src/sb/intel/common/spi.c: Adapt and link in romstage

Based on Nicola Corna's work.

This allows for CONFIG_CONSOLE_SPI_FLASH to be used, which writes the
console output to the SPI flash.

TESTED to still work in ramstage on x220 (correctly writes MRC CACHE),
the option CONFIG_CONSOLE_SPI_FLASH compiles for targets using the
common Intel SPI code (untested though).

Change-Id: I4671653c0b07ab5c4bf91128f18f142ce4f893cf
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
Reviewed-on: https://review.coreboot.org/25414
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This commit is contained in:
Arthur Heymans 2018-03-28 18:49:27 +02:00 committed by Patrick Georgi
parent 93ffe83ec2
commit 02c997122f
2 changed files with 109 additions and 92 deletions

View File

@ -28,6 +28,7 @@ smm-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_GPIO) += gpio.c
romstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SMBUS) += smbus.c romstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SMBUS) += smbus.c
ramstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SMBUS) += smbus.c ramstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SMBUS) += smbus.c
romstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SPI) += spi.c
ramstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SPI) += spi.c ramstage-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SPI) += spi.c
ifeq ($(CONFIG_SPI_FLASH_SMM),y) ifeq ($(CONFIG_SPI_FLASH_SMM),y)
smm-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SPI) += spi.c smm-$(CONFIG_SOUTHBRIDGE_INTEL_COMMON_SPI) += spi.c

View File

@ -15,6 +15,7 @@
*/ */
/* This file is derived from the flashrom project. */ /* This file is derived from the flashrom project. */
#include <arch/early_variables.h>
#include <stdint.h> #include <stdint.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
@ -71,7 +72,7 @@ static int spi_is_multichip(void);
typedef struct spi_slave ich_spi_slave; typedef struct spi_slave ich_spi_slave;
static int ichspi_lock = 0; static int g_ichspi_lock CAR_GLOBAL = 0;
typedef struct ich7_spi_regs { typedef struct ich7_spi_regs {
uint16_t spis; uint16_t spis;
@ -139,7 +140,7 @@ typedef struct ich_spi_controller {
uint8_t fpr_max; uint8_t fpr_max;
} ich_spi_controller; } ich_spi_controller;
static ich_spi_controller cntlr; static ich_spi_controller g_cntlr CAR_GLOBAL;
enum { enum {
SPIS_SCIP = 0x0001, SPIS_SCIP = 0x0001,
@ -281,17 +282,19 @@ static void read_reg(const void *src, void *value, uint32_t size)
static void ich_set_bbar(uint32_t minaddr) static void ich_set_bbar(uint32_t minaddr)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
const uint32_t bbar_mask = 0x00ffff00; const uint32_t bbar_mask = 0x00ffff00;
uint32_t ichspi_bbar; uint32_t ichspi_bbar;
minaddr &= bbar_mask; minaddr &= bbar_mask;
ichspi_bbar = readl_(cntlr.bbar) & ~bbar_mask; ichspi_bbar = readl_(cntlr->bbar) & ~bbar_mask;
ichspi_bbar |= minaddr; ichspi_bbar |= minaddr;
writel_(ichspi_bbar, cntlr.bbar); writel_(ichspi_bbar, cntlr->bbar);
} }
void spi_init(void) void spi_init(void)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint8_t *rcrb; /* Root Complex Register Block */ uint8_t *rcrb; /* Root Complex Register Block */
uint32_t rcba; /* Root Complex Base Address */ uint32_t rcba; /* Root Complex Base Address */
uint8_t bios_cntl; uint8_t bios_cntl;
@ -300,7 +303,7 @@ void spi_init(void)
ich7_spi_regs *ich7_spi; ich7_spi_regs *ich7_spi;
uint16_t hsfs; uint16_t hsfs;
#ifdef __SMM__ #ifdef __SIMPLE_DEVICE__
dev = PCI_DEV(0, 31, 0); dev = PCI_DEV(0, 31, 0);
#else #else
dev = dev_find_slot(0, PCI_DEVFN(31, 0)); dev = dev_find_slot(0, PCI_DEVFN(31, 0));
@ -311,41 +314,41 @@ void spi_init(void)
rcrb = (uint8_t *)(rcba & 0xffffc000); rcrb = (uint8_t *)(rcba & 0xffffc000);
if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) { if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) {
ich7_spi = (ich7_spi_regs *)(rcrb + 0x3020); ich7_spi = (ich7_spi_regs *)(rcrb + 0x3020);
cntlr.opmenu = ich7_spi->opmenu; cntlr->opmenu = ich7_spi->opmenu;
cntlr.menubytes = sizeof(ich7_spi->opmenu); cntlr->menubytes = sizeof(ich7_spi->opmenu);
cntlr.optype = &ich7_spi->optype; cntlr->optype = &ich7_spi->optype;
cntlr.addr = &ich7_spi->spia; cntlr->addr = &ich7_spi->spia;
cntlr.data = (uint8_t *)ich7_spi->spid; cntlr->data = (uint8_t *)ich7_spi->spid;
cntlr.databytes = sizeof(ich7_spi->spid); cntlr->databytes = sizeof(ich7_spi->spid);
cntlr.status = (uint8_t *)&ich7_spi->spis; cntlr->status = (uint8_t *)&ich7_spi->spis;
ichspi_lock = readw_(&ich7_spi->spis) & HSFS_FLOCKDN; car_set_var(g_ichspi_lock, readw_(&ich7_spi->spis) & HSFS_FLOCKDN);
cntlr.control = &ich7_spi->spic; cntlr->control = &ich7_spi->spic;
cntlr.bbar = &ich7_spi->bbar; cntlr->bbar = &ich7_spi->bbar;
cntlr.preop = &ich7_spi->preop; cntlr->preop = &ich7_spi->preop;
cntlr.fpr = &ich7_spi->pbr[0]; cntlr->fpr = &ich7_spi->pbr[0];
cntlr.fpr_max = 3; cntlr->fpr_max = 3;
} else { } else {
ich9_spi = (ich9_spi_regs *)(rcrb + 0x3800); ich9_spi = (ich9_spi_regs *)(rcrb + 0x3800);
cntlr.ich9_spi = ich9_spi; cntlr->ich9_spi = ich9_spi;
hsfs = readw_(&ich9_spi->hsfs); hsfs = readw_(&ich9_spi->hsfs);
ichspi_lock = hsfs & HSFS_FLOCKDN; car_set_var(g_ichspi_lock, hsfs & HSFS_FLOCKDN);
cntlr.hsfs = hsfs; cntlr->hsfs = hsfs;
cntlr.opmenu = ich9_spi->opmenu; cntlr->opmenu = ich9_spi->opmenu;
cntlr.menubytes = sizeof(ich9_spi->opmenu); cntlr->menubytes = sizeof(ich9_spi->opmenu);
cntlr.optype = &ich9_spi->optype; cntlr->optype = &ich9_spi->optype;
cntlr.addr = &ich9_spi->faddr; cntlr->addr = &ich9_spi->faddr;
cntlr.data = (uint8_t *)ich9_spi->fdata; cntlr->data = (uint8_t *)ich9_spi->fdata;
cntlr.databytes = sizeof(ich9_spi->fdata); cntlr->databytes = sizeof(ich9_spi->fdata);
cntlr.status = &ich9_spi->ssfs; cntlr->status = &ich9_spi->ssfs;
cntlr.control = (uint16_t *)ich9_spi->ssfc; cntlr->control = (uint16_t *)ich9_spi->ssfc;
cntlr.bbar = &ich9_spi->bbar; cntlr->bbar = &ich9_spi->bbar;
cntlr.preop = &ich9_spi->preop; cntlr->preop = &ich9_spi->preop;
cntlr.fpr = &ich9_spi->pr[0]; cntlr->fpr = &ich9_spi->pr[0];
cntlr.fpr_max = 5; cntlr->fpr_max = 5;
if (cntlr.hsfs & HSFS_FDV) { if (cntlr->hsfs & HSFS_FDV) {
writel_ (4, &ich9_spi->fdoc); writel_ (4, &ich9_spi->fdoc);
cntlr.flmap0 = readl_(&ich9_spi->fdod); cntlr->flmap0 = readl_(&ich9_spi->fdod);
} }
} }
@ -423,17 +426,18 @@ static void spi_setup_type(spi_transaction *trans)
static int spi_setup_opcode(spi_transaction *trans) static int spi_setup_opcode(spi_transaction *trans)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t optypes; uint16_t optypes;
uint8_t opmenu[cntlr.menubytes]; uint8_t opmenu[cntlr->menubytes];
trans->opcode = trans->out[0]; trans->opcode = trans->out[0];
spi_use_out(trans, 1); spi_use_out(trans, 1);
if (!ichspi_lock) { if (!car_get_var(g_ichspi_lock)) {
/* The lock is off, so just use index 0. */ /* The lock is off, so just use index 0. */
writeb_(trans->opcode, cntlr.opmenu); writeb_(trans->opcode, cntlr->opmenu);
optypes = readw_(cntlr.optype); optypes = readw_(cntlr->optype);
optypes = (optypes & 0xfffc) | (trans->type & 0x3); optypes = (optypes & 0xfffc) | (trans->type & 0x3);
writew_(optypes, cntlr.optype); writew_(optypes, cntlr->optype);
return 0; return 0;
} else { } else {
/* The lock is on. See if what we need is on the menu. */ /* The lock is on. See if what we need is on the menu. */
@ -444,20 +448,20 @@ static int spi_setup_opcode(spi_transaction *trans)
if (trans->opcode == SPI_OPCODE_WREN) if (trans->opcode == SPI_OPCODE_WREN)
return 0; return 0;
read_reg(cntlr.opmenu, opmenu, sizeof(opmenu)); read_reg(cntlr->opmenu, opmenu, sizeof(opmenu));
for (opcode_index = 0; opcode_index < cntlr.menubytes; for (opcode_index = 0; opcode_index < cntlr->menubytes;
opcode_index++) { opcode_index++) {
if (opmenu[opcode_index] == trans->opcode) if (opmenu[opcode_index] == trans->opcode)
break; break;
} }
if (opcode_index == cntlr.menubytes) { if (opcode_index == cntlr->menubytes) {
printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n", printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n",
trans->opcode); trans->opcode);
return -1; return -1;
} }
optypes = readw_(cntlr.optype); optypes = readw_(cntlr->optype);
optype = (optypes >> (opcode_index * 2)) & 0x3; optype = (optypes >> (opcode_index * 2)) & 0x3;
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS && if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS && optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
@ -503,14 +507,15 @@ static int spi_setup_offset(spi_transaction *trans)
*/ */
static int ich_status_poll(u16 bitmask, int wait_til_set) static int ich_status_poll(u16 bitmask, int wait_til_set)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
int timeout = 600000; /* This will result in 6 seconds */ int timeout = 600000; /* This will result in 6 seconds */
u16 status = 0; u16 status = 0;
while (timeout--) { while (timeout--) {
status = readw_(cntlr.status); status = readw_(cntlr->status);
if (wait_til_set ^ ((status & bitmask) == 0)) { if (wait_til_set ^ ((status & bitmask) == 0)) {
if (wait_til_set) if (wait_til_set)
writew_((status & bitmask), cntlr.status); writew_((status & bitmask), cntlr->status);
return status; return status;
} }
udelay(10); udelay(10);
@ -523,14 +528,16 @@ static int ich_status_poll(u16 bitmask, int wait_til_set)
static int spi_is_multichip (void) static int spi_is_multichip (void)
{ {
if (!(cntlr.hsfs & HSFS_FDV)) ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
if (!(cntlr->hsfs & HSFS_FDV))
return 0; return 0;
return !!((cntlr.flmap0 >> 8) & 3); return !!((cntlr->flmap0 >> 8) & 3);
} }
static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout, static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
size_t bytesout, void *din, size_t bytesin) size_t bytesout, void *din, size_t bytesin)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t control; uint16_t control;
int16_t opcode_index; int16_t opcode_index;
int with_address; int with_address;
@ -556,7 +563,7 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
if (ich_status_poll(SPIS_SCIP, 0) == -1) if (ich_status_poll(SPIS_SCIP, 0) == -1)
return -1; return -1;
writew_(SPIS_CDS | SPIS_FCERR, cntlr.status); writew_(SPIS_CDS | SPIS_FCERR, cntlr->status);
spi_setup_type(&trans); spi_setup_type(&trans);
if ((opcode_index = spi_setup_opcode(&trans)) < 0) if ((opcode_index = spi_setup_opcode(&trans)) < 0)
@ -570,8 +577,8 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
* in order to prevent the Management Engine from * in order to prevent the Management Engine from
* issuing a transaction between WREN and DATA. * issuing a transaction between WREN and DATA.
*/ */
if (!ichspi_lock) if (!car_get_var(g_ichspi_lock))
writew_(trans.opcode, cntlr.preop); writew_(trans.opcode, cntlr->preop);
return 0; return 0;
} }
@ -579,13 +586,13 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
control = SPIC_SCGO | ((opcode_index & 0x07) << 4); control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
/* Issue atomic preop cycle if needed */ /* Issue atomic preop cycle if needed */
if (readw_(cntlr.preop)) if (readw_(cntlr->preop))
control |= SPIC_ACS; control |= SPIC_ACS;
if (!trans.bytesout && !trans.bytesin) { if (!trans.bytesout && !trans.bytesin) {
/* SPI addresses are 24 bit only */ /* SPI addresses are 24 bit only */
if (with_address) if (with_address)
writel_(trans.offset & 0x00FFFFFF, cntlr.addr); writel_(trans.offset & 0x00FFFFFF, cntlr->addr);
/* /*
* This is a 'no data' command (like Write Enable), its * This is a 'no data' command (like Write Enable), its
@ -593,7 +600,7 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
* spi_setup_opcode() above. Tell the chip to send the * spi_setup_opcode() above. Tell the chip to send the
* command. * command.
*/ */
writew_(control, cntlr.control); writew_(control, cntlr->control);
/* wait for the result */ /* wait for the result */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
@ -615,7 +622,7 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
* and followed by other SPI commands, and this sequence is controlled * and followed by other SPI commands, and this sequence is controlled
* by the SPI chip driver. * by the SPI chip driver.
*/ */
if (trans.bytesout > cntlr.databytes) { if (trans.bytesout > cntlr->databytes) {
printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use" printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use"
" spi_crop_chunk()?\n"); " spi_crop_chunk()?\n");
return -1; return -1;
@ -629,28 +636,28 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
uint32_t data_length; uint32_t data_length;
/* SPI addresses are 24 bit only */ /* SPI addresses are 24 bit only */
writel_(trans.offset & 0x00FFFFFF, cntlr.addr); writel_(trans.offset & 0x00FFFFFF, cntlr->addr);
if (trans.bytesout) if (trans.bytesout)
data_length = min(trans.bytesout, cntlr.databytes); data_length = min(trans.bytesout, cntlr->databytes);
else else
data_length = min(trans.bytesin, cntlr.databytes); data_length = min(trans.bytesin, cntlr->databytes);
/* Program data into FDATA0 to N */ /* Program data into FDATA0 to N */
if (trans.bytesout) { if (trans.bytesout) {
write_reg(trans.out, cntlr.data, data_length); write_reg(trans.out, cntlr->data, data_length);
spi_use_out(&trans, data_length); spi_use_out(&trans, data_length);
if (with_address) if (with_address)
trans.offset += data_length; trans.offset += data_length;
} }
/* Add proper control fields' values */ /* Add proper control fields' values */
control &= ~((cntlr.databytes - 1) << 8); control &= ~((cntlr->databytes - 1) << 8);
control |= SPIC_DS; control |= SPIC_DS;
control |= (data_length - 1) << 8; control |= (data_length - 1) << 8;
/* write it */ /* write it */
writew_(control, cntlr.control); writew_(control, cntlr->control);
/* Wait for Cycle Done Status or Flash Cycle Error. */ /* Wait for Cycle Done Status or Flash Cycle Error. */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
@ -663,7 +670,7 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
} }
if (trans.bytesin) { if (trans.bytesin) {
read_reg(cntlr.data, trans.in, data_length); read_reg(cntlr->data, trans.in, data_length);
spi_use_in(&trans, data_length); spi_use_in(&trans, data_length);
if (with_address) if (with_address)
trans.offset += data_length; trans.offset += data_length;
@ -671,7 +678,7 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
} }
/* Clear atomic preop now that xfer is done */ /* Clear atomic preop now that xfer is done */
writew_(0, cntlr.preop); writew_(0, cntlr->preop);
return 0; return 0;
} }
@ -679,8 +686,9 @@ static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
/* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */ /* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */
static void ich_hwseq_set_addr(uint32_t addr) static void ich_hwseq_set_addr(uint32_t addr)
{ {
uint32_t addr_old = readl_(&cntlr.ich9_spi->faddr) & ~0x01FFFFFF; ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
writel_((addr & 0x01FFFFFF) | addr_old, &cntlr.ich9_spi->faddr); uint32_t addr_old = readl_(&cntlr->ich9_spi->faddr) & ~0x01FFFFFF;
writel_((addr & 0x01FFFFFF) | addr_old, &cntlr->ich9_spi->faddr);
} }
/* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals. /* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals.
@ -690,21 +698,22 @@ static void ich_hwseq_set_addr(uint32_t addr)
static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout, static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
unsigned int len) unsigned int len)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t hsfs; uint16_t hsfs;
uint32_t addr; uint32_t addr;
timeout /= 8; /* scale timeout duration to counter */ timeout /= 8; /* scale timeout duration to counter */
while ((((hsfs = readw_(&cntlr.ich9_spi->hsfs)) & while ((((hsfs = readw_(&cntlr->ich9_spi->hsfs)) &
(HSFS_FDONE | HSFS_FCERR)) == 0) && (HSFS_FDONE | HSFS_FCERR)) == 0) &&
--timeout) { --timeout) {
udelay(8); udelay(8);
} }
writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
if (!timeout) { if (!timeout) {
uint16_t hsfc; uint16_t hsfc;
addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF; addr = readl_(&cntlr->ich9_spi->faddr) & 0x01FFFFFF;
hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc = readw_(&cntlr->ich9_spi->hsfc);
printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and " printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and "
"0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
addr, addr + len - 1, addr, len - 1, addr, addr + len - 1, addr, len - 1,
@ -714,8 +723,8 @@ static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
if (hsfs & HSFS_FCERR) { if (hsfs & HSFS_FCERR) {
uint16_t hsfc; uint16_t hsfc;
addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF; addr = readl_(&cntlr->ich9_spi->faddr) & 0x01FFFFFF;
hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc = readw_(&cntlr->ich9_spi->hsfc);
printk(BIOS_ERR, "Transaction error between offset 0x%08x and " printk(BIOS_ERR, "Transaction error between offset 0x%08x and "
"0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n",
addr, addr + len - 1, addr, len - 1, addr, addr + len - 1, addr, len - 1,
@ -729,6 +738,7 @@ static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout,
static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset, static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset,
size_t len) size_t len)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
u32 start, end, erase_size; u32 start, end, erase_size;
int ret; int ret;
uint16_t hsfc; uint16_t hsfc;
@ -751,17 +761,17 @@ static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset,
while (offset < end) { while (offset < end) {
/* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */ /* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */
writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
ich_hwseq_set_addr(offset); ich_hwseq_set_addr(offset);
offset += erase_size; offset += erase_size;
hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc = readw_(&cntlr->ich9_spi->hsfc);
hsfc &= ~HSFC_FCYCLE; /* clear operation */ hsfc &= ~HSFC_FCYCLE; /* clear operation */
hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */ hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */
hsfc |= HSFC_FGO; /* start */ hsfc |= HSFC_FGO; /* start */
writew_(hsfc, &cntlr.ich9_spi->hsfc); writew_(hsfc, &cntlr->ich9_spi->hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, len)) if (ich_hwseq_wait_for_cycle_complete(timeout, len))
{ {
printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size); printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size);
@ -779,12 +789,13 @@ out:
static void ich_read_data(uint8_t *data, int len) static void ich_read_data(uint8_t *data, int len)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
int i; int i;
uint32_t temp32 = 0; uint32_t temp32 = 0;
for (i = 0; i < len; i++) { for (i = 0; i < len; i++) {
if ((i % 4) == 0) if ((i % 4) == 0)
temp32 = readl_(cntlr.data + i); temp32 = readl_(cntlr->data + i);
data[i] = (temp32 >> ((i % 4) * 8)) & 0xff; data[i] = (temp32 >> ((i % 4) * 8)) & 0xff;
} }
@ -793,6 +804,7 @@ static void ich_read_data(uint8_t *data, int len)
static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len, static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len,
void *buf) void *buf)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t hsfc; uint16_t hsfc;
uint16_t timeout = 100 * 60; uint16_t timeout = 100 * 60;
uint8_t block_len; uint8_t block_len;
@ -806,20 +818,20 @@ static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len,
} }
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
while (len > 0) { while (len > 0) {
block_len = min(len, cntlr.databytes); block_len = min(len, cntlr->databytes);
if (block_len > (~addr & 0xff)) if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1; block_len = (~addr & 0xff) + 1;
ich_hwseq_set_addr(addr); ich_hwseq_set_addr(addr);
hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc = readw_(&cntlr->ich9_spi->hsfc);
hsfc &= ~HSFC_FCYCLE; /* set read operation */ hsfc &= ~HSFC_FCYCLE; /* set read operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */ hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */ /* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */ hsfc |= HSFC_FGO; /* start */
writew_(hsfc, &cntlr.ich9_spi->hsfc); writew_(hsfc, &cntlr->ich9_spi->hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
return 1; return 1;
@ -838,6 +850,7 @@ static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len,
*/ */
static void ich_fill_data(const uint8_t *data, int len) static void ich_fill_data(const uint8_t *data, int len)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint32_t temp32 = 0; uint32_t temp32 = 0;
int i; int i;
@ -851,16 +864,17 @@ static void ich_fill_data(const uint8_t *data, int len)
temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8); temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8);
if ((i % 4) == 3) /* 32 bits are full, write them to regs. */ if ((i % 4) == 3) /* 32 bits are full, write them to regs. */
writel_(temp32, cntlr.data + (i - (i % 4))); writel_(temp32, cntlr->data + (i - (i % 4)));
} }
i--; i--;
if ((i % 4) != 3) /* Write remaining data to regs. */ if ((i % 4) != 3) /* Write remaining data to regs. */
writel_(temp32, cntlr.data + (i - (i % 4))); writel_(temp32, cntlr->data + (i - (i % 4)));
} }
static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len, static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len,
const void *buf) const void *buf)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint16_t hsfc; uint16_t hsfc;
uint16_t timeout = 100 * 60; uint16_t timeout = 100 * 60;
uint8_t block_len; uint8_t block_len;
@ -874,24 +888,24 @@ static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len,
} }
/* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */
writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); writew_(readw_(&cntlr->ich9_spi->hsfs), &cntlr->ich9_spi->hsfs);
while (len > 0) { while (len > 0) {
block_len = min(len, cntlr.databytes); block_len = min(len, cntlr->databytes);
if (block_len > (~addr & 0xff)) if (block_len > (~addr & 0xff))
block_len = (~addr & 0xff) + 1; block_len = (~addr & 0xff) + 1;
ich_hwseq_set_addr(addr); ich_hwseq_set_addr(addr);
ich_fill_data(buf, block_len); ich_fill_data(buf, block_len);
hsfc = readw_(&cntlr.ich9_spi->hsfc); hsfc = readw_(&cntlr->ich9_spi->hsfc);
hsfc &= ~HSFC_FCYCLE; /* clear operation */ hsfc &= ~HSFC_FCYCLE; /* clear operation */
hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */ hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */
hsfc &= ~HSFC_FDBC; /* clear byte count */ hsfc &= ~HSFC_FDBC; /* clear byte count */
/* set byte count */ /* set byte count */
hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC);
hsfc |= HSFC_FGO; /* start */ hsfc |= HSFC_FGO; /* start */
writew_(hsfc, &cntlr.ich9_spi->hsfc); writew_(hsfc, &cntlr->ich9_spi->hsfc);
if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) if (ich_hwseq_wait_for_cycle_complete(timeout, block_len))
{ {
@ -917,6 +931,7 @@ static const struct spi_flash_ops spi_flash_ops = {
static int spi_flash_programmer_probe(const struct spi_slave *spi, static int spi_flash_programmer_probe(const struct spi_slave *spi,
struct spi_flash *flash) struct spi_flash *flash)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
uint32_t flcomp; uint32_t flcomp;
if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX))
@ -930,7 +945,7 @@ static int spi_flash_programmer_probe(const struct spi_slave *spi,
flash->name = "Opaque HW-sequencing"; flash->name = "Opaque HW-sequencing";
ich_hwseq_set_addr (0); ich_hwseq_set_addr (0);
switch ((cntlr.hsfs >> 3) & 3) switch ((cntlr->hsfs >> 3) & 3)
{ {
case 0: case 0:
flash->sector_size = 256; flash->sector_size = 256;
@ -946,14 +961,14 @@ static int spi_flash_programmer_probe(const struct spi_slave *spi,
break; break;
} }
writel_ (0x1000, &cntlr.ich9_spi->fdoc); writel_ (0x1000, &cntlr->ich9_spi->fdoc);
flcomp = readl_(&cntlr.ich9_spi->fdod); flcomp = readl_(&cntlr->ich9_spi->fdod);
flash->size = 1 << (19 + (flcomp & 7)); flash->size = 1 << (19 + (flcomp & 7));
flash->ops = &spi_flash_ops; flash->ops = &spi_flash_ops;
if ((cntlr.hsfs & HSFS_FDV) && ((cntlr.flmap0 >> 8) & 3)) if ((cntlr->hsfs & HSFS_FDV) && ((cntlr->flmap0 >> 8) & 3))
flash->size += 1 << (19 + ((flcomp >> 3) & 7)); flash->size += 1 << (19 + ((flcomp >> 3) & 7));
printk (BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size); printk (BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size);
@ -999,22 +1014,23 @@ static u32 spi_fpr(u32 base, u32 limit)
static int spi_flash_protect(const struct spi_flash *flash, static int spi_flash_protect(const struct spi_flash *flash,
const struct region *region) const struct region *region)
{ {
ich_spi_controller *cntlr = car_get_var_ptr(&g_cntlr);
u32 start = region_offset(region); u32 start = region_offset(region);
u32 end = start + region_sz(region) - 1; u32 end = start + region_sz(region) - 1;
u32 reg; u32 reg;
int fpr; int fpr;
uint32_t *fpr_base; uint32_t *fpr_base;
fpr_base = cntlr.fpr; fpr_base = cntlr->fpr;
/* Find first empty FPR */ /* Find first empty FPR */
for (fpr = 0; fpr < cntlr.fpr_max; fpr++) { for (fpr = 0; fpr < cntlr->fpr_max; fpr++) {
reg = read32(&fpr_base[fpr]); reg = read32(&fpr_base[fpr]);
if (reg == 0) if (reg == 0)
break; break;
} }
if (fpr == cntlr.fpr_max) { if (fpr == cntlr->fpr_max) {
printk(BIOS_ERR, "ERROR: No SPI FPR free!\n"); printk(BIOS_ERR, "ERROR: No SPI FPR free!\n");
return -1; return -1;
} }