- Factoring of auto.c

- Implementation of fallback/normal support for the amd solo board
- Minor bugfix in romcc


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@867 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Eric Biederman 2003-06-11 21:55:00 +00:00
parent c927b022c2
commit 05f26fcb57
13 changed files with 1822 additions and 1629 deletions

View file

@ -53,6 +53,9 @@ static void wrmsr(unsigned long index, msr_t msr)
(((FN) & 0x07) << 8) | \
((WHERE) & 0xFF))
#define PCI_ID(VENDOR_ID, DEVICE_ID) \
((((DEVICE_ID) & 0xFFFF) << 16) | ((VENDOR_ID) & 0xFFFF))
static unsigned char pci_read_config8(unsigned addr)
{
outl(0x80000000 | (addr & ~3), 0xCF8);
@ -88,3 +91,16 @@ static void pci_write_config32(unsigned addr, unsigned int value)
outl(0x80000000 | (addr & ~3), 0xCF8);
outl(value, 0xCFC);
}
static unsigned pci_locate_device(unsigned pci_id, unsigned addr)
{
addr &= ~0xff;
for(; addr <= PCI_ADDR(255, 31, 7, 0); addr += PCI_ADDR(0,0,1,0)) {
unsigned int id;
id = pci_read_config32(addr);
if (id == pci_id) {
return addr;
}
}
return ~0U;
}

View file

@ -136,3 +136,12 @@ static void console_init(void)
" starting...\r\n";
print_info(console_test);
}
static void die(const char *str)
{
print_emerg(str);
do {
hlt();
} while(1);
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,26 @@
#define ASSEMBLY 1
#include <stdint.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include "arch/romcc_io.h"
#include "pc80/mc146818rtc_early.c"
#include "southbridge/amd/amd8111/amd8111_enable_rom.c"
#include "northbridge/amd/amdk8/early_ht.c"
static void main(void)
{
if (do_normal_boot()) {
/* Nothing special needs to be done to find bus 0 */
/* Allow the HT devices to be found */
enumerate_ht_chain();
/* Setup the 8111 */
amd8111_enable_rom();
/* Jump to the normal image */
asm("jmp __normal_image");
}
}

View file

@ -0,0 +1,591 @@
static void setup_coherent_ht_domain(void)
{
static const unsigned int register_values[] = {
/* Routing Table Node i
* F0:0x40 i = 0,
* F0:0x44 i = 1,
* F0:0x48 i = 2,
* F0:0x4c i = 3,
* F0:0x50 i = 4,
* F0:0x54 i = 5,
* F0:0x58 i = 6,
* F0:0x5c i = 7
* [ 0: 3] Request Route
* [0] Route to this node
* [1] Route to Link 0
* [2] Route to Link 1
* [3] Route to Link 2
* [11: 8] Response Route
* [0] Route to this node
* [1] Route to Link 0
* [2] Route to Link 1
* [3] Route to Link 2
* [19:16] Broadcast route
* [0] Route to this node
* [1] Route to Link 0
* [2] Route to Link 1
* [3] Route to Link 2
*/
PCI_ADDR(0, 0x18, 0, 0x40), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x44), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x48), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x4c), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x50), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x54), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x58), 0xfff0f0f0, 0x00010101,
PCI_ADDR(0, 0x18, 0, 0x5c), 0xfff0f0f0, 0x00010101,
/* Hypetransport Transaction Control Register
* F0:0x68
* [ 0: 0] Disable read byte probe
* 0 = Probes issues
* 1 = Probes not issued
* [ 1: 1] Disable Read Doubleword probe
* 0 = Probes issued
* 1 = Probes not issued
* [ 2: 2] Disable write byte probes
* 0 = Probes issued
* 1 = Probes not issued
* [ 3: 3] Disable Write Doubleword Probes
* 0 = Probes issued
* 1 = Probes not issued.
* [ 4: 4] Disable Memroy Controller Target Start
* 0 = TgtStart packets are generated
* 1 = TgtStart packets are not generated.
* [ 5: 5] CPU1 Enable
* 0 = Second CPU disabled or not present
* 1 = Second CPU enabled.
* [ 6: 6] CPU Request PassPW
* 0 = CPU requests do not pass posted writes
* 1 = CPU requests pass posted writes.
* [ 7: 7] CPU read Respons PassPW
* 0 = CPU Responses do not pass posted writes
* 1 = CPU responses pass posted writes.
* [ 8: 8] Disable Probe Memory Cancel
* 0 = Probes may generate MemCancels
* 1 = Probes may not generate MemCancels
* [ 9: 9] Disable Remote Probe Memory Cancel.
* 0 = Probes hitting dirty blocks generate memory cancel packets
* 1 = Only probed caches on the same node as the memory controller
* generate cancel packets.
* [10:10] Disable Fill Probe
* 0 = Probes issued for cache fills
* 1 = Probes not issued for cache fills.
* [11:11] Response PassPw
* 0 = Downstream response PassPW based on original request
* 1 = Downstream response PassPW set to 1
* [12:12] Change ISOC to Ordered
* 0 = Bit 1 of coherent HT RdSz/WrSz command used for iosynchronous prioritization
* 1 = Bit 1 of coherent HT RdSz/WrSz command used for ordering.
* [14:13] Buffer Release Priority select
* 00 = 64
* 01 = 16
* 10 = 8
* 11 = 2
* [15:15] Limit Coherent HT Configuration Space Range
* 0 = No coherent HT configuration space restrictions
* 1 = Limit coherent HT configuration space based on node count
* [16:16] Local Interrupt Conversion Enable.
* 0 = ExtInt/NMI interrups unaffected.
* 1 = ExtInt/NMI broadcat interrupts converted to LINT0/1
* [17:17] APIC Extended Broadcast Enable.
* 0 = APIC broadcast is 0F
* 1 = APIC broadcast is FF
* [18:18] APIC Extended ID Enable
* 0 = APIC ID is 4 bits.
* 1 = APIC ID is 8 bits.
* [19:19] APIC Extended Spurious Vector Enable
* 0 = Lower 4 bits of spurious vector are read-only 1111
* 1 = Lower 4 bits of spurious vecotr are writeable.
* [20:20] Sequence ID Source Node Enable
* 0 = Normal operation
* 1 = Keep SeqID on routed packets for debugging.
* [22:21] Downstream non-posted request limit
* 00 = No limit
* 01 = Limited to 1
* 10 = Limited to 4
* 11 = Limited to 8
* [23:23] RESERVED
* [25:24] Medium-Priority Bypass Count
* - Maximum # of times a medium priority access can pass a low
* priority access before Medium-Priority mode is disabled for one access.
* [27:26] High-Priority Bypass Count
* - Maximum # of times a high prioirty access can pass a medium or low
* priority access before High-prioirty mode is disabled for one access.
* [28:28] Enable High Priority CPU Reads
* 0 = Cpu reads are medium prioirty
* 1 = Cpu reads are high prioirty
* [29:29] Disable Low Priority Writes
* 0 = Non-isochronous writes are low priority
* 1 = Non-isochronous writes are medium prioirty
* [30:30] Disable High Priority Isochronous writes
* 0 = Isochronous writes are high priority
* 1 = Isochronous writes are medium priority
* [31:31] Disable Medium Priority Isochronous writes
* 0 = Isochronous writes are medium are high
* 1 = With bit 30 set makes Isochrouns writes low priority.
*/
PCI_ADDR(0, 0x18, 0, 0x68), 0x00800000, 0x0f00840f,
/* HT Initialization Control Register
* F0:0x6C
* [ 0: 0] Routing Table Disable
* 0 = Packets are routed according to routing tables
* 1 = Packets are routed according to the default link field
* [ 1: 1] Request Disable (BSP should clear this)
* 0 = Request packets may be generated
* 1 = Request packets may not be generated.
* [ 3: 2] Default Link (Read-only)
* 00 = LDT0
* 01 = LDT1
* 10 = LDT2
* 11 = CPU on same node
* [ 4: 4] Cold Reset
* - Scratch bit cleared by a cold reset
* [ 5: 5] BIOS Reset Detect
* - Scratch bit cleared by a cold reset
* [ 6: 6] INIT Detect
* - Scratch bit cleared by a warm or cold reset not by an INIT
*
*/
PCI_ADDR(0, 0x18, 0, 0x6C), 0xffffff8c, 0x00000000 | (1 << 6) |(1 << 5)| (1 << 4),
/* LDTi Capabilities Registers
* F0:0x80 i = 0,
* F0:0xA0 i = 1,
* F0:0xC0 i = 2,
*/
/* LDTi Link Control Registrs
* F0:0x84 i = 0,
* F0:0xA4 i = 1,
* F0:0xC4 i = 2,
* [ 1: 1] CRC Flood Enable
* 0 = Do not generate sync packets on CRC error
* 1 = Generate sync packets on CRC error
* [ 2: 2] CRC Start Test (Read-Only)
* [ 3: 3] CRC Force Frame Error
* 0 = Do not generate bad CRC
* 1 = Generate bad CRC
* [ 4: 4] Link Failure
* 0 = No link failure detected
* 1 = Link failure detected
* [ 5: 5] Initialization Complete
* 0 = Initialization not complete
* 1 = Initialization complete
* [ 6: 6] Receiver off
* 0 = Recevier on
* 1 = Receiver off
* [ 7: 7] Transmitter Off
* 0 = Transmitter on
* 1 = Transmitter off
* [ 9: 8] CRC_Error
* 00 = No error
* [0] = 1 Error on byte lane 0
* [1] = 1 Error on byte lane 1
* [12:12] Isochrnous Enable (Read-Only)
* [13:13] HT Stop Tristate Enable
* 0 = Driven during an LDTSTOP_L
* 1 = Tristated during and LDTSTOP_L
* [14:14] Extended CTL Time
* 0 = CTL is asserted for 16 bit times during link initialization
* 1 = CTL is asserted for 50us during link initialization
* [18:16] Max Link Width In (Read-Only?)
* 000 = 8 bit link
* 001 = 16bit link
* [19:19] Doubleword Flow Control in (Read-Only)
* 0 = This link does not support doubleword flow control
* 1 = This link supports doubleword flow control
* [22:20] Max Link Width Out (Read-Only?)
* 000 = 8 bit link
* 001 = 16bit link
* [23:23] Doubleworld Flow Control out (Read-Only)
* 0 = This link does not support doubleword flow control
* 1 = This link supports doubleworkd flow control
* [26:24] Link Width In
* 000 = Use 8 bits
* 001 = Use 16 bits
* 010 = reserved
* 011 = Use 32 bits
* 100 = Use 2 bits
* 101 = Use 4 bits
* 110 = reserved
* 111 = Link physically not connected
* [27:27] Doubleword Flow Control In Enable
* 0 = Doubleword flow control disabled
* 1 = Doubleword flow control enabled (Not currently supported)
* [30:28] Link Width Out
* 000 = Use 8 bits
* 001 = Use 16 bits
* 010 = reserved
* 011 = Use 32 bits
* 100 = Use 2 bits
* 101 = Use 4 bits
* 110 = reserved
* 111 = Link physically not connected
* [31:31] Doubleworld Flow Control Out Enable
* 0 = Doubleworld flow control disabled
* 1 = Doubleword flow control enabled (Not currently supported)
*/
PCI_ADDR(0, 0x18, 0, 0x84), 0x00009c05, 0x11110020,
/* LDTi Frequency/Revision Registers
* F0:0x88 i = 0,
* F0:0xA8 i = 1,
* F0:0xC8 i = 2,
* [ 4: 0] Minor Revision
* Contains the HT Minor revision
* [ 7: 5] Major Revision
* Contains the HT Major revision
* [11: 8] Link Frequency (Takes effect the next time the link is reconnected)
* 0000 = 200Mhz
* 0001 = reserved
* 0010 = 400Mhz
* 0011 = reserved
* 0100 = 600Mhz
* 0101 = 800Mhz
* 0110 = 1000Mhz
* 0111 = reserved
* 1000 = reserved
* 1001 = reserved
* 1010 = reserved
* 1011 = reserved
* 1100 = reserved
* 1101 = reserved
* 1110 = reserved
* 1111 = 100 Mhz
* [15:12] Error (Not currently Implemented)
* [31:16] Indicates the frequency capabilities of the link
* [16] = 1 encoding 0000 of freq supported
* [17] = 1 encoding 0001 of freq supported
* [18] = 1 encoding 0010 of freq supported
* [19] = 1 encoding 0011 of freq supported
* [20] = 1 encoding 0100 of freq supported
* [21] = 1 encoding 0101 of freq supported
* [22] = 1 encoding 0110 of freq supported
* [23] = 1 encoding 0111 of freq supported
* [24] = 1 encoding 1000 of freq supported
* [25] = 1 encoding 1001 of freq supported
* [26] = 1 encoding 1010 of freq supported
* [27] = 1 encoding 1011 of freq supported
* [28] = 1 encoding 1100 of freq supported
* [29] = 1 encoding 1101 of freq supported
* [30] = 1 encoding 1110 of freq supported
* [31] = 1 encoding 1111 of freq supported
*/
PCI_ADDR(0, 0x18, 0, 0x88), 0xfffff0ff, 0x00000200,
/* LDTi Feature Capability
* F0:0x8C i = 0,
* F0:0xAC i = 1,
* F0:0xCC i = 2,
*/
/* LDTi Buffer Count Registers
* F0:0x90 i = 0,
* F0:0xB0 i = 1,
* F0:0xD0 i = 2,
*/
/* LDTi Bus Number Registers
* F0:0x94 i = 0,
* F0:0xB4 i = 1,
* F0:0xD4 i = 2,
* For NonCoherent HT specifies the bus number downstream (behind the host bridge)
* [ 0: 7] Primary Bus Number
* [15: 8] Secondary Bus Number
* [23:15] Subordiante Bus Number
* [31:24] reserved
*/
PCI_ADDR(0, 0x18, 0, 0x94), 0xff000000, 0x00ff0000,
/* LDTi Type Registers
* F0:0x98 i = 0,
* F0:0xB8 i = 1,
* F0:0xD8 i = 2,
*/
/* Careful set limit registers before base registers which contain the enables */
/* DRAM Limit i Registers
* F1:0x44 i = 0
* F1:0x4C i = 1
* F1:0x54 i = 2
* F1:0x5C i = 3
* F1:0x64 i = 4
* F1:0x6C i = 5
* F1:0x74 i = 6
* F1:0x7C i = 7
* [ 2: 0] Destination Node ID
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 7: 3] Reserved
* [10: 8] Interleave select
* specifies the values of A[14:12] to use with interleave enable.
* [15:11] Reserved
* [31:16] DRAM Limit Address i Bits 39-24
* This field defines the upper address bits of a 40 bit address
* that define the end of the DRAM region.
*/
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x003f0000,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x001f0000,
#endif
PCI_ADDR(0, 0x18, 1, 0x4C), 0x0000f8f8, 0x00000001,
PCI_ADDR(0, 0x18, 1, 0x54), 0x0000f8f8, 0x00000002,
PCI_ADDR(0, 0x18, 1, 0x5C), 0x0000f8f8, 0x00000003,
PCI_ADDR(0, 0x18, 1, 0x64), 0x0000f8f8, 0x00000004,
PCI_ADDR(0, 0x18, 1, 0x6C), 0x0000f8f8, 0x00000005,
PCI_ADDR(0, 0x18, 1, 0x74), 0x0000f8f8, 0x00000006,
PCI_ADDR(0, 0x18, 1, 0x7C), 0x0000f8f8, 0x00000007,
/* DRAM Base i Registers
* F1:0x40 i = 0
* F1:0x48 i = 1
* F1:0x50 i = 2
* F1:0x58 i = 3
* F1:0x60 i = 4
* F1:0x68 i = 5
* F1:0x70 i = 6
* F1:0x78 i = 7
* [ 0: 0] Read Enable
* 0 = Reads Disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes Disabled
* 1 = Writes Enabled
* [ 7: 2] Reserved
* [10: 8] Interleave Enable
* 000 = No interleave
* 001 = Interleave on A[12] (2 nodes)
* 010 = reserved
* 011 = Interleave on A[12] and A[14] (4 nodes)
* 100 = reserved
* 101 = reserved
* 110 = reserved
* 111 = Interleve on A[12] and A[13] and A[14] (8 nodes)
* [15:11] Reserved
* [13:16] DRAM Base Address i Bits 39-24
* This field defines the upper address bits of a 40-bit address
* that define the start of the DRAM region.
*/
PCI_ADDR(0, 0x18, 1, 0x40), 0x0000f8fc, 0x00000003,
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00400000,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00200000,
#endif
/* Memory-Mapped I/O Limit i Registers
* F1:0x84 i = 0
* F1:0x8C i = 1
* F1:0x94 i = 2
* F1:0x9C i = 3
* F1:0xA4 i = 4
* F1:0xAC i = 5
* F1:0xB4 i = 6
* F1:0xBC i = 7
* [ 2: 0] Destination Node ID
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 3: 3] Reserved
* [ 5: 4] Destination Link ID
* 00 = Link 0
* 01 = Link 1
* 10 = Link 2
* 11 = Reserved
* [ 6: 6] Reserved
* [ 7: 7] Non-Posted
* 0 = CPU writes may be posted
* 1 = CPU writes must be non-posted
* [31: 8] Memory-Mapped I/O Limit Address i (39-16)
* This field defines the upp adddress bits of a 40-bit address that
* defines the end of a memory-mapped I/O region n
*/
PCI_ADDR(0, 0x18, 1, 0x84), 0x00000048, 0x00e1ff00,
PCI_ADDR(0, 0x18, 1, 0x8C), 0x00000048, 0x00dfff00,
PCI_ADDR(0, 0x18, 1, 0x94), 0x00000048, 0x00e3ff00,
PCI_ADDR(0, 0x18, 1, 0x9C), 0x00000048, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xA4), 0x00000048, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xAC), 0x00000048, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xB4), 0x00000048, 0x00000b00,
PCI_ADDR(0, 0x18, 1, 0xBC), 0x00000048, 0x00fe0b00,
/* Memory-Mapped I/O Base i Registers
* F1:0x80 i = 0
* F1:0x88 i = 1
* F1:0x90 i = 2
* F1:0x98 i = 3
* F1:0xA0 i = 4
* F1:0xA8 i = 5
* F1:0xB0 i = 6
* F1:0xB8 i = 7
* [ 0: 0] Read Enable
* 0 = Reads disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes disabled
* 1 = Writes Enabled
* [ 2: 2] Cpu Disable
* 0 = Cpu can use this I/O range
* 1 = Cpu requests do not use this I/O range
* [ 3: 3] Lock
* 0 = base/limit registers i are read/write
* 1 = base/limit registers i are read-only
* [ 7: 4] Reserved
* [31: 8] Memory-Mapped I/O Base Address i (39-16)
* This field defines the upper address bits of a 40bit address
* that defines the start of memory-mapped I/O region i
*/
PCI_ADDR(0, 0x18, 1, 0x80), 0x000000f0, 0x00e00003,
PCI_ADDR(0, 0x18, 1, 0x88), 0x000000f0, 0x00d80003,
PCI_ADDR(0, 0x18, 1, 0x90), 0x000000f0, 0x00e20003,
PCI_ADDR(0, 0x18, 1, 0x98), 0x000000f0, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xA0), 0x000000f0, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xA8), 0x000000f0, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xB0), 0x000000f0, 0x00000a03,
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 1, 0xB8), 0x000000f0, 0x00400003,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 1, 0xB8), 0x000000f0, 0x00200003,
#endif
/* PCI I/O Limit i Registers
* F1:0xC4 i = 0
* F1:0xCC i = 1
* F1:0xD4 i = 2
* F1:0xDC i = 3
* [ 2: 0] Destination Node ID
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 3: 3] Reserved
* [ 5: 4] Destination Link ID
* 00 = Link 0
* 01 = Link 1
* 10 = Link 2
* 11 = reserved
* [11: 6] Reserved
* [24:12] PCI I/O Limit Address i
* This field defines the end of PCI I/O region n
* [31:25] Reserved
*/
PCI_ADDR(0, 0x18, 1, 0xC4), 0xFE000FC8, 0x0000d000,
PCI_ADDR(0, 0x18, 1, 0xCC), 0xFE000FC8, 0x000ff000,
PCI_ADDR(0, 0x18, 1, 0xD4), 0xFE000FC8, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xDC), 0xFE000FC8, 0x00000000,
/* PCI I/O Base i Registers
* F1:0xC0 i = 0
* F1:0xC8 i = 1
* F1:0xD0 i = 2
* F1:0xD8 i = 3
* [ 0: 0] Read Enable
* 0 = Reads Disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes Disabled
* 1 = Writes Enabled
* [ 3: 2] Reserved
* [ 4: 4] VGA Enable
* 0 = VGA matches Disabled
* 1 = matches all address < 64K and where A[9:0] is in the
* range 3B0-3BB or 3C0-3DF independen of the base & limit registers
* [ 5: 5] ISA Enable
* 0 = ISA matches Disabled
* 1 = Blocks address < 64K and in the last 768 bytes of eack 1K block
* from matching agains this base/limit pair
* [11: 6] Reserved
* [24:12] PCI I/O Base i
* This field defines the start of PCI I/O region n
* [31:25] Reserved
*/
PCI_ADDR(0, 0x18, 1, 0xC0), 0xFE000FCC, 0x0000d003,
PCI_ADDR(0, 0x18, 1, 0xC8), 0xFE000FCC, 0x00001013,
PCI_ADDR(0, 0x18, 1, 0xD0), 0xFE000FCC, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xD8), 0xFE000FCC, 0x00000000,
/* Config Base and Limit i Registers
* F1:0xE0 i = 0
* F1:0xE4 i = 1
* F1:0xE8 i = 2
* F1:0xEC i = 3
* [ 0: 0] Read Enable
* 0 = Reads Disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes Disabled
* 1 = Writes Enabled
* [ 2: 2] Device Number Compare Enable
* 0 = The ranges are based on bus number
* 1 = The ranges are ranges of devices on bus 0
* [ 3: 3] Reserved
* [ 6: 4] Destination Node
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 7: 7] Reserved
* [ 9: 8] Destination Link
* 00 = Link 0
* 01 = Link 1
* 10 = Link 2
* 11 - Reserved
* [15:10] Reserved
* [23:16] Bus Number Base i
* This field defines the lowest bus number in configuration region i
* [31:24] Bus Number Limit i
* This field defines the highest bus number in configuration regin i
*/
PCI_ADDR(0, 0x18, 1, 0xE0), 0x0000FC88, 0xff000003,
PCI_ADDR(0, 0x18, 1, 0xE4), 0x0000FC88, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xE8), 0x0000FC88, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xEC), 0x0000FC88, 0x00000000,
};
int i;
int max;
print_debug("setting up coherent ht domain....\r\n");
max = sizeof(register_values)/sizeof(register_values[0]);
for(i = 0; i < max; i += 3) {
unsigned long reg;
#if 0
print_debug_hex32(register_values[i]);
print_debug(" <-");
print_debug_hex32(register_values[i+2]);
print_debug("\r\n");
#endif
reg = pci_read_config32(register_values[i]);
reg &= register_values[i+1];
reg |= register_values[i+2] & ~register_values[i+1];
pci_write_config32(register_values[i], reg);
}
print_debug("done.\r\n");
}

View file

@ -0,0 +1,49 @@
static void enumerate_ht_chain(void)
{
/* Assumption the HT chain that is bus 0 has the HT I/O Hub on it.
* On most boards this just happens. If a cpu has multiple
* non Coherent links the appropriate bus registers for the
* links needs to be programed to point at bus 0.
*/
unsigned next_unitid, last_unitid;;
next_unitid = 1;
do {
uint32_t id;
uint8_t hdr_type, pos;
last_unitid = next_unitid;
id = pci_read_config32(PCI_ADDR(0,0,0,PCI_VENDOR_ID));
/* If the chain is enumerated quit */
if (((id & 0xffff) == 0x0000) || ((id & 0xffff) == 0xffff) ||
(((id >> 16) & 0xffff) == 0xffff) ||
(((id >> 16) & 0xffff) == 0x0000)) {
break;
}
hdr_type = pci_read_config8(PCI_ADDR(0,0,0,PCI_HEADER_TYPE));
pos = 0;
hdr_type &= 0x7f;
if ((hdr_type == PCI_HEADER_TYPE_NORMAL) ||
(hdr_type == PCI_HEADER_TYPE_BRIDGE)) {
pos = pci_read_config8(PCI_ADDR(0,0,0, PCI_CAPABILITY_LIST));
}
while(pos != 0) {
uint8_t cap;
cap = pci_read_config8(PCI_ADDR(0,0,0, pos + PCI_CAP_LIST_ID));
if (cap == PCI_CAP_ID_HT) {
uint16_t flags;
flags = pci_read_config16(PCI_ADDR(0,0,0, pos + PCI_CAP_FLAGS));
if ((flags >> 13) == 0) {
unsigned count;
flags &= ~0x1f;
flags |= next_unitid & 0x1f;
count = (flags >> 5) & 0x1f;
pci_write_config16(PCI_ADDR(0, 0, 0, pos + PCI_CAP_FLAGS), flags);
next_unitid += count;
break;
}
}
pos = pci_read_config8(PCI_ADDR(0, 0, 0, pos + PCI_CAP_LIST_NEXT));
}
} while((last_unitid != next_unitid) && (next_unitid <= 0x1f));
}

View file

@ -0,0 +1,792 @@
#define MEMORY_512MB 0 /* SuSE Solo configuration */
#define MEMORY_1024MB 1 /* LNXI Solo configuration */
static void sdram_set_registers(void)
{
static const unsigned int register_values[] = {
/* Careful set limit registers before base registers which contain the enables */
/* DRAM Limit i Registers
* F1:0x44 i = 0
* F1:0x4C i = 1
* F1:0x54 i = 2
* F1:0x5C i = 3
* F1:0x64 i = 4
* F1:0x6C i = 5
* F1:0x74 i = 6
* F1:0x7C i = 7
* [ 2: 0] Destination Node ID
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 7: 3] Reserved
* [10: 8] Interleave select
* specifies the values of A[14:12] to use with interleave enable.
* [15:11] Reserved
* [31:16] DRAM Limit Address i Bits 39-24
* This field defines the upper address bits of a 40 bit address
* that define the end of the DRAM region.
*/
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x003f0000,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x001f0000,
#endif
PCI_ADDR(0, 0x18, 1, 0x4C), 0x0000f8f8, 0x00000001,
PCI_ADDR(0, 0x18, 1, 0x54), 0x0000f8f8, 0x00000002,
PCI_ADDR(0, 0x18, 1, 0x5C), 0x0000f8f8, 0x00000003,
PCI_ADDR(0, 0x18, 1, 0x64), 0x0000f8f8, 0x00000004,
PCI_ADDR(0, 0x18, 1, 0x6C), 0x0000f8f8, 0x00000005,
PCI_ADDR(0, 0x18, 1, 0x74), 0x0000f8f8, 0x00000006,
PCI_ADDR(0, 0x18, 1, 0x7C), 0x0000f8f8, 0x00000007,
/* DRAM Base i Registers
* F1:0x40 i = 0
* F1:0x48 i = 1
* F1:0x50 i = 2
* F1:0x58 i = 3
* F1:0x60 i = 4
* F1:0x68 i = 5
* F1:0x70 i = 6
* F1:0x78 i = 7
* [ 0: 0] Read Enable
* 0 = Reads Disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes Disabled
* 1 = Writes Enabled
* [ 7: 2] Reserved
* [10: 8] Interleave Enable
* 000 = No interleave
* 001 = Interleave on A[12] (2 nodes)
* 010 = reserved
* 011 = Interleave on A[12] and A[14] (4 nodes)
* 100 = reserved
* 101 = reserved
* 110 = reserved
* 111 = Interleve on A[12] and A[13] and A[14] (8 nodes)
* [15:11] Reserved
* [13:16] DRAM Base Address i Bits 39-24
* This field defines the upper address bits of a 40-bit address
* that define the start of the DRAM region.
*/
PCI_ADDR(0, 0x18, 1, 0x40), 0x0000f8fc, 0x00000003,
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00400000,
PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00400000,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00200000,
PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00200000,
#endif
/* Memory-Mapped I/O Limit i Registers
* F1:0x84 i = 0
* F1:0x8C i = 1
* F1:0x94 i = 2
* F1:0x9C i = 3
* F1:0xA4 i = 4
* F1:0xAC i = 5
* F1:0xB4 i = 6
* F1:0xBC i = 7
* [ 2: 0] Destination Node ID
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 3: 3] Reserved
* [ 5: 4] Destination Link ID
* 00 = Link 0
* 01 = Link 1
* 10 = Link 2
* 11 = Reserved
* [ 6: 6] Reserved
* [ 7: 7] Non-Posted
* 0 = CPU writes may be posted
* 1 = CPU writes must be non-posted
* [31: 8] Memory-Mapped I/O Limit Address i (39-16)
* This field defines the upp adddress bits of a 40-bit address that
* defines the end of a memory-mapped I/O region n
*/
PCI_ADDR(0, 0x18, 1, 0x84), 0x00000048, 0x00e1ff00,
PCI_ADDR(0, 0x18, 1, 0x8C), 0x00000048, 0x00dfff00,
PCI_ADDR(0, 0x18, 1, 0x94), 0x00000048, 0x00e3ff00,
PCI_ADDR(0, 0x18, 1, 0x9C), 0x00000048, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xA4), 0x00000048, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xAC), 0x00000048, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xB4), 0x00000048, 0x00000b00,
PCI_ADDR(0, 0x18, 1, 0xBC), 0x00000048, 0x00fe0b00,
/* Memory-Mapped I/O Base i Registers
* F1:0x80 i = 0
* F1:0x88 i = 1
* F1:0x90 i = 2
* F1:0x98 i = 3
* F1:0xA0 i = 4
* F1:0xA8 i = 5
* F1:0xB0 i = 6
* F1:0xB8 i = 7
* [ 0: 0] Read Enable
* 0 = Reads disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes disabled
* 1 = Writes Enabled
* [ 2: 2] Cpu Disable
* 0 = Cpu can use this I/O range
* 1 = Cpu requests do not use this I/O range
* [ 3: 3] Lock
* 0 = base/limit registers i are read/write
* 1 = base/limit registers i are read-only
* [ 7: 4] Reserved
* [31: 8] Memory-Mapped I/O Base Address i (39-16)
* This field defines the upper address bits of a 40bit address
* that defines the start of memory-mapped I/O region i
*/
PCI_ADDR(0, 0x18, 1, 0x80), 0x000000f0, 0x00e00003,
PCI_ADDR(0, 0x18, 1, 0x88), 0x000000f0, 0x00d80003,
PCI_ADDR(0, 0x18, 1, 0x90), 0x000000f0, 0x00e20003,
PCI_ADDR(0, 0x18, 1, 0x98), 0x000000f0, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xA0), 0x000000f0, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xA8), 0x000000f0, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xB0), 0x000000f0, 0x00000a03,
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 1, 0xB8), 0x000000f0, 0x00400003,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 1, 0xB8), 0x000000f0, 0x00200003,
#endif
/* PCI I/O Limit i Registers
* F1:0xC4 i = 0
* F1:0xCC i = 1
* F1:0xD4 i = 2
* F1:0xDC i = 3
* [ 2: 0] Destination Node ID
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 3: 3] Reserved
* [ 5: 4] Destination Link ID
* 00 = Link 0
* 01 = Link 1
* 10 = Link 2
* 11 = reserved
* [11: 6] Reserved
* [24:12] PCI I/O Limit Address i
* This field defines the end of PCI I/O region n
* [31:25] Reserved
*/
PCI_ADDR(0, 0x18, 1, 0xC4), 0xFE000FC8, 0x0000d000,
PCI_ADDR(0, 0x18, 1, 0xCC), 0xFE000FC8, 0x000ff000,
PCI_ADDR(0, 0x18, 1, 0xD4), 0xFE000FC8, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xDC), 0xFE000FC8, 0x00000000,
/* PCI I/O Base i Registers
* F1:0xC0 i = 0
* F1:0xC8 i = 1
* F1:0xD0 i = 2
* F1:0xD8 i = 3
* [ 0: 0] Read Enable
* 0 = Reads Disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes Disabled
* 1 = Writes Enabled
* [ 3: 2] Reserved
* [ 4: 4] VGA Enable
* 0 = VGA matches Disabled
* 1 = matches all address < 64K and where A[9:0] is in the
* range 3B0-3BB or 3C0-3DF independen of the base & limit registers
* [ 5: 5] ISA Enable
* 0 = ISA matches Disabled
* 1 = Blocks address < 64K and in the last 768 bytes of eack 1K block
* from matching agains this base/limit pair
* [11: 6] Reserved
* [24:12] PCI I/O Base i
* This field defines the start of PCI I/O region n
* [31:25] Reserved
*/
PCI_ADDR(0, 0x18, 1, 0xC0), 0xFE000FCC, 0x0000d003,
PCI_ADDR(0, 0x18, 1, 0xC8), 0xFE000FCC, 0x00001013,
PCI_ADDR(0, 0x18, 1, 0xD0), 0xFE000FCC, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xD8), 0xFE000FCC, 0x00000000,
/* Config Base and Limit i Registers
* F1:0xE0 i = 0
* F1:0xE4 i = 1
* F1:0xE8 i = 2
* F1:0xEC i = 3
* [ 0: 0] Read Enable
* 0 = Reads Disabled
* 1 = Reads Enabled
* [ 1: 1] Write Enable
* 0 = Writes Disabled
* 1 = Writes Enabled
* [ 2: 2] Device Number Compare Enable
* 0 = The ranges are based on bus number
* 1 = The ranges are ranges of devices on bus 0
* [ 3: 3] Reserved
* [ 6: 4] Destination Node
* 000 = Node 0
* 001 = Node 1
* 010 = Node 2
* 011 = Node 3
* 100 = Node 4
* 101 = Node 5
* 110 = Node 6
* 111 = Node 7
* [ 7: 7] Reserved
* [ 9: 8] Destination Link
* 00 = Link 0
* 01 = Link 1
* 10 = Link 2
* 11 - Reserved
* [15:10] Reserved
* [23:16] Bus Number Base i
* This field defines the lowest bus number in configuration region i
* [31:24] Bus Number Limit i
* This field defines the highest bus number in configuration regin i
*/
PCI_ADDR(0, 0x18, 1, 0xE0), 0x0000FC88, 0xff000003,
PCI_ADDR(0, 0x18, 1, 0xE4), 0x0000FC88, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xE8), 0x0000FC88, 0x00000000,
PCI_ADDR(0, 0x18, 1, 0xEC), 0x0000FC88, 0x00000000,
/* DRAM CS Base Address i Registers
* F2:0x40 i = 0
* F2:0x44 i = 1
* F2:0x48 i = 2
* F2:0x4C i = 3
* F2:0x50 i = 4
* F2:0x54 i = 5
* F2:0x58 i = 6
* F2:0x5C i = 7
* [ 0: 0] Chip-Select Bank Enable
* 0 = Bank Disabled
* 1 = Bank Enabled
* [ 8: 1] Reserved
* [15: 9] Base Address (19-13)
* An optimization used when all DIMM are the same size...
* [20:16] Reserved
* [31:21] Base Address (35-25)
* This field defines the top 11 addresses bit of a 40-bit
* address that define the memory address space. These
* bits decode 32-MByte blocks of memory.
*/
PCI_ADDR(0, 0x18, 2, 0x40), 0x001f01fe, 0x00000001,
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 2, 0x44), 0x001f01fe, 0x01000001,
PCI_ADDR(0, 0x18, 2, 0x48), 0x001f01fe, 0x02000001,
PCI_ADDR(0, 0x18, 2, 0x4C), 0x001f01fe, 0x03000001,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 2, 0x44), 0x001f01fe, 0x00800001,
PCI_ADDR(0, 0x18, 2, 0x48), 0x001f01fe, 0x01000001,
PCI_ADDR(0, 0x18, 2, 0x4C), 0x001f01fe, 0x01800001,
#endif
PCI_ADDR(0, 0x18, 2, 0x50), 0x001f01fe, 0x00000000,
PCI_ADDR(0, 0x18, 2, 0x54), 0x001f01fe, 0x00000000,
PCI_ADDR(0, 0x18, 2, 0x58), 0x001f01fe, 0x00000000,
PCI_ADDR(0, 0x18, 2, 0x5C), 0x001f01fe, 0x00000000,
/* DRAM CS Mask Address i Registers
* F2:0x60 i = 0
* F2:0x64 i = 1
* F2:0x68 i = 2
* F2:0x6C i = 3
* F2:0x70 i = 4
* F2:0x74 i = 5
* F2:0x78 i = 6
* F2:0x7C i = 7
* Select bits to exclude from comparison with the DRAM Base address register.
* [ 8: 0] Reserved
* [15: 9] Address Mask (19-13)
* Address to be excluded from the optimized case
* [20:16] Reserved
* [29:21] Address Mask (33-25)
* The bits with an address mask of 1 are excluded from address comparison
* [31:30] Reserved
*
*/
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 2, 0x60), 0xC01f01ff, 0x00e0fe00,
PCI_ADDR(0, 0x18, 2, 0x64), 0xC01f01ff, 0x00e0fe00,
PCI_ADDR(0, 0x18, 2, 0x68), 0xC01f01ff, 0x00e0fe00,
PCI_ADDR(0, 0x18, 2, 0x6C), 0xC01f01ff, 0x00e0fe00,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 2, 0x60), 0xC01f01ff, 0x0060fe00,
PCI_ADDR(0, 0x18, 2, 0x64), 0xC01f01ff, 0x0060fe00,
PCI_ADDR(0, 0x18, 2, 0x68), 0xC01f01ff, 0x0060fe00,
PCI_ADDR(0, 0x18, 2, 0x6C), 0xC01f01ff, 0x0060fe00,
#endif
PCI_ADDR(0, 0x18, 2, 0x70), 0xC01f01ff, 0x00000000,
PCI_ADDR(0, 0x18, 2, 0x74), 0xC01f01ff, 0x00000000,
PCI_ADDR(0, 0x18, 2, 0x78), 0xC01f01ff, 0x00000000,
PCI_ADDR(0, 0x18, 2, 0x7C), 0xC01f01ff, 0x00000000,
/* DRAM Bank Address Mapping Register
* F2:0x80
* Specify the memory module size
* [ 2: 0] CS1/0
* [ 6: 4] CS3/2
* [10: 8] CS5/4
* [14:12] CS7/6
* 000 = 32Mbyte (Rows = 12 & Col = 8)
* 001 = 64Mbyte (Rows = 12 & Col = 9)
* 010 = 128Mbyte (Rows = 13 & Col = 9)|(Rows = 12 & Col = 10)
* 011 = 256Mbyte (Rows = 13 & Col = 10)|(Rows = 12 & Col = 11)
* 100 = 512Mbyte (Rows = 13 & Col = 11)|(Rows = 14 & Col = 10)
* 101 = 1Gbyte (Rows = 14 & Col = 11)|(Rows = 13 & Col = 12)
* 110 = 2Gbyte (Rows = 14 & Col = 12)
* 111 = reserved
* [ 3: 3] Reserved
* [ 7: 7] Reserved
* [11:11] Reserved
* [31:15]
*/
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 2, 0x80), 0xffff8888, 0x00000033,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 2, 0x80), 0xffff8888, 0x00000022,
#endif
/* DRAM Timing Low Register
* F2:0x88
* [ 2: 0] Tcl (Cas# Latency, Cas# to read-data-valid)
* 000 = reserved
* 001 = CL 2
* 010 = CL 3
* 011 = reserved
* 100 = reserved
* 101 = CL 2.5
* 110 = reserved
* 111 = reserved
* [ 3: 3] Reserved
* [ 7: 4] Trc (Row Cycle Time, Ras#-active to Ras#-active/bank auto refresh)
* 0000 = 7 bus clocks
* 0001 = 8 bus clocks
* ...
* 1110 = 21 bus clocks
* 1111 = 22 bus clocks
* [11: 8] Trfc (Row refresh Cycle time, Auto-refresh-active to RAS#-active or RAS#auto-refresh)
* 0000 = 9 bus clocks
* 0010 = 10 bus clocks
* ....
* 1110 = 23 bus clocks
* 1111 = 24 bus clocks
* [14:12] Trcd (Ras#-active to Case#-read/write Delay)
* 000 = reserved
* 001 = reserved
* 010 = 2 bus clocks
* 011 = 3 bus clocks
* 100 = 4 bus clocks
* 101 = 5 bus clocks
* 110 = 6 bus clocks
* 111 = reserved
* [15:15] Reserved
* [18:16] Trrd (Ras# to Ras# Delay)
* 000 = reserved
* 001 = reserved
* 010 = 2 bus clocks
* 011 = 3 bus clocks
* 100 = 4 bus clocks
* 101 = reserved
* 110 = reserved
* 111 = reserved
* [19:19] Reserved
* [23:20] Tras (Minmum Ras# Active Time)
* 0000 to 0100 = reserved
* 0101 = 5 bus clocks
* ...
* 1111 = 15 bus clocks
* [26:24] Trp (Row Precharge Time)
* 000 = reserved
* 001 = reserved
* 010 = 2 bus clocks
* 011 = 3 bus clocks
* 100 = 4 bus clocks
* 101 = 5 bus clocks
* 110 = 6 bus clocks
* 111 = reserved
* [27:27] Reserved
* [28:28] Twr (Write Recovery Time)
* 0 = 2 bus clocks
* 1 = 3 bus clocks
* [31:29] Reserved
*/
PCI_ADDR(0, 0x18, 2, 0x88), 0xe8088008, 0x03623125,
/* DRAM Timing High Register
* F2:0x8C
* [ 0: 0] Twtr (Write to Read Delay)
* 0 = 1 bus Clocks
* 1 = 2 bus Clocks
* [ 3: 1] Reserved
* [ 6: 4] Trwf (Read to Write Delay)
* 000 = 1 bus clocks
* 001 = 2 bus clocks
* 010 = 3 bus clocks
* 011 = 4 bus clocks
* 100 = 5 bus clocks
* 101 = 6 bus clocks
* 110 = reserved
* 111 = reserved
* [ 7: 7] Reserved
* [12: 8] Tref (Refresh Rate)
* 00000 = 100Mhz 4K rows
* 00001 = 133Mhz 4K rows
* 00010 = 166Mhz 4K rows
* 01000 = 100Mhz 8K/16K rows
* 01001 = 133Mhz 8K/16K rows
* 01010 = 166Mhz 8K/16K rows
* [19:13] Reserved
* [22:20] Twcl (Write CAS Latency)
* 000 = 1 Mem clock after CAS# (Unbuffered Dimms)
* 001 = 2 Mem clocks after CAS# (Registered Dimms)
* [31:23] Reserved
*/
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 2, 0x8c), 0xff8fe08e, 0x00000930,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 2, 0x8c), 0xff8fe08e, 0x00000130,
#endif
/* DRAM Config Low Register
* F2:0x90
* [ 0: 0] DLL Disable
* 0 = Enabled
* 1 = Disabled
* [ 1: 1] D_DRV
* 0 = Normal Drive
* 1 = Weak Drive
* [ 2: 2] QFC_EN
* 0 = Disabled
* 1 = Enabled
* [ 3: 3] Disable DQS Hystersis (FIXME handle this one carefully)
* 0 = Enable DQS input filter
* 1 = Disable DQS input filtering
* [ 7: 4] Reserved
* [ 8: 8] DRAM_Init
* 0 = Initialization done or not yet started.
* 1 = Initiate DRAM intialization sequence
* [ 9: 9] SO-Dimm Enable
* 0 = Do nothing
* 1 = SO-Dimms present
* [10:10] DramEnable
* 0 = DRAM not enabled
* 1 = DRAM initialized and enabled
* [11:11] Memory Clear Status
* 0 = Memory Clear function has not completed
* 1 = Memory Clear function has completed
* [12:12] Exit Self-Refresh
* 0 = Exit from self-refresh done or not yet started
* 1 = DRAM exiting from self refresh
* [13:13] Self-Refresh Status
* 0 = Normal Operation
* 1 = Self-refresh mode active
* [15:14] Read/Write Queue Bypass Count
* 00 = 2
* 01 = 4
* 10 = 8
* 11 = 16
* [16:16] 128-bit/64-Bit
* 0 = 64bit Interface to DRAM
* 1 = 128bit Interface to DRAM
* [17:17] DIMM ECC Enable
* 0 = Some DIMMs do not have ECC
* 1 = ALL DIMMS have ECC bits
* [18:18] UnBuffered DIMMs
* 0 = Buffered DIMMS
* 1 = Unbuffered DIMMS
* [19:19] Enable 32-Byte Granularity
* 0 = Optimize for 64byte bursts
* 1 = Optimize for 32byte bursts
* [20:20] DIMM 0 is x4
* [21:21] DIMM 1 is x4
* [22:22] DIMM 2 is x4
* [23:23] DIMM 3 is x4
* 0 = DIMM is not x4
* 1 = x4 DIMM present
* [24:24] Disable DRAM Receivers
* 0 = Receivers enabled
* 1 = Receivers disabled
* [27:25] Bypass Max
* 000 = Arbiters chois is always respected
* 001 = Oldest entry in DCQ can be bypassed 1 time
* 010 = Oldest entry in DCQ can be bypassed 2 times
* 011 = Oldest entry in DCQ can be bypassed 3 times
* 100 = Oldest entry in DCQ can be bypassed 4 times
* 101 = Oldest entry in DCQ can be bypassed 5 times
* 110 = Oldest entry in DCQ can be bypassed 6 times
* 111 = Oldest entry in DCQ can be bypassed 7 times
* [31:28] Reserved
*/
PCI_ADDR(0, 0x18, 2, 0x90), 0xf0000000,
(4 << 25)|(0 << 24)|
(0 << 23)|(0 << 22)|(0 << 21)|(0 << 20)|
(1 << 19)|(1 << 18)|(0 << 17)|(0 << 16)|
(2 << 14)|(0 << 13)|(0 << 12)|
(0 << 11)|(0 << 10)|(0 << 9)|(0 << 8)|
(0 << 3) |(0 << 1) |(0 << 0),
/* DRAM Config High Register
* F2:0x94
* [ 0: 3] Maximum Asynchronous Latency
* 0000 = 0 ns
* ...
* 1111 = 15 ns
* [ 7: 4] Reserved
* [11: 8] Read Preamble
* 0000 = 2.0 ns
* 0001 = 2.5 ns
* 0010 = 3.0 ns
* 0011 = 3.5 ns
* 0100 = 4.0 ns
* 0101 = 4.5 ns
* 0110 = 5.0 ns
* 0111 = 5.5 ns
* 1000 = 6.0 ns
* 1001 = 6.5 ns
* 1010 = 7.0 ns
* 1011 = 7.5 ns
* 1100 = 8.0 ns
* 1101 = 8.5 ns
* 1110 = 9.0 ns
* 1111 = 9.5 ns
* [15:12] Reserved
* [18:16] Idle Cycle Limit
* 000 = 0 cycles
* 001 = 4 cycles
* 010 = 8 cycles
* 011 = 16 cycles
* 100 = 32 cycles
* 101 = 64 cycles
* 110 = 128 cycles
* 111 = 256 cycles
* [19:19] Dynamic Idle Cycle Center Enable
* 0 = Use Idle Cycle Limit
* 1 = Generate a dynamic Idle cycle limit
* [22:20] DRAM MEMCLK Frequency
* 000 = 100Mhz
* 001 = reserved
* 010 = 133Mhz
* 011 = reserved
* 100 = reserved
* 101 = 166Mhz
* 110 = reserved
* 111 = reserved
* [24:23] Reserved
* [25:25] Memory Clock Ratio Valid (FIXME carefully enable memclk)
* 0 = Disable MemClks
* 1 = Enable MemClks
* [26:26] Memory Clock 0 Enable
* 0 = Disabled
* 1 = Enabled
* [27:27] Memory Clock 1 Enable
* 0 = Disabled
* 1 = Enabled
* [28:28] Memory Clock 2 Enable
* 0 = Disabled
* 1 = Enabled
* [29:29] Memory Clock 3 Enable
* 0 = Disabled
* 1 = Enabled
* [31:30] Reserved
*/
#if MEMORY_1024MB
PCI_ADDR(0, 0x18, 2, 0x94), 0xc180f0f0, 0x0e2b0a05,
#endif
#if MEMORY_512MB
PCI_ADDR(0, 0x18, 2, 0x94), 0xc180f0f0, 0x0e2b0a06,
#endif
/* DRAM Delay Line Register
* F2:0x98
* Adjust the skew of the input DQS strobe relative to DATA
* [15: 0] Reserved
* [23:16] Delay Line Adjust
* Adjusts the DLL derived PDL delay by one or more delay stages
* in either the faster or slower direction.
* [24:24} Adjust Slower
* 0 = Do Nothing
* 1 = Adj is used to increase the PDL delay
* [25:25] Adjust Faster
* 0 = Do Nothing
* 1 = Adj is used to decrease the PDL delay
* [31:26] Reserved
*/
PCI_ADDR(0, 0x18, 2, 0x98), 0xfc00ffff, 0x00000000,
/* DRAM Scrub Control Register
* F3:0x58
* [ 4: 0] DRAM Scrube Rate
* [ 7: 5] reserved
* [12: 8] L2 Scrub Rate
* [15:13] reserved
* [20:16] Dcache Scrub
* [31:21] reserved
* Scrub Rates
* 00000 = Do not scrub
* 00001 = 40.00 ns
* 00010 = 80.00 ns
* 00011 = 160.00 ns
* 00100 = 320.00 ns
* 00101 = 640.00 ns
* 00110 = 1.28 us
* 00111 = 2.56 us
* 01000 = 5.12 us
* 01001 = 10.20 us
* 01011 = 41.00 us
* 01100 = 81.90 us
* 01101 = 163.80 us
* 01110 = 327.70 us
* 01111 = 655.40 us
* 10000 = 1.31 ms
* 10001 = 2.62 ms
* 10010 = 5.24 ms
* 10011 = 10.49 ms
* 10100 = 20.97 ms
* 10101 = 42.00 ms
* 10110 = 84.00 ms
* All Others = Reserved
*/
PCI_ADDR(0, 0x18, 3, 0x58), 0xffe0e0e0, 0x00000000,
/* DRAM Scrub Address Low Register
* F3:0x5C
* [ 0: 0] DRAM Scrubber Redirect Enable
* 0 = Do nothing
* 1 = Scrubber Corrects errors found in normal operation
* [ 5: 1] Reserved
* [31: 6] DRAM Scrub Address 31-6
*/
PCI_ADDR(0, 0x18, 3, 0x5C), 0x0000003e, 0x00000000,
/* DRAM Scrub Address High Register
* F3:0x60
* [ 7: 0] DRAM Scrubb Address 39-32
* [31: 8] Reserved
*/
PCI_ADDR(0, 0x18, 3, 0x60), 0xffffff00, 0x00000000,
};
int i;
int max;
print_debug("setting up CPU0 northbridge registers\r\n");
max = sizeof(register_values)/sizeof(register_values[0]);
for(i = 0; i < max; i += 3) {
unsigned long reg;
#if 0
print_debug_hex32(register_values[i]);
print_debug(" <-");
print_debug_hex32(register_values[i+2]);
print_debug("\r\n");
#endif
reg = pci_read_config32(register_values[i]);
reg &= register_values[i+1];
reg |= register_values[i+2];
pci_write_config32(register_values[i], reg);
}
print_debug("done.\r\n");
}
#define DRAM_CONFIG_LOW 0x90
#define DCL_DLL_Disable (1<<0)
#define DCL_D_DRV (1<<1)
#define DCL_QFC_EN (1<<2)
#define DCL_DisDqsHys (1<<3)
#define DCL_DramInit (1<<8)
#define DCL_DramEnable (1<<10)
#define DCL_MemClrStatus (1<<11)
#define DCL_DimmEcEn (1<<17)
#define NODE_ID 0x60
#define HT_INIT_CONTROL 0x6c
#define HTIC_ColdR_Detect (1<<4)
#define HTIC_BIOSR_Detect (1<<5)
#define HTIC_INIT_Detect (1<<6)
static void sdram_set_spd_registers(void)
{
unsigned long dcl;
dcl = pci_read_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW));
/* Until I know what is going on disable ECC support */
dcl &= ~DCL_DimmEcEn;
pci_write_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW), dcl);
}
#define TIMEOUT_LOOPS 300000
static void sdram_enable(void)
{
unsigned long dcl;
/* Toggle DisDqsHys to get it working */
dcl = pci_read_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW));
print_debug("dcl: ");
print_debug_hex32(dcl);
print_debug("\r\n");
dcl |= DCL_DisDqsHys;
pci_write_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW), dcl);
dcl &= ~DCL_DisDqsHys;
dcl &= ~DCL_DLL_Disable;
dcl &= ~DCL_D_DRV;
dcl &= ~DCL_QFC_EN;
dcl |= DCL_DramInit;
pci_write_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW), dcl);
print_debug("Initializing memory: ");
int loops = 0;
do {
dcl = pci_read_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW));
loops += 1;
if ((loops & 1023) == 0) {
print_debug(".");
}
} while(((dcl & DCL_DramInit) != 0) && (loops < TIMEOUT_LOOPS));
if (loops >= TIMEOUT_LOOPS) {
print_debug(" failed\r\n");
} else {
print_debug(" done\r\n");
}
#if 0
print_debug("Clearing memory: ");
loops = 0;
do {
dcl = pci_read_config32(PCI_ADDR(0, 0x18, 2, DRAM_CONFIG_LOW));
loops += 1;
if ((loops & 1023) == 0) {
print_debug(" ");
print_debug_hex32(loops);
}
} while(((dcl & DCL_MemClrStatus) == 0) && (loops < TIMEOUT_LOOPS));
if (loops >= TIMEOUT_LOOPS) {
print_debug("failed\r\n");
} else {
print_debug("done\r\n");
}
#endif
}
static void sdram_first_normal_reference(void) {}
static void sdram_enable_refresh(void) {}
static void sdram_special_finishup(void) {}

View file

@ -0,0 +1,84 @@
#include <pc80/mc146818rtc.h>
#include <part/fallback_boot.h>
static unsigned char cmos_read(unsigned char addr)
{
outb(addr, RTC_BASE_PORT + 0);
return inb(RTC_BASE_PORT + 1);
}
static void cmos_write(unsigned char val, unsigned char addr)
{
outb(addr, RTC_BASE_PORT + 0);
outb(val, RTC_BASE_PORT + 1);
}
static int cmos_error(void)
{
unsigned char reg_d;
/* See if the cmos error condition has been flagged */
reg_d = cmos_read(RTC_REG_D);
return (reg_d & RTC_VRT) == 0;
}
static int cmos_chksum_valid(void)
{
unsigned char addr;
unsigned long sum, old_sum;
sum = 0;
/* Comput the cmos checksum */
for(addr = LB_CKS_RANGE_START; addr <= LB_CKS_RANGE_END; addr++) {
sum += cmos_read(addr);
}
sum = (sum & 0xffff) ^ 0xffff;
/* Read the stored checksum */
old_sum = cmos_read(LB_CKS_LOC) << 8;
old_sum |= cmos_read(LB_CKS_LOC+1);
return sum == old_sum;
}
static int do_normal_boot(void)
{
unsigned char byte;
if (cmos_error() || !cmos_chksum_valid()) {
unsigned char byte;
/* There are no impossible values, no cheksums so just
* trust whatever value we have in the the cmos,
* but clear the fallback bit.
*/
byte = cmos_read(RTC_BOOT_BYTE);
byte &= 0x0c;
byte |= MAX_REBOOT_CNT << 4;
cmos_write(byte, RTC_BOOT_BYTE);
}
/* The RTC_BOOT_BYTE is now o.k. see where to go. */
byte = cmos_read(RTC_BOOT_BYTE);
/* Are we in normal mode? */
if (byte & 1) {
byte &= 0x0f; /* yes, clear the boot count */
}
/* Are we already at the max count? */
if ((byte >> 4) < MAX_REBOOT_CNT) {
byte += 1 << 4; /* No, add 1 to the count */
}
else {
byte &= 0xfc; /* Yes, put in fallback mode */
}
/* Is this the first boot? */
if ((byte >> 4) <= 1) {
byte = (byte & 0xfc) | ((byte & 1) << 1); /* yes, shift the boot bits */
}
/* Save the boot byte */
cmos_write(byte, RTC_BOOT_BYTE);
return ((byte >> 4) < MAX_REBOOT_CNT);
}

View file

@ -0,0 +1,108 @@
#define SMBUS_IO_BASE 0x1000
#define SMBGSTATUS 0xe0
#define SMBGCTL 0xe2
#define SMBHSTADDR 0xe4
#define SMBHSTDAT 0xe6
#define SMBHSTCMD 0xe8
#define SMBHSTFIFO 0xe9
#define SMBUS_TIMEOUT (100*1000*10)
static void enable_smbus(void)
{
uint32_t addr;
addr = pci_locate_device(PCI_ID(0x1022, 0x746b), 0);
if (addr == ~0U) {
die("SMBUS controller not found\r\n");
}
uint8_t enable;
print_debug("SMBus controller enabled\r\n");
pci_write_config32(addr + 0x58, SMBUS_IO_BASE | 1);
enable = pci_read_config8(addr + 0x41);
pci_write_config8(addr + 0x41, enable | (1 << 7));
}
static inline void smbus_delay(void)
{
outb(0x80, 0x80);
}
static int smbus_wait_until_ready(void)
{
unsigned long loops;
loops = SMBUS_TIMEOUT;
do {
unsigned short val;
smbus_delay();
val = inw(SMBUS_IO_BASE + SMBGSTATUS);
if ((val & 0x800) == 0) {
break;
}
} while(--loops);
return loops?0:-1;
}
static int smbus_wait_until_done(void)
{
unsigned long loops;
loops = SMBUS_TIMEOUT;
do {
unsigned short val;
smbus_delay();
val = inw(SMBUS_IO_BASE + SMBGSTATUS);
if (((val & 0x8) == 0) || ((val & 0x437) != 0)) {
break;
}
} while(--loops);
return loops?0:-1;
}
static int smbus_read_byte(unsigned device, unsigned address)
{
unsigned char global_control_register;
unsigned char global_status_register;
unsigned char byte;
if (smbus_wait_until_ready() < 0) {
return -1;
}
/* setup transaction */
/* disable interrupts */
outw(inw(SMBUS_IO_BASE + SMBGCTL) & ~((1<<10)|(1<<9)|(1<<8)|(1<<4)), SMBUS_IO_BASE + SMBGCTL);
/* set the device I'm talking too */
outw(((device & 0x7f) << 1) | 1, SMBUS_IO_BASE + SMBHSTADDR);
/* set the command/address... */
outb(address & 0xFF, SMBUS_IO_BASE + SMBHSTCMD);
/* set up for a byte data read */
outw((inw(SMBUS_IO_BASE + SMBGCTL) & ~7) | (0x2), SMBUS_IO_BASE + SMBGCTL);
/* clear any lingering errors, so the transaction will run */
/* Do I need to write the bits to a 1 to clear an error? */
outw(inw(SMBUS_IO_BASE + SMBGSTATUS), SMBUS_IO_BASE + SMBGSTATUS);
/* clear the data word...*/
outw(0, SMBUS_IO_BASE + SMBHSTDAT);
/* start the command */
outw((inw(SMBUS_IO_BASE + SMBGCTL) | (1 << 3)), SMBUS_IO_BASE + SMBGCTL);
/* poll for transaction completion */
if (smbus_wait_until_done() < 0) {
return -1;
}
global_status_register = inw(SMBUS_IO_BASE + SMBGSTATUS);
/* read results of transaction */
byte = inw(SMBUS_IO_BASE + SMBHSTDAT) & 0xff;
if (global_status_register != (1 << 4)) {
return -1;
}
return byte;
}

View file

@ -0,0 +1,18 @@
static void amd8111_enable_rom(void)
{
unsigned char byte;
uint32_t addr;
/* Enable 4MB rom access at 0xFFC00000 - 0xFFFFFFFF */
/* Locate the amd8111 */
addr = pci_locate_device(PCI_ID(0x1022, 0x7468), 0);
/* Refine the address to point at the rom enable byte */
addr += 0x43;
/* Set the 4MB enable bit bit */
byte = pci_read_config8(addr);
byte |= 0x80;
pci_write_config8(addr, byte);
}

View file

@ -7,12 +7,16 @@ PACKAGE:=romcc
CC=gcc
CPPFLAGS=-DVERSION='"$(VERSION)"' -DRELEASE_DATE='"$(RELEASE_DATE)"'
CFLAGS=-O -g -Wall $(CPPFLAGS)
CPROF_FLAGS=-pg -fprofile-arcs
all: romcc test
romcc: romcc.c Makefile
$(CC) $(CFLAGS) -o $@ $<
romcc_pg: romcc.c Makefile
$(CC) $(CFLAGS) $(CPROF_FLAGS) -o $@ $<
TESTS=\
hello_world.c \
simple_test.c \
@ -45,6 +49,7 @@ TESTS=\
simple_test28.c \
simple_test29.c \
simple_test30.c \
simple_test31.c \
raminit_test.c \
raminit_test2.c \
raminit_test3.c

View file

@ -17,6 +17,8 @@
#define DEBUG_SCC 0
#define DEBUG_CONSISTENCY 1
#warning "FIXME boundary cases with small types in larger registers"
/* Control flow graph of a loop without goto.
*
* AAA
@ -737,6 +739,7 @@ struct hash_entry {
#define HASH_TABLE_SIZE 2048
struct compile_state {
const char *label_prefix;
const char *ofilename;
FILE *output;
struct triple *vars;
@ -9806,28 +9809,6 @@ static int tdominates(struct compile_state *state,
return result;
}
static int tdistance(struct compile_state *state,
struct triple *dom, struct triple *sub)
{
int count;
struct block *bdom, *bsub;
if (!tdominates(state, dom, sub)) {
internal_error(state, 0, "dom does not dom sub");
}
bdom = block_of_triple(state, dom);
bsub = block_of_triple(state, sub);
count = 0;
for(; bsub != bdom; (bsub = bsub->idom), sub = bsub->last) {
for(; sub != bsub->first; sub = sub->prev) {
count++;
}
}
for(; sub != dom; sub = sub->prev) {
count++;
}
return count;
}
static void insert_phi_operations(struct compile_state *state)
{
size_t size;
@ -9864,6 +9845,9 @@ static void insert_phi_operations(struct compile_state *state)
if (!block) {
warning(state, user->member, "dead code");
}
if (work[block->vertex] >= iter) {
continue;
}
work[block->vertex] = iter;
*work_list_tail = block;
block->work_next = 0;
@ -9897,7 +9881,7 @@ static void insert_phi_operations(struct compile_state *state)
front->last = front->first->next;
}
has_already[front->vertex] = iter;
/* If necessary plan to visit the basic block */
if (work[front->vertex] >= iter) {
continue;
@ -11972,6 +11956,7 @@ static int coalesce_live_ranges(
}
}
next:
;
}
return coalesced;
}
@ -12220,6 +12205,7 @@ static struct triple *least_conflict(struct compile_state *state,
}
do_triple_set(&conflict->live, set->member, set->new);
next:
;
}
}
return ins;
@ -12325,6 +12311,7 @@ static struct triple *split_constrained_range(struct compile_state *state,
constrained_size = size;
}
next:
;
}
if (constrained) {
new = post_copy(state, constrained);
@ -14021,6 +14008,10 @@ static void optimize(struct compile_state *state)
/* Transform the code to ssa form */
transform_to_ssa_form(state);
verify_consistency(state);
if (state->debug & DEBUG_CODE_ELIMINATION) {
fprintf(stdout, "After transform_to_ssa_form\n");
print_blocks(state, stdout);
}
/* Do strength reduction and simple constant optimizations */
if (state->optimize >= 1) {
simplify_all(state);
@ -15554,7 +15545,8 @@ static void print_const_val(
(long_t)(ins->u.cval));
break;
case OP_ADDRCONST:
fprintf(fp, " $L%lu+%lu ",
fprintf(fp, " $L%s%lu+%lu ",
state->label_prefix,
MISC(ins, 0)->u.cval,
ins->u.cval);
break;
@ -16017,8 +16009,10 @@ static void print_op_branch(struct compile_state *state,
}
}
fprintf(fp, "\t%s L%lu\n",
bop, TARG(branch, 0)->u.cval);
fprintf(fp, "\t%s L%s%lu\n",
bop,
state->label_prefix,
TARG(branch, 0)->u.cval);
}
static void print_op_set(struct compile_state *state,
@ -16128,7 +16122,7 @@ static void print_sdecl(struct compile_state *state,
{
fprintf(fp, ".section \"" DATA_SECTION "\"\n");
fprintf(fp, ".balign %d\n", align_of(state, ins->type));
fprintf(fp, "L%lu:\n", ins->u.cval);
fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
print_const(state, MISC(ins, 0), fp);
fprintf(fp, ".section \"" TEXT_SECTION "\"\n");
@ -16219,7 +16213,7 @@ static void print_instruction(struct compile_state *state,
if (!ins->use) {
return;
}
fprintf(fp, "L%lu:\n", ins->u.cval);
fprintf(fp, "L%s%lu:\n", state->label_prefix, ins->u.cval);
break;
/* Ignore OP_PIECE */
case OP_PIECE:
@ -16299,7 +16293,7 @@ static void print_tokens(struct compile_state *state)
}
static void compile(const char *filename, const char *ofilename,
int cpu, int debug, int opt)
int cpu, int debug, int opt, const char *label_prefix)
{
int i;
struct compile_state state;
@ -16320,6 +16314,8 @@ static void compile(const char *filename, const char *ofilename,
error(&state, 0, "Cannot open output file %s\n",
ofilename);
}
/* Remember the label prefix */
state.label_prefix = label_prefix;
/* Prep the preprocessor */
state.if_depth = 0;
state.if_value = 0;
@ -16380,11 +16376,13 @@ int main(int argc, char **argv)
{
const char *filename;
const char *ofilename;
const char *label_prefix;
int cpu;
int last_argc;
int debug;
int optimize;
cpu = CPU_DEFAULT;
label_prefix = "";
ofilename = "auto.inc";
optimize = 0;
debug = 0;
@ -16396,6 +16394,11 @@ int main(int argc, char **argv)
argv++;
argc--;
}
else if (strncmp(argv[1], "--label-prefix=", 15) == 0) {
label_prefix= argv[1] + 15;
argv++;
argc--;
}
else if ((strcmp(argv[1],"-O") == 0) ||
(strcmp(argv[1], "-O1") == 0)) {
optimize = 1;
@ -16426,7 +16429,7 @@ int main(int argc, char **argv)
arg_error("Wrong argument count %d\n", argc);
}
filename = argv[1];
compile(filename, ofilename, cpu, debug, optimize);
compile(filename, ofilename, cpu, debug, optimize, label_prefix);
return 0;
}

View file

@ -0,0 +1,16 @@
static unsigned pci_locate_device(unsigned addr)
{
addr &= ~0xff;
for(; addr <= 0x00ffff00; addr += 0x00000100) {
__builtin_outl(addr, 0x12);
}
return addr;
}
static void main(void)
{
unsigned long addr;
addr = pci_locate_device(0);
__builtin_outl(addr, 0x12);
}