coreboot-kgpe-d16/tests/data/lib/lzma-test/data.3.bin

765 lines
22 KiB
Plaintext
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
#include <stdlib.h>
#include <types.h>
#include <string.h>
#include <tests/test.h>
#include <imd.h>
#include <imd_private.h>
#include <cbmem.h>
#include <commonlib/bsd/helpers.h>
#include <lib.h>
/* Auxiliary functions and definitions. */
#define LG_ROOT_SIZE align_up_pow2(sizeof(struct imd_root_pointer) +\
sizeof(struct imd_root) + 3 * sizeof(struct imd_entry))
#define LG_ENTRY_ALIGN (2 * sizeof(int32_t))
#define LG_ENTRY_SIZE (2 * sizeof(int32_t))
#define LG_ENTRY_ID 0xA001
#define SM_ROOT_SIZE LG_ROOT_SIZE
#define SM_ENTRY_ALIGN sizeof(uint32_t)
#define SM_ENTRY_SIZE sizeof(uint32_t)
#define SM_ENTRY_ID 0xB001
#define INVALID_REGION_ID 0xC001
static uint32_t align_up_pow2(uint32_t x)
{
return (1 << log2_ceil(x));
}
static size_t max_entries(size_t root_size)
{
return (root_size - sizeof(struct imd_root_pointer) - sizeof(struct imd_root))
/ sizeof(struct imd_entry);
}
/*
* Mainly, we should check that imd_handle_init() aligns upper_limit properly
* for various inputs. Upper limit is the _exclusive_ address, so we expect
* ALIGN_DOWN.
*/
static void test_imd_handle_init(void **state)
{
int i;
void *base;
struct imd imd;
uintptr_t test_inputs[] = {
0, /* Lowest possible address */
0xA000, /* Fits in 16 bits, should not get rounded down*/
0xDEAA, /* Fits in 16 bits */
0xB0B0B000, /* Fits in 32 bits, should not get rounded down */
0xF0F0F0F0, /* Fits in 32 bits */
((1ULL << 32) + 4), /* Just above 32-bit limit */
0x6666777788889000, /* Fits in 64 bits, should not get rounded down */
((1ULL << 60) - 100) /* Very large address, fitting in 64 bits */
};
for (i = 0; i < ARRAY_SIZE(test_inputs); i++) {
base = (void *)test_inputs[i];
imd_handle_init(&imd, (void *)base);
assert_int_equal(imd.lg.limit % LIMIT_ALIGN, 0);
assert_int_equal(imd.lg.limit, ALIGN_DOWN(test_inputs[i], LIMIT_ALIGN));
assert_ptr_equal(imd.lg.r, NULL);
/* Small allocations not initialized */
assert_ptr_equal(imd.sm.limit, NULL);
assert_ptr_equal(imd.sm.r, NULL);
}
}
static void test_imd_handle_init_partial_recovery(void **state)
{
void *base;
struct imd imd = {0};
const struct imd_entry *entry;
imd_handle_init_partial_recovery(&imd);
assert_null(imd.lg.limit);
assert_null(imd.sm.limit);
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
imd_handle_init_partial_recovery(&imd);
assert_non_null(imd.lg.r);
assert_null(imd.sm.limit);
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
entry = imd_entry_add(&imd, SMALL_REGION_ID, LG_ENTRY_SIZE);
assert_non_null(entry);
imd_handle_init_partial_recovery(&imd);
assert_non_null(imd.lg.r);
assert_non_null(imd.sm.limit);
assert_ptr_equal(imd.lg.r + entry->start_offset + LG_ENTRY_SIZE, imd.sm.limit);
assert_non_null(imd.sm.r);
free(base);
}
static void test_imd_create_empty(void **state)
{
struct imd imd = {0};
void *base;
struct imd_root *r;
struct imd_entry *e;
/* Expect imd_create_empty to fail, since imd handle is not initialized */
assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
base = malloc(sizeof(struct imd_root_pointer) + sizeof(struct imd_root));
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
/* Try incorrect sizes */
assert_int_equal(-1, imd_create_empty(&imd,
sizeof(struct imd_root_pointer),
LG_ENTRY_ALIGN));
assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, 2 * LG_ROOT_SIZE));
/* Working case */
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
/* Only large allocation initialized with one entry for the root region */
r = (struct imd_root *) (imd.lg.r);
assert_non_null(r);
e = &r->entries[r->num_entries - 1];
assert_int_equal(max_entries(LG_ROOT_SIZE), r->max_entries);
assert_int_equal(1, r->num_entries);
assert_int_equal(0, r->flags);
assert_int_equal(LG_ENTRY_ALIGN, r->entry_align);
assert_int_equal(0, r->max_offset);
assert_ptr_equal(e, &r->entries);
assert_int_equal(IMD_ENTRY_MAGIC, e->magic);
assert_int_equal(0, e->start_offset);
assert_int_equal(LG_ROOT_SIZE, e->size);
assert_int_equal(CBMEM_ID_IMD_ROOT, e->id);
free(base);
}
static void test_imd_create_tiered_empty(void **state)
{
void *base;
size_t sm_region_size, lg_region_wrong_size;
struct imd imd = {0};
struct imd_root *r;
struct imd_entry *fst_lg_entry, *snd_lg_entry, *sm_entry;
/* Uninitialized imd handle */
assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
LG_ROOT_SIZE, SM_ENTRY_ALIGN));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
/* Too small root_size for small region */
assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
sizeof(int32_t), 2 * sizeof(int32_t)));
/* Fail when large region doesn't have capacity for more than 1 entry */
lg_region_wrong_size = sizeof(struct imd_root_pointer) + sizeof(struct imd_root) +
sizeof(struct imd_entry);
expect_assert_failure(
imd_create_tiered_empty(&imd, lg_region_wrong_size, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN)
);
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
r = imd.lg.r;
/* One entry for root_region and one for small allocations */
assert_int_equal(2, r->num_entries);
fst_lg_entry = &r->entries[0];
assert_int_equal(IMD_ENTRY_MAGIC, fst_lg_entry->magic);
assert_int_equal(0, fst_lg_entry->start_offset);
assert_int_equal(LG_ROOT_SIZE, fst_lg_entry->size);
assert_int_equal(CBMEM_ID_IMD_ROOT, fst_lg_entry->id);
/* Calculated like in imd_create_tiered_empty */
sm_region_size = max_entries(SM_ROOT_SIZE) * SM_ENTRY_ALIGN;
sm_region_size += SM_ROOT_SIZE;
sm_region_size = ALIGN_UP(sm_region_size, LG_ENTRY_ALIGN);
snd_lg_entry = &r->entries[1];
assert_int_equal(IMD_ENTRY_MAGIC, snd_lg_entry->magic);
assert_int_equal(-sm_region_size, snd_lg_entry->start_offset);
assert_int_equal(CBMEM_ID_IMD_SMALL, snd_lg_entry->id);
assert_int_equal(sm_region_size, snd_lg_entry->size);
r = imd.sm.r;
assert_int_equal(1, r->num_entries);
sm_entry = &r->entries[0];
assert_int_equal(IMD_ENTRY_MAGIC, sm_entry->magic);
assert_int_equal(0, sm_entry->start_offset);
assert_int_equal(SM_ROOT_SIZE, sm_entry->size);
assert_int_equal(CBMEM_ID_IMD_ROOT, sm_entry->id);
free(base);
}
/* Tests for imdr_recover. */
static void test_imd_recover(void **state)
{
int32_t offset_copy, max_offset_copy;
uint32_t rp_magic_copy, num_entries_copy;
uint32_t e_align_copy, e_magic_copy, e_id_copy;
uint32_t size_copy, diff;
void *base;
struct imd imd = {0};
struct imd_root_pointer *rp;
struct imd_root *r;
struct imd_entry *lg_root_entry, *sm_root_entry, *ptr;
const struct imd_entry *lg_entry;
/* Fail when the limit for lg was not set. */
imd.lg.limit = (uintptr_t) NULL;
assert_int_equal(-1, imd_recover(&imd));
/* Set the limit for lg. */
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
/* Fail when the root pointer is not valid. */
rp = (void *)imd.lg.limit - sizeof(struct imd_root_pointer);
assert_non_null(rp);
assert_int_equal(IMD_ROOT_PTR_MAGIC, rp->magic);
rp_magic_copy = rp->magic;
rp->magic = 0;
assert_int_equal(-1, imd_recover(&imd));
rp->magic = rp_magic_copy;
/* Set the root pointer. */
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
assert_int_equal(2, ((struct imd_root *)imd.lg.r)->num_entries);
assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
/* Fail if the number of entries exceeds the maximum number of entries. */
r = imd.lg.r;
num_entries_copy = r->num_entries;
r->num_entries = r->max_entries + 1;
assert_int_equal(-1, imd_recover(&imd));
r->num_entries = num_entries_copy;
/* Fail if entry align is not a power of 2. */
e_align_copy = r->entry_align;
r->entry_align++;
assert_int_equal(-1, imd_recover(&imd));
r->entry_align = e_align_copy;
/* Fail when an entry is not valid. */
lg_root_entry = &r->entries[0];
e_magic_copy = lg_root_entry->magic;
lg_root_entry->magic = 0;
assert_int_equal(-1, imd_recover(&imd));
lg_root_entry->magic = e_magic_copy;
/* Add new entries: large and small. */
lg_entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
assert_non_null(lg_entry);
assert_int_equal(3, r->num_entries);
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
assert_int_equal(2, ((struct imd_root *)imd.sm.r)->num_entries);
/* Fail when start_addr is lower than low_limit. */
r = imd.lg.r;
max_offset_copy = r->max_offset;
r->max_offset = lg_entry->start_offset + sizeof(int32_t);
assert_int_equal(-1, imd_recover(&imd));
r->max_offset = max_offset_copy;
/* Fail when start_addr is at least imdr->limit. */
offset_copy = lg_entry->start_offset;
ptr = (struct imd_entry *)lg_entry;
ptr->start_offset = (void *)imd.lg.limit - (void *)r;
assert_int_equal(-1, imd_recover(&imd));
ptr->start_offset = offset_copy;
/* Fail when (start_addr + e->size) is higher than imdr->limit. */
size_copy = lg_entry->size;
diff = (void *)imd.lg.limit - ((void *)r + lg_entry->start_offset);
ptr->size = diff + 1;
assert_int_equal(-1, imd_recover(&imd));
ptr->size = size_copy;
/* Succeed if small region is not present. */
sm_root_entry = &r->entries[1];
e_id_copy = sm_root_entry->id;
sm_root_entry->id = 0;
assert_int_equal(0, imd_recover(&imd));
sm_root_entry->id = e_id_copy;
assert_int_equal(0, imd_recover(&imd));
free(base);
}
static void test_imd_limit_size(void **state)
{
void *base;
struct imd imd = {0};
size_t root_size, max_size;
max_size = align_up_pow2(sizeof(struct imd_root_pointer)
+ sizeof(struct imd_root) + 3 * sizeof(struct imd_entry));
assert_int_equal(-1, imd_limit_size(&imd, max_size));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
root_size = align_up_pow2(sizeof(struct imd_root_pointer)
+ sizeof(struct imd_root) + 2 * sizeof(struct imd_entry));
imd.lg.r = (void *)imd.lg.limit - root_size;
imd_create_empty(&imd, root_size, LG_ENTRY_ALIGN);
assert_int_equal(-1, imd_limit_size(&imd, root_size - 1));
assert_int_equal(0, imd_limit_size(&imd, max_size));
/* Cannot create such a big entry */
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, max_size - root_size + 1));
free(base);
}
static void test_imd_lockdown(void **state)
{
struct imd imd = {0};
struct imd_root *r_lg, *r_sm;
assert_int_equal(-1, imd_lockdown(&imd));
imd.lg.r = malloc(sizeof(struct imd_root));
if (imd.lg.r == NULL)
fail_msg("Cannot allocate enough memory - fail test");
r_lg = (struct imd_root *) (imd.lg.r);
assert_int_equal(0, imd_lockdown(&imd));
assert_true(r_lg->flags & IMD_FLAG_LOCKED);
imd.sm.r = malloc(sizeof(struct imd_root));
if (imd.sm.r == NULL)
fail_msg("Cannot allocate enough memory - fail test");
r_sm = (struct imd_root *) (imd.sm.r);
assert_int_equal(0, imd_lockdown(&imd));
assert_true(r_sm->flags & IMD_FLAG_LOCKED);
free(imd.lg.r);
free(imd.sm.r);
}
static void test_imd_region_used(void **state)
{
struct imd imd = {0};
struct imd_entry *first_entry, *new_entry;
struct imd_root *r;
size_t size;
void *imd_base;
void *base;
assert_int_equal(-1, imd_region_used(&imd, &base, &size));
imd_base = malloc(LIMIT_ALIGN);
if (imd_base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)imd_base));
assert_int_equal(-1, imd_region_used(&imd, &base, &size));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
assert_int_equal(0, imd_region_used(&imd, &base, &size));
r = (struct imd_root *)imd.lg.r;
first_entry = &r->entries[r->num_entries - 1];
assert_int_equal(r + first_entry->start_offset, (uintptr_t)base);
assert_int_equal(first_entry->size, size);
assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_int_equal(2, r->num_entries);
assert_int_equal(0, imd_region_used(&imd, &base, &size));
new_entry = &r->entries[r->num_entries - 1];
assert_true((void *)r + new_entry->start_offset == base);
assert_int_equal(first_entry->size + new_entry->size, size);
free(imd_base);
}
static void test_imd_entry_add(void **state)
{
int i;
struct imd imd = {0};
size_t entry_size = 0;
size_t used_size;
ssize_t entry_offset;
void *base;
struct imd_root *r, *sm_r, *lg_r;
struct imd_entry *first_entry, *new_entry;
uint32_t num_entries_copy;
int32_t max_offset_copy;
/* No small region case. */
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
r = (struct imd_root *)imd.lg.r;
first_entry = &r->entries[r->num_entries - 1];
/* Cannot add an entry when root is locked. */
r->flags = IMD_FLAG_LOCKED;
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
r->flags = 0;
/* Fail when the maximum number of entries has been reached. */
num_entries_copy = r->num_entries;
r->num_entries = r->max_entries;
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
r->num_entries = num_entries_copy;
/* Fail when entry size is 0 */
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, 0));
/* Fail when entry size (after alignment) overflows imd total size. */
entry_size = 2049;
max_offset_copy = r->max_offset;
r->max_offset = -entry_size;
assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
r->max_offset = max_offset_copy;
/* Finally succeed. */
entry_size = 2 * sizeof(int32_t);
assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
assert_int_equal(2, r->num_entries);
new_entry = &r->entries[r->num_entries - 1];
assert_int_equal(sizeof(struct imd_entry), (void *)new_entry - (void *)first_entry);
assert_int_equal(IMD_ENTRY_MAGIC, new_entry->magic);
assert_int_equal(LG_ENTRY_ID, new_entry->id);
assert_int_equal(entry_size, new_entry->size);
used_size = ALIGN_UP(entry_size, r->entry_align);
entry_offset = first_entry->start_offset - used_size;
assert_int_equal(entry_offset, new_entry->start_offset);
/* Use small region case. */
imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
SM_ENTRY_ALIGN);
lg_r = imd.lg.r;
sm_r = imd.sm.r;
/* All five new entries should be added to small allocations */
for (i = 0; i < 5; i++) {
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
assert_int_equal(i+2, sm_r->num_entries);
assert_int_equal(2, lg_r->num_entries);
}
/* But next should fall back on large region */
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
assert_int_equal(6, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
/*
* Small allocation is created when occupies less than 1/4 of available
* small region. Verify this.
*/
imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
SM_ENTRY_ALIGN);
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4 + 1));
assert_int_equal(1, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
/* Next two should go into small region */
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4));
assert_int_equal(2, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
/* (1/4 * 3/4) */
assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 16 * 3));
assert_int_equal(3, sm_r->num_entries);
assert_int_equal(3, lg_r->num_entries);
free(base);
}
static void test_imd_entry_find(void **state)
{
struct imd imd = {0};
void *base;
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_non_null(imd_entry_find(&imd, LG_ENTRY_ID));
assert_non_null(imd_entry_find(&imd, SMALL_REGION_ID));
/* Try invalid id, should fail */
assert_null(imd_entry_find(&imd, INVALID_REGION_ID));
free(base);
}
static void test_imd_entry_find_or_add(void **state)
{
struct imd imd = {0};
const struct imd_entry *entry;
struct imd_root *r;
void *base;
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
entry = imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
assert_non_null(entry);
r = (struct imd_root *)imd.lg.r;
assert_int_equal(entry->id, LG_ENTRY_ID);
assert_int_equal(2, r->num_entries);
assert_non_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
assert_int_equal(2, r->num_entries);
free(base);
}
static void test_imd_entry_size(void **state)
{
struct imd_entry entry = { .size = LG_ENTRY_SIZE };
assert_int_equal(LG_ENTRY_SIZE, imd_entry_size(&entry));
entry.size = 0;
assert_int_equal(0, imd_entry_size(&entry));
}
static void test_imd_entry_at(void **state)
{
struct imd imd = {0};
struct imd_root *r;
struct imd_entry *e = NULL;
const struct imd_entry *entry;
void *base;
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
/* Fail when entry is NULL */
assert_null(imd_entry_at(&imd, e));
entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
assert_non_null(entry);
r = (struct imd_root *)imd.lg.r;
assert_ptr_equal((void *)r + entry->start_offset, imd_entry_at(&imd, entry));
free(base);
}
static void test_imd_entry_id(void **state)
{
struct imd_entry entry = { .id = LG_ENTRY_ID };
assert_int_equal(LG_ENTRY_ID, imd_entry_id(&entry));
}
static void test_imd_entry_remove(void **state)
{
void *base;
struct imd imd = {0};
struct imd_root *r;
const struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
const struct imd_entry *e = NULL;
/* Uninitialized handle */
assert_int_equal(-1, imd_entry_remove(&imd, e));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
r = imd.lg.r;
assert_int_equal(2, r->num_entries);
fst_lg_entry = &r->entries[0];
snd_lg_entry = &r->entries[1];
/* Only last entry can be removed */
assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
r->flags = IMD_FLAG_LOCKED;
assert_int_equal(-1, imd_entry_remove(&imd, snd_lg_entry));
r->flags = 0;
r = imd.sm.r;
assert_int_equal(1, r->num_entries);
fst_sm_entry = &r->entries[0];
/* Fail trying to remove root entry */
assert_int_equal(-1, imd_entry_remove(&imd, fst_sm_entry));
assert_int_equal(1, r->num_entries);
r = imd.lg.r;
assert_int_equal(0, imd_entry_remove(&imd, snd_lg_entry));
assert_int_equal(1, r->num_entries);
/* Fail trying to remove root entry */
assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
assert_int_equal(1, r->num_entries);
free(base);
}
static void test_imd_cursor_init(void **state)
{
struct imd imd = {0};
struct imd_cursor cursor;
assert_int_equal(-1, imd_cursor_init(NULL, NULL));
assert_int_equal(-1, imd_cursor_init(NULL, &cursor));
assert_int_equal(-1, imd_cursor_init(&imd, NULL));
assert_int_equal(0, imd_cursor_init(&imd, &cursor));
assert_ptr_equal(cursor.imdr[0], &imd.lg);
assert_ptr_equal(cursor.imdr[1], &imd.sm);
}
static void test_imd_cursor_next(void **state)
{
void *base;
struct imd imd = {0};
struct imd_cursor cursor;
struct imd_root *r;
const struct imd_entry *entry;
struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
assert_int_equal(0, imd_cursor_init(&imd, &cursor));
cursor.current_imdr = 3;
cursor.current_entry = 0;
assert_null(imd_cursor_next(&cursor));
cursor.current_imdr = 0;
assert_null(imd_cursor_next(&cursor));
base = malloc(LIMIT_ALIGN);
if (base == NULL)
fail_msg("Cannot allocate enough memory - fail test");
imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
SM_ROOT_SIZE, SM_ENTRY_ALIGN));
r = imd.lg.r;
entry = imd_cursor_next(&cursor);
assert_non_null(entry);
fst_lg_entry = &r->entries[0];
assert_int_equal(fst_lg_entry->id, entry->id);
assert_ptr_equal(fst_lg_entry, entry);
entry = imd_cursor_next(&cursor);
assert_non_null(entry);
snd_lg_entry = &r->entries[1];
assert_int_equal(snd_lg_entry->id, entry->id);
assert_ptr_equal(snd_lg_entry, entry);
entry = imd_cursor_next(&cursor);
assert_non_null(entry);
r = imd.sm.r;
fst_sm_entry = &r->entries[0];
assert_int_equal(fst_sm_entry->id, entry->id);
assert_ptr_equal(fst_sm_entry, entry);
entry = imd_cursor_next(&cursor);
assert_null(entry);
}
int main(void)
{
const struct CMUnitTest tests[] = {
cmocka_unit_test(test_imd_handle_init),
cmocka_unit_test(test_imd_handle_init_partial_recovery),
cmocka_unit_test(test_imd_create_empty),
cmocka_unit_test(test_imd_create_tiered_empty),
cmocka_unit_test(test_imd_recover),
cmocka_unit_test(test_imd_limit_size),
cmocka_unit_test(test_imd_lockdown),
cmocka_unit_test(test_imd_region_used),
cmocka_unit_test(test_imd_entry_add),
cmocka_unit_test(test_imd_entry_find),
cmocka_unit_test(test_imd_entry_find_or_add),
cmocka_unit_test(test_imd_entry_size),
cmocka_unit_test(test_imd_entry_at),
cmocka_unit_test(test_imd_entry_id),
cmocka_unit_test(test_imd_entry_remove),
cmocka_unit_test(test_imd_cursor_init),
cmocka_unit_test(test_imd_cursor_next),
};
return cb_run_group_tests(tests, NULL, NULL);
}