nb/intel/sandybridge: Drop dead code

Sandy Bridge now uses the same code as Ivy Bridge. Drop the old code.

Change-Id: I4f6a71a4223194d83c0ee790d317ecdcafd664fd
Signed-off-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/39789
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This commit is contained in:
Angel Pons 2020-03-23 23:34:16 +01:00 committed by Patrick Georgi
parent efbed263df
commit 07609028ec
3 changed files with 0 additions and 473 deletions

View File

@ -23,7 +23,6 @@ ifeq ($(CONFIG_USE_NATIVE_RAMINIT),y)
romstage-y += early_dmi.c romstage-y += early_dmi.c
romstage-y += raminit.c romstage-y += raminit.c
romstage-y += raminit_common.c romstage-y += raminit_common.c
romstage-y += raminit_sandy.c
romstage-y += raminit_ivy.c romstage-y += raminit_ivy.c
romstage-y += raminit_tables.c romstage-y += raminit_tables.c
romstage-y += ../../../device/dram/ddr3.c romstage-y += ../../../device/dram/ddr3.c

View File

@ -181,6 +181,4 @@ void final_registers(ramctr_timing *ctrl);
void restore_timings(ramctr_timing *ctrl); void restore_timings(ramctr_timing *ctrl);
int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot, int s3resume, int me_uma_size); int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot, int s3resume, int me_uma_size);
int try_init_dram_ddr3_snb(ramctr_timing *ctrl, int fast_boot, int s3_resume, int me_uma_size);
#endif #endif

View File

@ -1,470 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/* This file is part of the coreboot project. */
#include <console/console.h>
#include <console/usb.h>
#include <delay.h>
#include "raminit_native.h"
#include "raminit_common.h"
#include "raminit_tables.h"
/* Frequency multiplier */
static u32 get_FRQ(u32 tCK)
{
const u32 FRQ = 256000 / (tCK * BASEFREQ);
if (FRQ > 8)
return 8;
if (FRQ < 3)
return 3;
return FRQ;
}
/* Get REFI based on MC frequency */
static u32 get_REFI(u32 tCK)
{
return frq_refi_map[0][get_FRQ(tCK) - 3];
}
/* Get XSOffset based on MC frequency */
static u8 get_XSOffset(u32 tCK)
{
return frq_xs_map[0][get_FRQ(tCK) - 3];
}
/* Get MOD based on MC frequency */
static u8 get_MOD(u32 tCK)
{
return frq_mod_map[0][get_FRQ(tCK) - 3];
}
/* Get Write Leveling Output delay based on MC frequency */
static u8 get_WLO(u32 tCK)
{
return frq_wlo_map[0][get_FRQ(tCK) - 3];
}
/* Get CKE based on MC frequency */
static u8 get_CKE(u32 tCK)
{
return frq_cke_map[0][get_FRQ(tCK) - 3];
}
/* Get XPDLL based on MC frequency */
static u8 get_XPDLL(u32 tCK)
{
return frq_xpdll_map[0][get_FRQ(tCK) - 3];
}
/* Get XP based on MC frequency */
static u8 get_XP(u32 tCK)
{
return frq_xp_map[0][get_FRQ(tCK) - 3];
}
/* Get AONPD based on MC frequency */
static u8 get_AONPD(u32 tCK)
{
return frq_aonpd_map[0][get_FRQ(tCK) - 3];
}
/* Get COMP2 based on MC frequency */
static u32 get_COMP2(u32 tCK)
{
return frq_comp2_map[0][get_FRQ(tCK) - 3];
}
static void snb_normalize_tclk(u32 *tclk)
{
if (*tclk <= TCK_1066MHZ) {
*tclk = TCK_1066MHZ;
} else if (*tclk <= TCK_933MHZ) {
*tclk = TCK_933MHZ;
} else if (*tclk <= TCK_800MHZ) {
*tclk = TCK_800MHZ;
} else if (*tclk <= TCK_666MHZ) {
*tclk = TCK_666MHZ;
} else if (*tclk <= TCK_533MHZ) {
*tclk = TCK_533MHZ;
} else if (*tclk <= TCK_400MHZ) {
*tclk = TCK_400MHZ;
} else {
*tclk = 0;
}
}
static void find_cas_tck(ramctr_timing *ctrl)
{
u8 val;
/* Find CAS latency */
while (1) {
/*
* Normalising tCK before computing clock could potentially
* result in a lower selected CAS, which is desired.
*/
snb_normalize_tclk(&(ctrl->tCK));
if (!(ctrl->tCK))
die("Couldn't find compatible clock / CAS settings\n");
val = DIV_ROUND_UP(ctrl->tAA, ctrl->tCK);
printk(BIOS_DEBUG, "Trying CAS %u, tCK %u.\n", val, ctrl->tCK);
for (; val <= MAX_CAS; val++)
if ((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
break;
if (val == (MAX_CAS + 1)) {
ctrl->tCK++;
continue;
} else {
printk(BIOS_DEBUG, "Found compatible clock, CAS pair.\n");
break;
}
}
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", NS2MHZ_DIV256 / ctrl->tCK);
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
}
static void dram_timing(ramctr_timing *ctrl)
{
/*
* On Sandy Bridge, the maximum supported DDR3 frequency is 1066MHz (DDR3 2133).
* Cap it for faster DIMMs, and align it to the closest JEDEC standard frequency.
*/
if (ctrl->tCK == TCK_1066MHZ) {
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->pi_coding_threshold = 13;
} else if (ctrl->tCK == TCK_933MHZ) {
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->pi_coding_threshold = 15;
} else if (ctrl->tCK == TCK_800MHZ) {
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->pi_coding_threshold = 15;
} else if (ctrl->tCK == TCK_666MHZ) {
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->pi_coding_threshold = 16;
} else if (ctrl->tCK == TCK_533MHZ) {
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->pi_coding_threshold = 17;
} else {
ctrl->tCK = TCK_400MHZ;
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->pi_coding_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->pi_code_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->mdll_wake_delay = (128000 / ctrl->tCK) + 3;
if (ctrl->tCWL)
ctrl->CWL = DIV_ROUND_UP(ctrl->tCWL, ctrl->tCK);
else
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = DIV_ROUND_UP(ctrl->tRCD, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = DIV_ROUND_UP(ctrl->tRP, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = DIV_ROUND_UP(ctrl->tRAS, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = DIV_ROUND_UP(ctrl->tWR, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = DIV_ROUND_UP(ctrl->tFAW, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = DIV_ROUND_UP(ctrl->tRRD, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = DIV_ROUND_UP(ctrl->tRTP, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = DIV_ROUND_UP(ctrl->tWTR, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = DIV_ROUND_UP(ctrl->tRFC, ctrl->tCK);
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK);
ctrl->tMOD = get_MOD(ctrl->tCK);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
ctrl->tWLO = get_WLO(ctrl->tCK);
ctrl->tCKE = get_CKE(ctrl->tCK);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
ctrl->tXP = get_XP(ctrl->tCK);
ctrl->tAONPD = get_AONPD(ctrl->tCK);
}
static void dram_freq(ramctr_timing *ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk(BIOS_ERR,
"DRAM frequency is under lowest supported frequency (400 MHz). "
"Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
find_cas_tck(ctrl);
/* Frequency multiplier */
const u32 FRQ = get_FRQ(ctrl->tCK);
/*
* The PLL will never lock if the required frequency is already set.
* Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 1 - Select frequency in the MCU */
reg1 = FRQ;
reg1 |= 0x80000000; /* set running bit */
MCHBAR32(MC_BIOS_REQ) = reg1;
int i=0;
printk(BIOS_DEBUG, "PLL busy... ");
while (reg1 & 0x80000000) {
udelay(10);
i++;
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 2 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing *ctrl)
{
u32 reg;
int channel;
/* IO clock */
FOR_ALL_CHANNELS {
MCHBAR32(GDCRCLKRANKSUSED_ch(channel)) = ctrl->rankmap[channel];
}
/* IO command */
FOR_ALL_CHANNELS {
MCHBAR32(GDCRCTLRANKSUSED_ch(channel)) = ctrl->rankmap[channel];
}
/* IO control */
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
/* Perform RCOMP */
printram("RCOMP...");
while (!(MCHBAR32(RCOMP_TIMER) & (1 << 16)))
;
printram("done\n");
/* Set COMP2 */
MCHBAR32(CRCOMPOFST2) = get_COMP2(ctrl->tCK);
printram("COMP2 done\n");
/* Set COMP1 */
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(CRCOMPOFST1_ch(channel));
reg = (reg & ~0x00000e00) | (1 << 9); /* ODT */
reg = (reg & ~0x00e00000) | (1 << 21); /* clk drive up */
reg = (reg & ~0x38000000) | (1 << 27); /* ctl drive up */
MCHBAR32(CRCOMPOFST1_ch(channel)) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(M_COMP) |= (1 << 8);
udelay(20);
printram("done\n");
}
int try_init_dram_ddr3_snb(ramctr_timing *ctrl, int fast_boot, int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting SandyBridge RAM training (%d).\n", fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MC frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(MRC_REVISION) = 0xc04eb002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(PM_THML_STAT) = 0x5500;
/* Set scheduler chicken bits */
MCHBAR32(SCHED_CBIT) = 0x10100005;
/* Set up watermarks and starvation counter */
set_wmm_behavior(ctrl->cpu);
/* Clear IO reset bit */
MCHBAR32(MC_INIT_STATE_G) &= ~(1 << 5);
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do JEDEC DDR3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_read_write_timings(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
}