221 lines
6.1 KiB
C
221 lines
6.1 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <console/console.h>
|
||
|
#include <crc_byte.h>
|
||
|
#include <fmap.h>
|
||
|
#include <spd_cache.h>
|
||
|
#include <spd_bin.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
/*
|
||
|
* SPD_CACHE layout
|
||
|
* +==========+ offset 0x00
|
||
|
* |DIMM 1 SPD| SPD data length is CONFIG_DIMM_SPD_SIZE.
|
||
|
* +----------+ offset CONFIG_DIMM_SPD_SIZE * 1
|
||
|
* |DIMM 2 SPD|
|
||
|
* +----------+ offset CONFIG_DIMM_SPD_SIZE * 2
|
||
|
* ...
|
||
|
* +----------+ offset CONFIG_DIMM_SPD_SIZE * (N -1)
|
||
|
* |DIMM N SPD| N = CONFIG_DIMM_MAX
|
||
|
* +----------+ offset CONFIG_DIMM_SPD_SIZE * CONFIG_DIMM_MAX
|
||
|
* | CRC 16 | Use to verify the data correctness.
|
||
|
* +==========+
|
||
|
*
|
||
|
* The size of the RW_SPD_CACHE needs to be aligned with 4KiB.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Use to update SPD cache.
|
||
|
* *blk : the new SPD data will be stash into the cache.
|
||
|
*
|
||
|
* return CB_SUCCESS , update SPD cache successfully.
|
||
|
* return CB_ERR , update SPD cache unsuccessfully and the cache is invalid
|
||
|
*/
|
||
|
enum cb_err update_spd_cache(struct spd_block *blk)
|
||
|
{
|
||
|
struct region_device rdev;
|
||
|
uint16_t data_crc = 0;
|
||
|
int i, j;
|
||
|
|
||
|
assert(blk->len <= SC_SPD_LEN);
|
||
|
|
||
|
if (fmap_locate_area_as_rdev_rw(SPD_CACHE_FMAP_NAME, &rdev)) {
|
||
|
printk(BIOS_ERR, "SPD_CACHE: Cannot access %s region\n", SPD_CACHE_FMAP_NAME);
|
||
|
return CB_ERR;
|
||
|
}
|
||
|
|
||
|
/* Erase whole area, it's for align with 4KiB which is the size of SPI rom sector. */
|
||
|
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) {
|
||
|
printk(BIOS_ERR, "SPD_CACHE: Cannot erase %s region\n", SPD_CACHE_FMAP_NAME);
|
||
|
return CB_ERR;
|
||
|
}
|
||
|
|
||
|
/* Write SPD data */
|
||
|
for (i = 0; i < SC_SPD_NUMS; i++) {
|
||
|
if (blk->spd_array[i] == NULL) {
|
||
|
/* If DIMM is not present, we calculate the CRC with 0xff. */
|
||
|
for (j = 0; j < SC_SPD_LEN; j++)
|
||
|
data_crc = crc16_byte(data_crc, 0xff);
|
||
|
} else {
|
||
|
if (rdev_writeat(&rdev, blk->spd_array[i], SC_SPD_OFFSET(i), blk->len)
|
||
|
< 0) {
|
||
|
printk(BIOS_ERR, "SPD_CACHE: Cannot write SPD data at %d\n",
|
||
|
SC_SPD_OFFSET(i));
|
||
|
return CB_ERR;
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < blk->len; j++)
|
||
|
data_crc = crc16_byte(data_crc, blk->spd_array[i][j]);
|
||
|
|
||
|
/* If the blk->len < SC_SPD_LEN, we calculate the CRC with 0xff. */
|
||
|
if (blk->len < SC_SPD_LEN)
|
||
|
for (j = 0; j < (SC_SPD_LEN - (blk->len)); j++)
|
||
|
data_crc = crc16_byte(data_crc, 0xff);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Write the crc16 */
|
||
|
/* It must be the last step to ensure that the data is written correctly */
|
||
|
if (rdev_writeat(&rdev, &data_crc, SC_CRC_OFFSET, SC_CRC_LEN) < 0) {
|
||
|
printk(BIOS_ERR, "SPD_CACHE: Cannot write crc at 0x%04x\n", SC_CRC_OFFSET);
|
||
|
return CB_ERR;
|
||
|
}
|
||
|
return CB_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Locate the RW_SPD_CACHE area in the fmap and read SPD_CACHE data.
|
||
|
* return CB_SUCCESS ,if the SPD_CACHE data is ready and the pointer return at *spd_cache.
|
||
|
* return CB_ERR ,if it cannot locate RW_SPD_CACHE area in the fmap or data cannot be read.
|
||
|
*/
|
||
|
enum cb_err load_spd_cache(uint8_t **spd_cache, size_t *spd_cache_sz)
|
||
|
{
|
||
|
struct region_device rdev;
|
||
|
|
||
|
if (fmap_locate_area_as_rdev(SPD_CACHE_FMAP_NAME, &rdev) < 0) {
|
||
|
printk(BIOS_ERR, "SPD_CACHE: Cannot find %s region\n", SPD_CACHE_FMAP_NAME);
|
||
|
return CB_ERR;
|
||
|
}
|
||
|
|
||
|
/* Assume boot device is memory mapped. */
|
||
|
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
|
||
|
*spd_cache = rdev_mmap_full(&rdev);
|
||
|
|
||
|
if (*spd_cache == NULL)
|
||
|
return CB_ERR;
|
||
|
|
||
|
*spd_cache_sz = region_device_sz(&rdev);
|
||
|
|
||
|
/* SPD cache found */
|
||
|
printk(BIOS_INFO, "SPD_CACHE: cache found, size 0x%zx\n", *spd_cache_sz);
|
||
|
|
||
|
return CB_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/* Use to verify the cache data is valid. */
|
||
|
bool spd_cache_is_valid(uint8_t *spd_cache, size_t spd_cache_sz)
|
||
|
{
|
||
|
uint16_t data_crc = 0;
|
||
|
int i;
|
||
|
|
||
|
if (spd_cache_sz < SC_SPD_TOTAL_LEN + SC_CRC_LEN)
|
||
|
return false;
|
||
|
|
||
|
/* Check the spd_cache crc */
|
||
|
for (i = 0; i < SC_SPD_TOTAL_LEN; i++)
|
||
|
data_crc = crc16_byte(data_crc, *(spd_cache + i));
|
||
|
|
||
|
return *(uint16_t *)(spd_cache + SC_CRC_OFFSET) == data_crc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if the DIMM is preset in cache.
|
||
|
* return true , DIMM is present.
|
||
|
* return false, DIMM is not present.
|
||
|
*/
|
||
|
static bool get_cached_dimm_present(uint8_t *spd_cache, uint8_t idx)
|
||
|
{
|
||
|
if (*(uint16_t *)(spd_cache + SC_SPD_OFFSET(idx)) == 0xffff)
|
||
|
return false;
|
||
|
else
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Use to check if the SODIMM is changed.
|
||
|
* spd_cache : it's a valid SPD cache.
|
||
|
* blk : it must include the smbus addresses of SODIMM.
|
||
|
*/
|
||
|
bool check_if_dimm_changed(u8 *spd_cache, struct spd_block *blk)
|
||
|
{
|
||
|
int i;
|
||
|
u32 sn;
|
||
|
bool dimm_present_in_cache;
|
||
|
bool dimm_changed = false;
|
||
|
/* Check if the dimm is the same with last system boot. */
|
||
|
for (i = 0; i < SC_SPD_NUMS && dimm_changed == false; i++) {
|
||
|
/* Return true if any error happened here. */
|
||
|
if (get_spd_sn(blk->addr_map[i], &sn) == CB_ERR)
|
||
|
return true;
|
||
|
dimm_present_in_cache = get_cached_dimm_present(spd_cache, i);
|
||
|
/* Dimm is not present now. */
|
||
|
if (sn == 0xffffffff) {
|
||
|
if (dimm_present_in_cache == false)
|
||
|
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is not present\n", i);
|
||
|
else {
|
||
|
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d lost\n", i);
|
||
|
dimm_changed = true;
|
||
|
}
|
||
|
} else { /* Dimm is present now. */
|
||
|
if (dimm_present_in_cache == true) {
|
||
|
if (memcmp(&sn, spd_cache + SC_SPD_OFFSET(i) + DDR4_SPD_SN_OFF,
|
||
|
SPD_SN_LEN) == 0)
|
||
|
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is the same\n",
|
||
|
i);
|
||
|
else {
|
||
|
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is new one\n",
|
||
|
i);
|
||
|
dimm_changed = true;
|
||
|
}
|
||
|
} else {
|
||
|
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is new one\n", i);
|
||
|
dimm_changed = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return dimm_changed;
|
||
|
}
|
||
|
|
||
|
/* Use to fill the struct spd_block with cache data.*/
|
||
|
enum cb_err spd_fill_from_cache(uint8_t *spd_cache, struct spd_block *blk)
|
||
|
{
|
||
|
int i;
|
||
|
u8 dram_type;
|
||
|
|
||
|
/* Find the first present SPD */
|
||
|
for (i = 0; i < SC_SPD_NUMS; i++)
|
||
|
if (get_cached_dimm_present(spd_cache, i) == true)
|
||
|
break;
|
||
|
|
||
|
if (i == SC_SPD_NUMS) {
|
||
|
printk(BIOS_ERR, "SPD_CACHE: No DIMM is present.\n");
|
||
|
return CB_ERR;
|
||
|
}
|
||
|
|
||
|
dram_type = *(spd_cache + SC_SPD_OFFSET(i) + SPD_DRAM_TYPE);
|
||
|
|
||
|
if (dram_type == SPD_DRAM_DDR4)
|
||
|
blk->len = SPD_PAGE_LEN_DDR4;
|
||
|
else
|
||
|
blk->len = SPD_PAGE_LEN;
|
||
|
|
||
|
for (i = 0; i < SC_SPD_NUMS; i++)
|
||
|
if (get_cached_dimm_present(spd_cache, i) == true)
|
||
|
blk->spd_array[i] = spd_cache + SC_SPD_OFFSET(i);
|
||
|
else
|
||
|
blk->spd_array[i] = NULL;
|
||
|
|
||
|
return CB_SUCCESS;
|
||
|
}
|