cbmem utility: Use mmap instead of fseek/fread

The kernel on Ubuntu 12.04LTS does not allow to use
fseek/fread to read the coreboot table at the end of
memory but will instead abort cbmem with a "Bad Address"
error.

Whether that is a security feature (some variation of
CONFIG_STRICT_DEVMEM) or a kernel bug is not  yet clear,
however using mmap works nicely.

Change-Id: I796b4cd2096fcdcc65c1361ba990cd467f13877e
Signed-off-by: Stefan Reinauer <reinauer@google.com>
Reviewed-on: http://review.coreboot.org/2097
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
Tested-by: build bot (Jenkins)
This commit is contained in:
Stefan Reinauer 2013-01-03 14:30:33 -08:00 committed by Ronald G. Minnich
parent 3d4762d450
commit 05cbce672e

View file

@ -17,14 +17,20 @@
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#include <errno.h>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <unistd.h> #include <unistd.h>
#include <getopt.h> #include <getopt.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#define MAP_BYTES (1024*1024)
#include "stdlib.h"
#include "boot/coreboot_tables.h" #include "boot/coreboot_tables.h"
typedef uint16_t u16; typedef uint16_t u16;
@ -36,8 +42,12 @@ typedef uint64_t u64;
#define CBMEM_VERSION "1.0" #define CBMEM_VERSION "1.0"
/* File descriptor used to access /dev/mem */ /* verbose output? */
static FILE* fd; static int verbose = 0;
#define debug(x...) if(verbose) printf(x)
/* File handle used to access /dev/mem */
static int fd;
/* /*
* calculate ip checksum (16 bit quantities) on a passed in buffer. In case * calculate ip checksum (16 bit quantities) on a passed in buffer. In case
@ -59,104 +69,113 @@ static u16 ipchcksum(const void *addr, unsigned size)
} }
/* /*
* Starting at 'offset' read 'size' bytes from the previously opened /dev/mem * Functions to map / unmap physical memory into virtual address space. These
* into the 'buffer'. * functions always maps 1MB at a time and can only map one area at once.
*
* Return zero on success or exit on any error.
*/ */
static int readmem(void* buffer, u32 offset, int size) static void *mapped_virtual;
static void *map_memory(u64 physical)
{ {
if (fseek(fd, offset, SEEK_SET)) { void *v;
fprintf(stderr, "fseek failed(%d) for offset %d\n", off_t p;
errno, offset); int page = getpagesize();
/* Mapped memory must be aligned to page size */
p = physical & ~(page - 1);
debug("Mapping 1MB of physical memory at %zx.\n", p);
v = mmap(NULL, MAP_BYTES, PROT_READ, MAP_SHARED, fd, p);
if (v == MAP_FAILED) {
fprintf(stderr, "Failed to mmap /dev/mem: %s\n",
strerror(errno));
exit(1); exit(1);
} }
if (fread(buffer, 1, size, fd) != size) {
fprintf(stderr, "failed (%d) to read %d bytes at 0x%x\n", /* Remember what we actually mapped ... */
errno, size, offset); mapped_virtual = v;
exit(1);
/* ... but return address to the physical memory that was requested */
v += physical & (page-1);
return v;
} }
return 0;
static void unmap_memory(void)
{
debug("Unmapping 1MB of virtual memory at %p.\n", mapped_virtual);
munmap(mapped_virtual, MAP_BYTES);
} }
/* /*
* Try finding the timestamp table starting from the passed in memory offset. * Try finding the timestamp table and coreboot cbmem console starting from the
* Could be called recursively in case a forwarding entry is found. * passed in memory offset. Could be called recursively in case a forwarding
* entry is found.
* *
* Returns pointer to a memory buffer containg the timestamp table or zero if * Returns pointer to a memory buffer containg the timestamp table or zero if
* none found. * none found.
*/ */
static const struct timestamp_table *find_tstamps(u64 address)
static struct lb_cbmem_ref timestamps;
static struct lb_cbmem_ref console;
static int parse_cbtable(u64 address)
{ {
int i; int i, found = 0;
void *buf;
debug("Looking for coreboot table at %lx\n", address);
buf = map_memory(address);
/* look at every 16 bytes within 4K of the base */ /* look at every 16 bytes within 4K of the base */
for (i = 0; i < 0x1000; i += 0x10) { for (i = 0; i < 0x1000; i += 0x10) {
void *buf; struct lb_header *lbh;
struct lb_header lbh;
struct lb_record* lbr_p; struct lb_record* lbr_p;
void *lbtable;
int j; int j;
readmem(&lbh, address + i, sizeof(lbh)); lbh = (struct lb_header *)(buf + i);
if (memcmp(lbh.signature, "LBIO", sizeof(lbh.signature)) || if (memcmp(lbh->signature, "LBIO", sizeof(lbh->signature)) ||
!lbh.header_bytes || !lbh->header_bytes ||
ipchcksum(&lbh, sizeof(lbh))) ipchcksum(lbh, sizeof(*lbh))) {
continue; continue;
/* good lb_header is found, try reading the table */
buf = malloc(lbh.table_bytes);
if (!buf) {
fprintf(stderr, "failed to allocate %d bytes\n",
lbh.table_bytes);
exit(1);
} }
lbtable = buf + i + lbh->header_bytes;
readmem(buf, address + i + lbh.header_bytes, lbh.table_bytes); if (ipchcksum(lbtable, lbh->table_bytes) !=
if (ipchcksum(buf, lbh.table_bytes) != lbh->table_checksum) {
lbh.table_checksum) { debug("Signature found, but wrong checksum.\n");
/* False positive or table corrupted... */
free(buf);
continue; continue;
} }
for (j = 0; j < lbh.table_bytes; j += lbr_p->size) { found = 1;
debug("Found!\n");
for (j = 0; j < lbh->table_bytes; j += lbr_p->size) {
/* look for the timestamp table */ /* look for the timestamp table */
lbr_p = (struct lb_record*) ((char *)buf + j); lbr_p = (struct lb_record*) ((char *)lbtable + j);
debug(" coreboot table entry 0x%02x\n", lbr_p->tag);
switch (lbr_p->tag) { switch (lbr_p->tag) {
case LB_TAG_TIMESTAMPS: { case LB_TAG_TIMESTAMPS: {
struct lb_cbmem_ref *cbmr_p = debug("Found timestamp table\n");
(struct lb_cbmem_ref *) lbr_p; timestamps = *(struct lb_cbmem_ref *) lbr_p;
int new_size; continue;
struct timestamp_table *tst_p;
u32 stamp_addr = (u32)
((uintptr_t)(cbmr_p->cbmem_addr));
readmem(buf, stamp_addr,
sizeof(struct timestamp_table));
tst_p = (struct timestamp_table *) buf;
new_size = sizeof(struct timestamp_table) +
tst_p->num_entries *
sizeof(struct timestamp_entry);
buf = realloc(buf, new_size);
if (!buf) {
fprintf(stderr,
"failed to reallocate %d bytes\n",
new_size);
exit(1);
} }
readmem(buf, stamp_addr, new_size); case LB_TAG_CBMEM_CONSOLE: {
return buf; debug("Found cbmem console\n");
console = *(struct lb_cbmem_ref *) lbr_p;
continue;
} }
case LB_TAG_FORWARD: { case LB_TAG_FORWARD: {
/* /*
* This is a forwarding entry - repeat the * This is a forwarding entry - repeat the
* search at the new address. * search at the new address.
*/ */
struct lb_forward *lbf_p = struct lb_forward lbf_p =
(struct lb_forward *) lbr_p; *(struct lb_forward *) lbr_p;
unmap_memory();
free(buf); return parse_cbtable(lbf_p.forward);
return find_tstamps(lbf_p->forward);
} }
default: default:
break; break;
@ -164,14 +183,16 @@ static const struct timestamp_table *find_tstamps(u64 address)
} }
} }
return 0; unmap_memory();
return found;
} }
/* /*
* read CPU frequency from a sysfs file, return an frequency in Kilohertz as * read CPU frequency from a sysfs file, return an frequency in Kilohertz as
* an int or exit on any error. * an int or exit on any error.
*/ */
static u64 get_cpu_freq_KHz() static u64 get_cpu_freq_KHz(void)
{ {
FILE *cpuf; FILE *cpuf;
char freqs[100]; char freqs[100];
@ -184,7 +205,8 @@ static u64 get_cpu_freq_KHz()
cpuf = fopen(freq_file, "r"); cpuf = fopen(freq_file, "r");
if (!cpuf) { if (!cpuf) {
fprintf(stderr, "Could not open %s\n", freq_file); fprintf(stderr, "Could not open %s: %s\n",
freq_file, strerror(errno));
exit(1); exit(1);
} }
@ -228,10 +250,19 @@ static void print_norm(u64 v, int comma)
} }
/* dump the timestamp table */ /* dump the timestamp table */
static void dump_timestamps(const struct timestamp_table *tst_p) static void dump_timestamps(void)
{ {
int i; int i;
u64 cpu_freq_MHz = get_cpu_freq_KHz() / 1000; u64 cpu_freq_MHz = get_cpu_freq_KHz() / 1000;
struct timestamp_table *tst_p;
if (timestamps.tag != LB_TAG_TIMESTAMPS) {
fprintf(stderr, "No timestamps found in coreboot table.\n");
return;
}
tst_p = (struct timestamp_table *)
map_memory((unsigned long)timestamps.cbmem_addr);
printf("%d entries total:\n\n", tst_p->num_entries); printf("%d entries total:\n\n", tst_p->num_entries);
for (i = 0; i < tst_p->num_entries; i++) { for (i = 0; i < tst_p->num_entries; i++) {
@ -248,6 +279,8 @@ static void dump_timestamps(const struct timestamp_table *tst_p)
} }
printf("\n"); printf("\n");
} }
unmap_memory();
} }
void print_version(void) void print_version(void)
@ -281,15 +314,21 @@ int main(int argc, char** argv)
int j; int j;
static const int possible_base_addresses[] = { 0, 0xf0000 }; static const int possible_base_addresses[] = { 0, 0xf0000 };
int print_timestamps = 1;
int opt, option_index = 0; int opt, option_index = 0;
static struct option long_options[] = { static struct option long_options[] = {
{"verbose", 0, 0, 'V'},
{"version", 0, 0, 'v'}, {"version", 0, 0, 'v'},
{"help", 0, 0, 'h'}, {"help", 0, 0, 'h'},
{0, 0, 0, 0} {0, 0, 0, 0}
}; };
while ((opt = getopt_long(argc, argv, "vh?", while ((opt = getopt_long(argc, argv, "Vvh?",
long_options, &option_index)) != EOF) { long_options, &option_index)) != EOF) {
switch (opt) { switch (opt) {
case 'V':
verbose = 1;
break;
case 'v': case 'v':
print_version(); print_version();
exit(0); exit(0);
@ -303,23 +342,22 @@ int main(int argc, char** argv)
} }
} }
fd = fopen("/dev/mem", "r"); fd = open("/dev/mem", O_RDONLY, 0);
if (!fd) { if (fd < 0) {
printf("failed to gain memory access\n"); fprintf(stderr, "Failed to gain memory access: %s\n",
strerror(errno));
return 1; return 1;
} }
/* Find and parse coreboot table */
for (j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) { for (j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
const struct timestamp_table * tst_p = if (parse_cbtable(possible_base_addresses[j]))
find_tstamps(possible_base_addresses[j]);
if (tst_p) {
dump_timestamps(tst_p);
free((void*)tst_p);
break; break;
} }
}
fclose(fd); if (print_timestamps)
dump_timestamps();
close(fd);
return 0; return 0;
} }