CCACHE) $(HOSTCC)
HOSTCXX:=$(CCACHE) $(HOSTCXX)
ROMCC=$(CCACHE) $(ROMCC_BIN)
endif
# scan-build integration
ifneq ($(CCC_ANALYZER_OUTPUT_FORMAT),)
ifeq ($(CCC_ANALYZER_ANALYSIS),)
export CCC_ANALYZER_ANALYSIS := -analyzer-opt-analyze-headers
endif
$(foreach arch,$(ARCH_SUPPORTED), \
$(eval CC_$(arch):=CCC_CC="$(CC_$(arch))" $(CC) ))
HOSTCC:=CCC_CC="$(HOSTCC)" $(CC)
HOSTCXX:=CCC_CXX="$(HOSTCXX)" $(CXX)
ROMCC=CCC_CC="$(ROMCC_BIN)" $(CC)
endif
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
COREBOOT_STANDARD_STAGES := bootblock romstage ramstage
ARCHDIR-i386 := x86
ARCHDIR-x86_32 := x86
ARCHDIR-armv7 := armv7
CFLAGS_armv7 += \
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
-ffixed-r8\
-march=armv7-a\
-marm\
-mno-unaligned-access\
-mthumb\
-mthumb-interwork
toolchain_to_dir = \
$(foreach arch,$(ARCH_SUPPORTED),\
$(eval CPPFLAGS_$(arch) += \
-Isrc/arch/$(ARCHDIR-$(arch))/include))
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
# set_stage_toolchain: Decides the toolchain to be used by every stage
# E.g.: If bootblock is x86_32, it sets ARCH-BOOTBLOCK-y = x86_32, whereas
# ARCH-BOOTBLOCK-n = armv7. Then, ARCH-BOOTBLOCK-y can be used anywhere to
# decide the compiler toolchain for bootblock stage
# This step is essential for initializing the toolchain for coreboot standard
# stages i.e. bootblock, romstage and ramstage, since it acts as the second
# parameter to create_class_compiler below in init_standard_toolchain
set_stage_toolchain= \
$(foreach arch,$(ARCH_SUPPORTED),$(eval ARCH-$(1)-$($(shell echo CONFIG_ARCH_$(1)_$(arch) | tr '[:lower:]' '[:upper:]')) := $(arch)))
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
# create_class_compiler: Used to create compiler tool set for
# special classes
# @1: special class
# @2: compiler set to be used
# e.g.: smm special class uses i386 as compiler set
define create_class_compiler
CC_$(1) := $(CC_$(2))
LD_$(1) := $(LD_$(2))
NM_$(1) := $(NM_$(2))
OBJCOPY_$(1) := $(OBJCOPY_$(2))
OBJDUMP_$(1) := $(OBJDUMP_$(2))
STRIP_$(1) := $(STRIP_$(2))
READELF_$(1) := $(READELF_$(2))
CFLAGS_$(1) += $$(CFLAGS_common) $$(CFLAGS_$(2))
CPPFLAGS_$(1) += $$(CPPFLAGS_common) $$(CPPFLAGS_$(2))
LIBGCC_FILE_NAME_$(1) = $(wildcard $(shell $(CC_$(2)) $(CFLAGS_$(2)) -print-libgcc-file-name))
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
endef
# define_class: Allows defining any program as dynamic class and compiler tool
# set for the same based on the architecture for which the program is to be
# compiled
# @1: program (class name)
# @2: architecture for which the program needs to be compiled
# IMP: Ensure that define_class is called before any .c or .S files are added to
# the class of the program. Check subdirs-y for order of subdirectory inclusions
define define_class
classes-y += $(1)
$(eval $(call create_class_compiler,$(1),$(2)))
endef
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
# initialize standard toolchain (CC,AS and others) for give stage
# @1 : stage for which the toolchain is to be initialized
init_standard_toolchain = \
$(eval $(call set_stage_toolchain,$(1))) \
$(eval $(call create_class_compiler,$(1),$(ARCH-$(1)-y)))
Introduce stage-specific architecture for coreboot Make all three coreboot stages (bootblock, romstage and ramstage) aware of the architecture specific to that stage i.e. we will have CONFIG_ARCH variables for each of the three stages. This allows us to have an SOC with any combination of architectures and thus every stage can be made to run on a completely different architecture independent of others. Thus, bootblock can have an x86 arch whereas romstage and ramstage can have arm32 and arm64 arch respectively. These stage specific CONFIG_ARCH_ variables enable us to select the proper set of toolchain and compiler flags for every stage. These options can be considered as either arch or modes eg: x86 running in different modes or ARM having different arch types (v4, v7, v8). We have got rid of the original CONFIG_ARCH option completely as every stage can have any architecture of its own. Thus, almost all the components of coreboot are identified as being part of one of the three stages (bootblock, romstage or ramstage). The components which cannot be classified as such e.g. smm, rmodules can have their own compiler toolset which is for now set to *_i386. Hence, all special classes are treated in a similar way and the compiler toolset is defined using create_class_compiler defined in Makefile. In order to meet these requirements, changes have been made to CC, LD, OBJCOPY and family to add CC_bootblock, CC_romstage, CC_ramstage and similarly others. Additionally, CC_x86_32 and CC_armv7 handle all the special classes. All the toolsets are defined using create_class_compiler. Few additional macros have been introduced to identify the class to be used at various points, e.g.: CC_$(class) derives the $(class) part from the name of the stage being compiled. We have also got rid of COREBOOT_COMPILER, COREBOOT_ASSEMBLER and COREBOOT_LINKER as they do not make any sense for coreboot as a whole. All these attributes are associated with each of the stages. Change-Id: I923f3d4fb097d21071030b104c372cc138c68c7b Signed-off-by: Furquan Shaikh <furquan@google.com> Reviewed-on: http://review.coreboot.org/5577 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@gmail.com>
2014-04-23 19:18:48 +02:00
init_stages = \
$(foreach stage,$(COREBOOT_STANDARD_STAGES),$(eval $(call init_standard_toolchain,$(stage))))
$(eval $(call toolchain_to_dir))
$(call init_stages)