Major restructuring of hypertransport handling.
  Major rewerite of superio/NSC/pc87360 as a proof of concept for handling superio resources dynamically
  Updates to hard_reset handling when resetting because of the need to change hypertransport link
    speeds and widths.
    (a) No longer assume the boot is good just because we get to a hard reset point.
    (b) Set a flag to indicate that the BIOS triggered the reset so we don't decrement the
       boot counter.
  Updates to arima/hdama mptable so it tracks the new bus numbers


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1097 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Eric Biederman 2003-09-02 17:16:48 +00:00
parent e9a271e32c
commit 0ac6b41e70
17 changed files with 1136 additions and 337 deletions

9
NEWS
View File

@ -1,3 +1,12 @@
- 1.1.4
Major restructuring of hypertransport handling.
Major rewerite of superio/NSC/pc87360 as a proof of concept for handling superio resources dynamically
Updates to hard_reset handling when resetting because of the need to change hypertransport link
speeds and widths.
(a) No longer assume the boot is good just because we get to a hard reset point.
(b) Set a flag to indicate that the BIOS triggered the reset so we don't decrement the
boot counter.
Updates to arima/hdama mptable so it tracks the new bus numbers
- 1.1.3 - 1.1.3
Major update of the dyanmic device tree to so it can handle Major update of the dyanmic device tree to so it can handle
* subtractive resources * subtractive resources

View File

@ -117,7 +117,7 @@ define OBJCOPY
comment "Objcopy command" comment "Objcopy command"
end end
define LINUXBIOS_VERSION define LINUXBIOS_VERSION
default "1.1.3" default "1.1.4"
export always export always
comment "LinuxBIOS version" comment "LinuxBIOS version"
end end

View File

@ -2,4 +2,5 @@ object device.o
object root_device.o object root_device.o
object device_util.o object device_util.o
object pci_device.o object pci_device.o
object hypertransport.o
object chip.o object chip.o

View File

@ -0,0 +1,319 @@
#include <bitops.h>
#include <console/console.h>
#include <device/device.h>
#include <device/path.h>
#include <device/pci.h>
#include <part/hard_reset.h>
#include <part/fallback_boot.h>
static device_t ht_scan_get_devs(device_t *old_devices)
{
device_t first, last;
first = *old_devices;
last = first;
while(last && last->sibling &&
(last->sibling->path.u.pci.devfn > last->path.u.pci.devfn)) {
last = last->sibling;
}
if (first) {
*old_devices = last->sibling;
last->sibling = 0;
}
return first;
}
struct prev_link {
struct device *dev;
unsigned pos;
unsigned char config_off, freq_off, freq_cap_off;
};
static int ht_setup_link(struct prev_link *prev, device_t dev, unsigned pos)
{
static const uint8_t link_width_to_pow2[]= { 3, 4, 0, 5, 1, 2, 0, 0 };
static const uint8_t pow2_to_link_width[] = { 0x7, 4, 5, 0, 1, 3 };
unsigned present_width_cap, upstream_width_cap;
unsigned present_freq_cap, upstream_freq_cap;
unsigned ln_present_width_in, ln_upstream_width_in;
unsigned ln_present_width_out, ln_upstream_width_out;
unsigned freq, old_freq;
unsigned present_width, upstream_width, old_width;
int reset_needed;
/* Set the hypertransport link width and frequency */
reset_needed = 0;
/* Read the capabilities */
present_freq_cap = pci_read_config16(dev, pos + PCI_HT_CAP_SLAVE_FREQ_CAP0);
upstream_freq_cap = pci_read_config16(prev->dev, prev->pos + prev->freq_cap_off);
present_width_cap = pci_read_config8(dev, pos + PCI_HT_CAP_SLAVE_WIDTH0);
upstream_width_cap = pci_read_config8(prev->dev, prev->pos + prev->config_off);
/* Calculate the highest useable frequency */
#if 0
freq = log2(present_freq_cap & upstream_freq_cap);
#else
/* Errata for 8131 - freq 5 has hardware problems don't support it */
freq = log2(present_freq_cap & upstream_freq_cap & 0x1f);
#endif
/* Calculate the highest width */
ln_upstream_width_in = link_width_to_pow2[upstream_width_cap & 7];
ln_present_width_out = link_width_to_pow2[(present_width_cap >> 4) & 7];
if (ln_upstream_width_in > ln_present_width_out) {
ln_upstream_width_in = ln_present_width_out;
}
upstream_width = pow2_to_link_width[ln_upstream_width_in];
present_width = pow2_to_link_width[ln_upstream_width_in] << 4;
ln_upstream_width_out = link_width_to_pow2[(upstream_width_cap >> 4) & 7];
ln_present_width_in = link_width_to_pow2[present_width_cap & 7];
if (ln_upstream_width_out > ln_present_width_in) {
ln_upstream_width_out = ln_present_width_in;
}
upstream_width |= pow2_to_link_width[ln_upstream_width_out] << 4;
present_width |= pow2_to_link_width[ln_upstream_width_out];
/* Set the current device */
old_freq = pci_read_config8(dev, pos + PCI_HT_CAP_SLAVE_FREQ0);
if (freq != old_freq) {
pci_write_config8(dev, pos + PCI_HT_CAP_SLAVE_FREQ0, freq);
reset_needed = 1;
printk_spew("HyperT FreqP old %x new %x\n",old_freq,freq);
}
old_width = pci_read_config8(dev, pos + PCI_HT_CAP_SLAVE_WIDTH0 + 1);
if (present_width != old_width) {
pci_write_config8(dev, pos + PCI_HT_CAP_SLAVE_WIDTH0 + 1, present_width);
reset_needed = 1;
printk_spew("HyperT widthP old %x new %x\n",old_width, present_width);
}
/* Set the upstream device */
old_freq = pci_read_config8(prev->dev, prev->pos + prev->freq_off);
old_freq &= 0x0f;
if (freq != old_freq) {
pci_write_config8(prev->dev, prev->pos + prev->freq_off, freq);
reset_needed = 1;
printk_spew("HyperT freqU old %x new %x\n", old_freq, freq);
}
old_width = pci_read_config8(prev->dev, prev->pos + prev->config_off + 1);
if (upstream_width != old_width) {
pci_write_config8(prev->dev, prev->pos + prev->config_off + 1, upstream_width);
reset_needed = 1;
printk_spew("HyperT widthU old %x new %x\n", old_width, upstream_width);
}
/* Remember the current link as the previous link */
prev->dev = dev;
prev->pos = pos;
prev->config_off = PCI_HT_CAP_SLAVE_WIDTH1;
prev->freq_off = PCI_HT_CAP_SLAVE_FREQ1;
prev->freq_cap_off = PCI_HT_CAP_SLAVE_FREQ_CAP1;
return reset_needed;
}
static unsigned ht_lookup_slave_capability(struct device *dev)
{
unsigned pos;
pos = 0;
switch(dev->hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(dev, pos);
}
while(pos != 0) { /* loop through the linked list */
uint8_t cap;
cap = pci_read_config8(dev, pos + PCI_CAP_LIST_ID);
printk_spew("Capability: 0x%02x @ 0x%02x\n", cap, pos);
if (cap == PCI_CAP_ID_HT) {
unsigned flags;
flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS);
printk_spew("flags: 0x%04x\n", (unsigned)flags);
if ((flags >> 13) == 0) {
/* Entry is a Slave secondary, success...*/
break;
}
}
if(pos) {
pos = pci_read_config8(dev, pos + PCI_CAP_LIST_NEXT);
}
}
return pos;
}
static void ht_collapse_early_enumeration(struct bus *bus)
{
unsigned int devfn;
/* Spin through the devices and collapse any early
* hypertransport enumeration.
*/
for(devfn = 0; devfn <= 0xff; devfn += 8) {
struct device dummy;
uint32_t id;
unsigned pos, flags;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
continue;
}
dummy.vendor = id & 0xffff;
dummy.device = (id >> 16) & 0xffff;
dummy.hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE);
pos = ht_lookup_slave_capability(&dummy);
if (!pos){
continue;
}
/* Clear the unitid */
flags = pci_read_config16(&dummy, pos + PCI_CAP_FLAGS);
flags &= ~0x1f;
pci_write_config16(&dummy, pos + PCI_CAP_FLAGS, flags);
printk_spew("Collapsing %s [%04x/%04x]\n",
dev_path(&dummy), dummy.vendor, dummy.device);
}
}
unsigned int hypertransport_scan_chain(struct bus *bus, unsigned int max)
{
unsigned next_unitid, last_unitid, previous_unitid;
uint8_t previous_pos;
device_t old_devices, dev, func, *chain_last;
unsigned min_unitid = 1;
int reset_needed;
struct prev_link prev;
/* Restore the hypertransport chain to it's unitialized state */
ht_collapse_early_enumeration(bus);
/* See which static device nodes I have */
old_devices = bus->children;
bus->children = 0;
chain_last = &bus->children;
/* Initialize the hypertransport enumeration state */
reset_needed = 0;
prev.dev = bus->dev;
prev.pos = bus->cap;
prev.config_off = PCI_HT_CAP_HOST_WIDTH;
prev.freq_off = PCI_HT_CAP_HOST_FREQ;
prev.freq_cap_off = PCI_HT_CAP_HOST_FREQ_CAP;
/* If present assign unitid to a hypertransport chain */
last_unitid = min_unitid -1;
next_unitid = min_unitid;
previous_pos = 0;
do {
uint32_t id, class;
uint8_t hdr_type, pos;
uint16_t flags;
unsigned count, static_count;
previous_unitid = last_unitid;
last_unitid = next_unitid;
/* Get setup the device_structure */
dev = ht_scan_get_devs(&old_devices);
if (!dev) {
struct device dummy;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = 0;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* If the chain is fully enumerated quit */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
break;
}
dev = alloc_dev(bus, &dummy.path);
}
else {
/* Add this device to the pci bus chain */
*chain_last = dev;
/* Run the magice enable/disable sequence for the device */
if (dev->ops && dev->ops->enable) {
dev->ops->enable(dev);
}
/* Now read the vendor and device id */
id = pci_read_config32(dev, PCI_VENDOR_ID);
}
/* Update the device chain tail */
for(func = dev; func; func = func->sibling) {
chain_last = &func->sibling;
}
/* Read the rest of the pci configuration information */
hdr_type = pci_read_config8(dev, PCI_HEADER_TYPE);
class = pci_read_config32(dev, PCI_CLASS_REVISION);
/* Store the interesting information in the device structure */
dev->vendor = id & 0xffff;
dev->device = (id >> 16) & 0xffff;
dev->hdr_type = hdr_type;
/* class code, the upper 3 bytes of PCI_CLASS_REVISION */
dev->class = class >> 8;
/* Find the hypertransport link capability */
pos = ht_lookup_slave_capability(dev);
if (pos == 0) {
printk_err("Hypertransport link capability not found");
break;
}
/* Update the Unitid of the current device */
flags = pci_read_config16(dev, pos + PCI_CAP_FLAGS);
flags &= ~0x1f; /* mask out base Unit ID */
flags |= next_unitid & 0x1f;
pci_write_config16(dev, pos + PCI_CAP_FLAGS, flags);
/* Update the Unitd id in the device structure */
static_count = 1;
for(func = dev; func; func = func->sibling) {
func->path.u.pci.devfn += (next_unitid << 3);
static_count = (func->path.u.pci.devfn >> 3)
- (dev->path.u.pci.devfn >> 3) + 1;
}
/* Compute the number of unitids consumed */
count = (flags >> 5) & 0x1f; /* get unit count */
printk_spew("%s count: %04x static_count: %04x\n",
dev_path(dev), count, static_count);
if (count < static_count) {
count = static_count;
}
/* Update the Unitid of the next device */
next_unitid += count;
/* Setup the hypetransport link */
reset_needed |= ht_setup_link(&prev, dev, pos);
printk_debug("%s [%04x/%04x] %s next_unitid: %04x\n",
dev_path(dev),
dev->vendor, dev->device,
(dev->enable? "enabled": "disabled"), next_unitid);
} while((last_unitid != next_unitid) && (next_unitid <= 0x1f));
#if HAVE_HARD_RESET == 1
if(reset_needed) {
printk_info("HyperT reset needed\n");
hard_reset();
}
printk_debug("HyperT reset not needed\n");
#endif
if (next_unitid > 0x1f) {
next_unitid = 0x1f;
}
return pci_scan_bus(bus, 0x00, (next_unitid << 3)|7, max);
}

View File

@ -496,163 +496,6 @@ static struct device *pci_scan_get_dev(struct device **list, unsigned int devfn)
return dev; return dev;
} }
void assign_id_set_links(device_t dev, uint8_t *pos,
uint8_t *previous_pos, unsigned previous_unitid,
unsigned last_unitid, int *reset_needed,
struct device *bus, unsigned *next_unitid)
{
static const uint8_t link_width_to_pow2[]= { 3, 4, 0, 5, 1, 2, 0, 0 };
static const uint8_t pow2_to_link_width[] = { 0x7, 4, 5, 0, 1, 3 };
uint16_t flags;
struct bus prev_bus;
struct device last, previous;
unsigned count;
uint8_t present_width_cap;
uint16_t present_freq_cap;
uint8_t upstream_width_cap;
uint16_t upstream_freq_cap;
uint8_t ln_upstream_width_in, ln_present_width_in;
uint8_t ln_upstream_width_out, ln_present_width_out;
uint16_t mask;
uint8_t freq;
uint8_t old_freq;
uint8_t upstream_width, present_width;
uint8_t old_width;
flags = pci_read_config16(dev, (*pos) + PCI_CAP_FLAGS);
printk_debug("flags: 0x%04x\n", (unsigned)flags);
if ((flags >> 13) != 0)
return; /* Entry is a Host */
/* Entry is a Slave secondary */
flags &= ~0x1f; /* mask out base unit ID */
flags |= *next_unitid & 0x1f; /* assign ID */
count = (flags >> 5) & 0x1f; /* get unit count */
printk_debug("unitid: 0x%02x, count: 0x%02x\n",
*next_unitid, count);
pci_write_config16(dev, (*pos) + PCI_CAP_FLAGS, flags);
*next_unitid += count;
if (previous_unitid == 0) { /* the link is back to the host */
prev_bus.secondary = 0;
/* calculate the previous pos for the host */
*previous_pos = 0x80;
previous.bus = &prev_bus;
previous.path.type = DEVICE_PATH_PCI;
previous.path.u.pci.devfn = 0x18 << 3;
#warning "FIXME we should not hard code this!"
} else {
previous.bus = bus;
previous.path.type = DEVICE_PATH_PCI;
previous.path.u.pci.devfn = previous_unitid << 3;
}
last.bus = bus;
last.path.type = DEVICE_PATH_PCI;
last.path.u.pci.devfn = last_unitid << 3;
/* Set link width and frequency */
present_freq_cap = pci_read_config16(&last,
(*pos) + PCI_HT_CAP_SLAVE_FREQ_CAP0);
present_width_cap = pci_read_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_WIDTH0);
if(previous_unitid == 0) { /* the link is back to the host */
upstream_freq_cap = pci_read_config16(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_FREQ_CAP);
upstream_width_cap = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_WIDTH);
}
else { /* The link is back up the chain */
upstream_freq_cap = pci_read_config16(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_FREQ_CAP1);
upstream_width_cap = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_WIDTH1);
}
/* Calculate the highest possible frequency */
/* Errata for 8131 - freq 5 has hardware problems don't support it */
freq = log2(present_freq_cap & upstream_freq_cap & 0x1f);
/* Calculate the highest width */
ln_upstream_width_in = link_width_to_pow2[upstream_width_cap & 7];
ln_present_width_out = link_width_to_pow2[(present_width_cap >> 4) & 7];
if (ln_upstream_width_in > ln_present_width_out) {
ln_upstream_width_in = ln_present_width_out;
}
upstream_width = pow2_to_link_width[ln_upstream_width_in];
present_width = pow2_to_link_width[ln_upstream_width_in] << 4;
ln_upstream_width_out = link_width_to_pow2[(upstream_width_cap >> 4) & 7];
ln_present_width_in = link_width_to_pow2[present_width_cap & 7];
if (ln_upstream_width_out > ln_present_width_in) {
ln_upstream_width_out = ln_present_width_in;
}
upstream_width |= pow2_to_link_width[ln_upstream_width_out] << 4;
present_width |= pow2_to_link_width[ln_upstream_width_out];
/* set the present device */
old_freq = pci_read_config8(&last, (*pos) + PCI_HT_CAP_SLAVE_FREQ0);
if(old_freq != freq) {
pci_write_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_FREQ0, freq);
*reset_needed = 1;
printk_debug("HyperT FreqP old %x new %x\n",old_freq,freq);
}
old_width = pci_read_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_WIDTH0 + 1);
if(present_width != old_width) {
pci_write_config8(&last,
(*pos) + PCI_HT_CAP_SLAVE_WIDTH0 + 1, present_width);
*reset_needed = 1;
printk_debug("HyperT widthP old %x new %x\n",
old_width, present_width);
}
/* set the upstream device */
if(previous_unitid == 0) { /* the link is back to the host */
old_freq = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_FREQ);
old_freq &= 0x0f;
if(freq != old_freq) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_FREQ, freq);
*reset_needed = 1;
printk_debug("HyperT freqUH old %x new %x\n",
old_freq, freq);
}
old_width = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_WIDTH + 1);
if(upstream_width != old_width) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_HOST_WIDTH + 1,
upstream_width);
*reset_needed = 1;
printk_debug("HyperT widthUH old %x new %x\n",
old_width, upstream_width);
}
}
else { /* The link is back up the chain */
old_freq = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_FREQ1);
old_freq &= 0x0f;
if(freq != old_freq) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_FREQ1,
freq);
*reset_needed = 1;
printk_debug("HyperT freqUL old %x new %x\n",
old_freq, freq);
}
old_width = pci_read_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_WIDTH1 + 1);
if(upstream_width != old_width) {
pci_write_config8(&previous,
(*previous_pos) + PCI_HT_CAP_SLAVE_WIDTH1,
upstream_width);
*reset_needed = 1;
printk_debug("HyperT widthUL old %x new %x\n",
old_width, upstream_width);
}
}
*previous_pos = *pos;
*pos=0;
}
#define HYPERTRANSPORT_SUPPORT 1
/** Scan the pci bus devices and bridges. /** Scan the pci bus devices and bridges.
* @param bus pointer to the bus structure * @param bus pointer to the bus structure
* @param min_devfn minimum devfn to look at in the scan usually 0x00 * @param min_devfn minimum devfn to look at in the scan usually 0x00
@ -668,11 +511,6 @@ unsigned int pci_scan_bus(struct bus *bus,
device_t dev; device_t dev;
device_t old_devices; device_t old_devices;
device_t child; device_t child;
#if HYPERTRANSPORT_SUPPORT
unsigned next_unitid, last_unitid, previous_unitid;
int reset_needed = 0;
uint8_t previous_pos;
#endif
printk_debug("PCI: pci_scan_bus for bus %d\n", bus->secondary); printk_debug("PCI: pci_scan_bus for bus %d\n", bus->secondary);
@ -682,112 +520,6 @@ unsigned int pci_scan_bus(struct bus *bus,
post_code(0x24); post_code(0x24);
#if HYPERTRANSPORT_SUPPORT
/* Spin through the devices and collapse any early
* hypertransport enumeration.
*/
for(devfn = min_devfn; devfn <= max_devfn; devfn += 8) {
struct device dummy;
uint32_t id;
uint8_t hdr_type, pos;
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = devfn;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
if ( (id == 0xffffffff) || (id == 0x00000000) ||
(id == 0x0000ffff) || (id == 0xffff0000)) {
continue;
}
hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE);
pos = 0;
switch(hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(&dummy, pos);
}
while(pos != 0) {
uint8_t cap;
cap = pci_read_config8(&dummy, pos + PCI_CAP_LIST_ID);
printk_debug("Capability: 0x%02x @ 0x%02x\n", cap, pos);
if (cap == PCI_CAP_ID_HT) {
uint16_t flags;
flags = pci_read_config16(&dummy,
pos + PCI_CAP_FLAGS);
printk_debug("flags: 0x%04x\n",
(unsigned)flags);
if ((flags >> 13) == 0) {
/* Clear the unitid */
flags &= ~0x1f;
pci_write_config16(&dummy,
pos + PCI_CAP_FLAGS, flags);
break;
}
}
pos = pci_read_config8(&dummy, pos + PCI_CAP_LIST_NEXT);
}
}
/* If present assign unitid to a hypertransport chain */
last_unitid = 0;
next_unitid = 1;
previous_pos = 0;
do {
struct device dummy;
uint32_t id;
uint8_t hdr_type, pos;
previous_unitid = last_unitid;
last_unitid = next_unitid;
/* Read the next unassigned device off the stack */
dummy.bus = bus;
dummy.path.type = DEVICE_PATH_PCI;
dummy.path.u.pci.devfn = 0;
id = pci_read_config32(&dummy, PCI_VENDOR_ID);
/* If the chain is enumerated quit */
if (id == 0xffffffff || id == 0x00000000 ||
id == 0x0000ffff || id == 0xffff0000) {
break;
}
hdr_type = pci_read_config8(&dummy, PCI_HEADER_TYPE);
pos = 0;
switch(hdr_type & 0x7f) {
case PCI_HEADER_TYPE_NORMAL:
case PCI_HEADER_TYPE_BRIDGE:
pos = PCI_CAPABILITY_LIST;
break;
}
if (pos > PCI_CAP_LIST_NEXT) {
pos = pci_read_config8(&dummy, pos);
}
while(pos != 0) { /* loop through the linked list */
uint8_t cap;
cap = pci_read_config8(&dummy, pos + PCI_CAP_LIST_ID);
printk_debug("Capability: 0x%02x @ 0x%02x\n", cap, pos);
if (cap == PCI_CAP_ID_HT) {
assign_id_set_links(&dummy,&pos,&previous_pos,
previous_unitid, last_unitid,
&reset_needed, bus,
&next_unitid);
}
if(pos)
pos = pci_read_config8(&dummy,
pos + PCI_CAP_LIST_NEXT);
}
} while((last_unitid != next_unitid) && (next_unitid <= 0x1f));
#if HAVE_HARD_RESET == 1
if(reset_needed) {
printk_debug("HyperT reset needed\n");
boot_successful();
hard_reset();
}
printk_debug("HyperT reset not needed\n");
#endif /* HAVE_HARD_RESET */
#endif /* HYPERTRANSPORT_SUPPORT */
/* probe all devices on this bus with some optimization for non-existance and /* probe all devices on this bus with some optimization for non-existance and
single funcion devices */ single funcion devices */
for (devfn = min_devfn; devfn <= max_devfn; devfn++) { for (devfn = min_devfn; devfn <= max_devfn; devfn++) {

View File

@ -110,5 +110,6 @@ extern void root_dev_read_resources(device_t dev);
extern void root_dev_set_resources(device_t dev); extern void root_dev_set_resources(device_t dev);
extern unsigned int walk_static_devices(device_t bus, unsigned int max); extern unsigned int walk_static_devices(device_t bus, unsigned int max);
extern void enable_childrens_resources(device_t dev); extern void enable_childrens_resources(device_t dev);
extern unsigned int root_dev_scan_pci_bus(device_t root, unsigned int max);
#endif /* DEVICE_H */ #endif /* DEVICE_H */

View File

@ -0,0 +1,9 @@
#ifndef DEVICE_HYPERTRANSPORT_H
#define DEVICE_HYPERTRANSPORT_H
unsigned int hypertransport_scan_chain(struct bus *bus, unsigned min_unitid, unsigned int max);
#define HT_IO_HOST_ALIGN 4096
#define HT_MEM_HOST_ALIGN (1024*1024)
#endif /* DEVICE_HYPERTRANSPORT_H */

View File

@ -222,6 +222,7 @@ mainboardinit cpu/k8/disable_mmx_sse.inc
## Include the secondary Configuration files ## Include the secondary Configuration files
## ##
dir /pc80 dir /pc80
config chip.h
northbridge amd/amdk8 "mc0" northbridge amd/amdk8 "mc0"
pci 0:18.0 pci 0:18.0
@ -263,12 +264,12 @@ northbridge amd/amdk8 "mc0"
end end
northbridge amd/amdk8 "mc1" northbridge amd/amdk8 "mc1"
#pci 0:19.0 pci 0:19.0
#pci 0:19.0 pci 0:19.0
#pci 0:19.0 pci 0:19.0
#pci 0:19.1 pci 0:19.1
#pci 0:19.2 pci 0:19.2
#pci 0:19.3 pci 0:19.3
end end
cpu k8 "cpu0" cpu k8 "cpu0"

View File

@ -1,3 +1,4 @@
#include <console/console.h> #include <console/console.h>
#include <device/device.h> #include <device/device.h>
#include <device/pci.h> #include <device/pci.h>
@ -6,6 +7,7 @@
#include <arch/io.h> #include <arch/io.h>
#include <device/chip.h> #include <device/chip.h>
#include "../../../northbridge/amd/amdk8/northbridge.h"
#include "chip.h" #include "chip.h"
@ -14,22 +16,27 @@ unsigned long initial_apicid[CONFIG_MAX_CPUS] =
0, 1, 0, 1,
}; };
static void static struct device_operations mainboard_operations = {
enable(struct chip *chip, enum chip_pass pass) .read_resources = root_dev_read_resources,
{ .set_resources = root_dev_set_resources,
.enable_resources = enable_childrens_resources,
struct mainboard_arima_hdama_config *conf = .init = 0,
(struct mainboard_arima_hdama_config *)chip->chip_info; .scan_bus = amdk8_scan_root_bus,
.enable = 0,
switch (pass) { };
default: break;
case CONF_PASS_PRE_BOOT: static void enumerate(struct chip *chip)
break; {
} struct chip *child;
dev_root.ops = &mainboard_operations;
} chip->dev = &dev_root;
struct chip_control mainboard_arima_hdama_control = { chip->bus = 0;
enable: enable, for(child = chip->children; child; child = child->next) {
name: "Arima HDAMA mainboard " child->bus = &dev_root.link[0];
}
}
struct chip_control mainboard_arima_hdama_control = {
.enumerate = enumerate,
.name = "Arima HDAMA mainboard ",
}; };

View File

@ -36,40 +36,40 @@ void *smp_write_config_table(void *v, unsigned long * processor_map)
smp_write_processors(mc, processor_map); smp_write_processors(mc, processor_map);
{ {
struct pci_dev *dev; device_t dev;
uint32_t base;
/* 8111 */ /* 8111 */
dev = dev_find_slot(0, PCI_DEVFN(0x03,0)); dev = dev_find_slot(1, PCI_DEVFN(0x03,0));
if (dev) { if (dev) {
bus_8111_1 = pci_read_config8(dev, PCI_SECONDARY_BUS); bus_8111_1 = pci_read_config8(dev, PCI_SECONDARY_BUS);
bus_isa = pci_read_config8(dev, PCI_SUBORDINATE_BUS); bus_isa = pci_read_config8(dev, PCI_SUBORDINATE_BUS);
bus_isa++; bus_isa++;
} }
else { else {
printk_debug("ERROR - could not find PCI 0:03.0, using defaults\n"); printk_debug("ERROR - could not find PCI 1:03.0, using defaults\n");
bus_8111_1 = 3; bus_8111_1 = 3;
bus_isa = 4; bus_isa = 4;
} }
/* 8131-1 */ /* 8131-1 */
dev = dev_find_slot(0, PCI_DEVFN(0x01,0)); dev = dev_find_slot(1, PCI_DEVFN(0x01,0));
if (dev) { if (dev) {
bus_8131_1 = pci_read_config8(dev, PCI_SECONDARY_BUS); bus_8131_1 = pci_read_config8(dev, PCI_SECONDARY_BUS);
} }
else { else {
printk_debug("ERROR - could not find PCI 0:01.0, using defaults\n"); printk_debug("ERROR - could not find PCI 1:01.0, using defaults\n");
bus_8131_1 = 1; bus_8131_1 = 1;
} }
/* 8131-2 */ /* 8131-2 */
dev = dev_find_slot(0, PCI_DEVFN(0x02,0)); dev = dev_find_slot(1, PCI_DEVFN(0x02,0));
if (dev) { if (dev) {
bus_8131_2 = pci_read_config8(dev, PCI_SECONDARY_BUS); bus_8131_2 = pci_read_config8(dev, PCI_SECONDARY_BUS);
} }
else { else {
printk_debug("ERROR - could not find PCI 0:02.0, using defaults\n"); printk_debug("ERROR - could not find PCI 1:02.0, using defaults\n");
bus_8131_2 = 2; bus_8131_2 = 2;
} }
@ -85,17 +85,17 @@ void *smp_write_config_table(void *v, unsigned long * processor_map)
smp_write_ioapic(mc, 2, 0x11, 0xfec00000); smp_write_ioapic(mc, 2, 0x11, 0xfec00000);
{ {
struct pci_dev *dev; device_t dev;
uint32_t base; uint32_t base;
/* 8131 apic 3 */ /* 8131 apic 3 */
dev = dev_find_slot(0, PCI_DEVFN(0x01,1)); dev = dev_find_slot(1, PCI_DEVFN(0x01,1));
if (dev) { if (dev) {
base = pci_read_config32(dev, PCI_BASE_ADDRESS_0); base = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
base &= PCI_BASE_ADDRESS_MEM_MASK; base &= PCI_BASE_ADDRESS_MEM_MASK;
smp_write_ioapic(mc, 0x03, 0x11, base); smp_write_ioapic(mc, 0x03, 0x11, base);
} }
/* 8131 apic 4 */ /* 8131 apic 4 */
dev = dev_find_slot(0, PCI_DEVFN(0x02,1)); dev = dev_find_slot(1, PCI_DEVFN(0x02,1));
if (dev) { if (dev) {
base = pci_read_config32(dev, PCI_BASE_ADDRESS_0); base = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
base &= PCI_BASE_ADDRESS_MEM_MASK; base &= PCI_BASE_ADDRESS_MEM_MASK;

View File

@ -1,2 +1,3 @@
config chip.h
object northbridge.o object northbridge.o
driver misc_control.o

View File

@ -0,0 +1,5 @@
struct northbridge_amd_amdk8_config
{
};
extern struct chip_control northbridge_amd_amdk8_control;

View File

@ -0,0 +1,37 @@
/* Turn off machine check triggers when reading
* pci space where there are no devices.
* This is necessary when scaning the bus for
* devices which is done by the kernel */
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
static void misc_control_init(struct device *dev)
{
uint32_t cmd;
printk_debug("NB: Function 3 Misc Control.. ");
cmd = pci_read_config32(dev, 0x44);
cmd |= (1<<6) | (1<<25);
pci_write_config32(dev, 0x44, cmd );
printk_debug("done.\n");
}
static struct device_operations mcf3_ops = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = misc_control_init,
.scan_bus = 0,
};
static struct pci_driver mcf3_driver __pci_driver = {
.ops = &mcf3_ops,
.vendor = PCI_VENDOR_ID_AMD,
.device = 0x1103,
};

View File

@ -1,10 +1,17 @@
#include <console/console.h>
#include <arch/io.h> #include <arch/io.h>
#include <stdint.h> #include <stdint.h>
#include <mem.h> #include <mem.h>
#include <part/sizeram.h> #include <part/sizeram.h>
#include <device/device.h> #include <device/device.h>
#include <device/pci.h> #include <device/pci.h>
#include <console/console.h> #include <device/hypertransport.h>
#include <device/chip.h>
#include <stdlib.h>
#include <string.h>
#include <bitops.h>
#include "chip.h"
#include "northbridge.h"
struct mem_range *sizeram(void) struct mem_range *sizeram(void)
{ {
@ -16,6 +23,7 @@ struct mem_range *sizeram(void)
#warning "FIXME handle interleaved nodes" #warning "FIXME handle interleaved nodes"
dev = dev_find_slot(0, PCI_DEVFN(0x18, 1)); dev = dev_find_slot(0, PCI_DEVFN(0x18, 1));
if (!dev) { if (!dev) {
printk_err("Cannot find PCI: 0:18.1\n");
return 0; return 0;
} }
mmio_basek = (dev_root.resource[1].base >> 10); mmio_basek = (dev_root.resource[1].base >> 10);
@ -28,14 +36,10 @@ struct mem_range *sizeram(void)
mmio_basek &= ~((256*1024) - 1); mmio_basek &= ~((256*1024) - 1);
#endif #endif
/* Temporary hack to get mmio handling working */ #if 1
for(i = 0; i < 8; i++) { printk_debug("mmio_base: %dKB\n", mmio_basek);
#warning "FIXME handle multiple Hypertransport chains in device.c" #endif
device_t node;
node = dev_find_slot(0, PCI_DEVFN(0x18 + i, 1));
pci_write_config32(node, 0xB8, ((mmio_basek >> 6) << 8) | (1<<1) | (1 << 0));
pci_write_config32(node, 0xBC, 0x00ffff00);
}
for(idx = i = 0; i < 8; i++) { for(idx = i = 0; i < 8; i++) {
uint32_t base, limit; uint32_t base, limit;
unsigned basek, limitk, sizek; unsigned basek, limitk, sizek;
@ -90,3 +94,387 @@ struct mem_range *sizeram(void)
return mem; return mem;
} }
#define F1_DEVS 8
static device_t __f1_dev[F1_DEVS];
#if 0
static void debug_f1_devs(void)
{
int i;
for(i = 0; i < F1_DEVS; i++) {
device_t dev;
dev = __f1_dev[i];
if (dev) {
printk_debug("__f1_dev[%d]: %s bus: %p\n",
i, dev_path(dev), dev->bus);
}
}
}
#endif
static void get_f1_devs(void)
{
int i;
if (__f1_dev[0]) {
return;
}
for(i = 0; i < F1_DEVS; i++) {
__f1_dev[i] = dev_find_slot(0, PCI_DEVFN(0x18 + i, 1));
}
if (!__f1_dev[0]) {
die("Cannot find 0:0x18.1\n");
}
}
static uint32_t f1_read_config32(unsigned reg)
{
get_f1_devs();
return pci_read_config32(__f1_dev[0], reg);
}
static void f1_write_config32(unsigned reg, uint32_t value)
{
int i;
get_f1_devs();
for(i = 0; i < F1_DEVS; i++) {
device_t dev;
dev = __f1_dev[i];
if (dev) {
pci_write_config32(dev, reg, value);
}
}
}
static unsigned int amdk8_nodeid(device_t dev)
{
return (dev->path.u.pci.devfn >> 3) - 0x18;
}
#define LinkConnected (1 << 0)
#define InitComplete (1 << 1)
#define NonCoherent (1 << 2)
#define ConnectionPending (1 << 4)
static unsigned int amdk8_scan_chains(device_t dev, unsigned int max)
{
unsigned nodeid;
unsigned link;
nodeid = amdk8_nodeid(dev);
#if 1
printk_debug("amdk8_scan_chains max: %d starting...\n", max);
#endif
for(link = 0; link < dev->links; link++) {
uint32_t link_type;
uint32_t busses, config_busses;
unsigned free_reg, config_reg;
dev->link[link].cap = 0x80 + (link *0x20);
do {
link_type = pci_read_config32(dev, dev->link[link].cap + 0x18);
} while(link_type & ConnectionPending);
if (!(link_type & LinkConnected)) {
continue;
}
do {
link_type = pci_read_config32(dev, dev->link[link].cap + 0x18);
} while(!(link_type & InitComplete));
if (!(link_type & NonCoherent)) {
continue;
}
/* See if there is an available configuration space mapping register in function 1. */
free_reg = 0;
for(config_reg = 0xe0; config_reg <= 0xec; config_reg += 4) {
uint32_t config;
config = f1_read_config32(config_reg);
if (!free_reg && ((config & 3) == 0)) {
free_reg = config_reg;
continue;
}
if (((config & 3) == 3) &&
(((config >> 4) & 7) == nodeid) &&
(((config >> 8) & 3) == link)) {
break;
}
}
if (free_reg && (config_reg > 0xec)) {
config_reg = free_reg;
}
/* If we can't find an available configuration space mapping register skip this bus */
if (config_reg > 0xec) {
continue;
}
/* Set up the primary, secondary and subordinate bus numbers. We have
* no idea how many busses are behind this bridge yet, so we set the subordinate
* bus number to 0xff for the moment.
*/
dev->link[link].secondary = ++max;
dev->link[link].subordinate = 0xff;
/* Read the existing primary/secondary/subordinate bus
* number configuration.
*/
busses = pci_read_config32(dev, dev->link[link].cap + 0x14);
config_busses = f1_read_config32(config_reg);
/* Configure the bus numbers for this bridge: the configuration
* transactions will not be propagates by the bridge if it is not
* correctly configured
*/
busses &= 0xff000000;
busses |= (((unsigned int)(dev->bus->secondary) << 0) |
((unsigned int)(dev->link[link].secondary) << 8) |
((unsigned int)(dev->link[link].subordinate) << 16));
pci_write_config32(dev, dev->link[link].cap + 0x14, busses);
config_busses &= 0x0000ffff;
config_busses |= ((dev->link[link].secondary) << 16) |
((dev->link[link].subordinate) << 24);
f1_write_config32(config_reg, config_busses);
#if 1
printk_debug("Hyper transport scan link: %d max: %d\n", link, max);
#endif
/* Now we can scan all of the subordinate busses i.e. the chain on the hypertranport link */
max = hypertransport_scan_chain(&dev->link[link], 1, max);
#if 1
printk_debug("Hyper transport scan link: %d new max: %d\n", link, max);
#endif
/* We know the number of busses behind this bridge. Set the subordinate
* bus number to it's real value
*/
dev->link[link].subordinate = max;
busses = (busses & 0xff00ffff) |
((unsigned int) (dev->link[link].subordinate) << 16);
pci_write_config32(dev, dev->link[link].cap + 0x14, busses);
config_busses = (config_busses & 0x00ffffff) | (dev->link[link].subordinate << 24);
f1_write_config32(config_reg, config_busses);
#if 1
printk_debug("Hypertransport scan link done\n");
#endif
}
#if 1
printk_debug("amdk8_scan_chains max: %d done\n", max);
#endif
return max;
}
static unsigned amdk8_find_iopair(unsigned nodeid, unsigned link)
{
unsigned free_reg, reg;
free_reg = 0;
for(reg = 0xc0; reg <= 0xd8; reg += 0x8) {
uint32_t base, limit;
base = f1_read_config32(reg);
limit = f1_read_config32(reg + 0x4);
/* Do I have a free register */
if (!free_reg && ((base & 3) == 0)) {
free_reg = reg;
}
/* Do I have a match for this node and link? */
if (((base & 3) == 3) &&
((limit & 3) == nodeid) &&
(((limit >> 4) & 3) == link)) {
break;
}
}
/* If I didn't find an exact match return a free register */
if (reg > 0xd8) {
reg = free_reg;
}
/* Return an available I/O pair or 0 on failure */
return reg;
}
static unsigned amdk8_find_mempair(unsigned nodeid, unsigned link)
{
unsigned free_reg, reg;
free_reg = 0;
for(reg = 0x80; reg <= 0xb8; reg += 0x8) {
uint32_t base, limit;
base = f1_read_config32(reg);
limit = f1_read_config32(reg + 0x4);
/* Do I have a free register */
if (!free_reg && ((base & 3) == 0)) {
free_reg = reg;
}
/* Do I have a match for this node and link? */
if (((base & 3) == 3) &&
((limit & 3) == nodeid) &&
(((limit >> 4) & 3) == link)) {
break;
}
}
/* If I didn't find an exact match return a free register */
if (reg > 0xb8) {
reg = free_reg;
}
/* Return an available I/O pair or 0 on failure */
return reg;
}
static void amdk8_link_read_bases(device_t dev, unsigned nodeid, unsigned link)
{
unsigned int reg = dev->resources;
unsigned index;
/* Initialize the io space constraints on the current bus */
index = amdk8_find_iopair(nodeid, link);
if (index) {
dev->resource[reg].base = 0;
dev->resource[reg].size = 0;
dev->resource[reg].align = log2(HT_IO_HOST_ALIGN);
dev->resource[reg].gran = log2(HT_IO_HOST_ALIGN);
dev->resource[reg].limit = 0xffffUL;
dev->resource[reg].flags = IORESOURCE_IO;
dev->resource[reg].index = index | (link & 0x3);
compute_allocate_resource(&dev->link[link], &dev->resource[reg],
IORESOURCE_IO, IORESOURCE_IO);
reg++;
}
/* Initialize the memory constraints on the current bus */
index = amdk8_find_mempair(nodeid, link);
if (index) {
dev->resource[reg].base = 0;
dev->resource[reg].size = 0;
dev->resource[reg].align = log2(HT_MEM_HOST_ALIGN);
dev->resource[reg].gran = log2(HT_MEM_HOST_ALIGN);
dev->resource[reg].limit = 0xffffffffUL;
dev->resource[reg].flags = IORESOURCE_MEM;
dev->resource[reg].index = index | (link & 0x3);
compute_allocate_resource(&dev->link[link], &dev->resource[reg],
IORESOURCE_MEM, IORESOURCE_MEM);
reg++;
}
dev->resources = reg;
}
static void amdk8_read_resources(device_t dev)
{
unsigned nodeid, link;
nodeid = amdk8_nodeid(dev);
dev->resources = 0;
memset(&dev->resource, 0, sizeof(dev->resource));
for(link = 0; link < dev->links; link++) {
if (dev->link[link].children) {
amdk8_link_read_bases(dev, nodeid, link);
}
}
}
static void amdk8_set_resource(device_t dev, struct resource *resource, unsigned nodeid)
{
unsigned long rbase, rlimit;
unsigned reg, link;
/* Make certain the resource has actually been set */
if (!(resource->flags & IORESOURCE_SET)) {
return;
}
/* Only handle PCI memory and IO resources */
if (!(resource->flags & (IORESOURCE_MEM | IORESOURCE_IO)))
return;
/* Get the base address */
rbase = resource->base;
/* Get the limit (rounded up) */
rlimit = rbase + ((resource->size + resource->align - 1UL) & ~(resource->align -1)) - 1UL;
/* Get the register and link */
reg = resource->index & ~3;
link = resource->index & 3;
if (resource->flags & IORESOURCE_IO) {
uint32_t base, limit;
compute_allocate_resource(&dev->link[link], resource,
IORESOURCE_IO, IORESOURCE_IO);
base = f1_read_config32(reg);
limit = f1_read_config32(reg + 0x4);
base &= 0xfe000fcc;
base |= rbase & 0x01fff000;
base |= 3;
limit &= 0xfe000fc8;
limit |= rlimit & 0x01fff000;
limit |= (link & 3) << 4;
limit |= (nodeid & 3);
f1_write_config32(reg + 0x4, limit);
f1_write_config32(reg, base);
}
else if (resource->flags & IORESOURCE_MEM) {
uint32_t base, limit;
compute_allocate_resource(&dev->link[link], resource,
IORESOURCE_MEM, IORESOURCE_MEM);
base = f1_read_config32(reg);
limit = f1_read_config32(reg + 0x4);
base &= 0x000000f0;
base |= (rbase & 0xffff0000) >> 8;
base |= 3;
limit &= 0x00000048;
limit |= (rlimit & 0xffff0000) >> 8;
limit |= (link & 3) << 4;
limit |= (nodeid & 3);
f1_write_config32(reg + 0x4, limit);
f1_write_config32(reg, base);
}
printk_debug(
"%s %02x <- [0x%08lx - 0x%08lx] node %d link %d %s\n",
dev_path(dev),
reg,
rbase, rlimit,
nodeid, link,
(resource->flags & IORESOURCE_IO)? "io": "mem");
}
static void amdk8_set_resources(device_t dev)
{
unsigned nodeid, link;
int i;
/* Find the nodeid */
nodeid = amdk8_nodeid(dev);
/* Set each resource we have found */
for(i = 0; i < dev->resources; i++) {
amdk8_set_resource(dev, &dev->resource[i], nodeid);
}
for(link = 0; link < dev->links; link++) {
struct bus *bus;
bus = &dev->link[link];
if (bus->children) {
assign_resources(bus);
}
}
}
unsigned int amdk8_scan_root_bus(device_t root, unsigned int max)
{
return pci_scan_bus(&root->link[0], PCI_DEVFN(0x18, 0), 0xff, max);
}
static struct device_operations northbridge_operations = {
.read_resources = amdk8_read_resources,
.set_resources = amdk8_set_resources,
.enable_resources = pci_dev_enable_resources,
.init = 0,
.scan_bus = amdk8_scan_chains,
.enable = 0,
};
static void enumerate(struct chip *chip)
{
chip_enumerate(chip);
chip->dev->ops = &northbridge_operations;
}
struct chip_control northbridge_amd_amdk8_control = {
.enumerate = enumerate,
.name = "AMD K8 Northbridge",
};

View File

@ -0,0 +1,6 @@
#ifndef NORTHBRIDGE_AMD_AMDK8_H
#define NORTHBRIDGE_AMD_AMDK8_H
extern unsigned int amdk8_scan_root_bus(device_t root, unsigned int max);
#endif /* NORTHBRIDGE_AMD_AMDK8_H */

View File

@ -9,29 +9,26 @@
static int cpu_init_detected(void) static int cpu_init_detected(void)
{ {
unsigned long dcl;
int cpu_init;
unsigned long htic; unsigned long htic;
htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL); htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL);
#if 0
print_debug("htic: ");
print_debug_hex32(htic);
print_debug("\r\n");
if (!(htic & HTIC_ColdR_Detect)) { return !!(htic & HTIC_INIT_Detect);
print_debug("Cold Reset.\r\n"); }
}
if ((htic & HTIC_ColdR_Detect) && !(htic & HTIC_BIOSR_Detect)) { static int bios_reset_detected(void)
print_debug("BIOS generated Reset.\r\n"); {
} unsigned long htic;
if (htic & HTIC_INIT_Detect) { htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL);
print_debug("Init event.\r\n");
} return (htic & HTIC_ColdR_Detect) && !(htic & HTIC_BIOSR_Detect);
#endif }
cpu_init = (htic & HTIC_INIT_Detect);
return cpu_init; static int cold_reset_detected(void)
{
unsigned long htic;
htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL);
return !(htic & HTIC_ColdR_Detect);
} }
static void distinguish_cpu_resets(unsigned node_id) static void distinguish_cpu_resets(unsigned node_id)
@ -43,3 +40,11 @@ static void distinguish_cpu_resets(unsigned node_id)
htic |= HTIC_ColdR_Detect | HTIC_BIOSR_Detect | HTIC_INIT_Detect; htic |= HTIC_ColdR_Detect | HTIC_BIOSR_Detect | HTIC_INIT_Detect;
pci_write_config32(device, HT_INIT_CONTROL, htic); pci_write_config32(device, HT_INIT_CONTROL, htic);
} }
static void set_bios_reset(void)
{
unsigned long htic;
htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL);
htic &= ~HTIC_BIOSR_Detect;
pci_write_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL, htic);
}

View File

@ -2,7 +2,11 @@
/* This code is distributed without warranty under the GPL v2 (see COPYING) */ /* This code is distributed without warranty under the GPL v2 (see COPYING) */
#include <arch/io.h> #include <arch/io.h>
#include <device/device.h>
#include <device/chip.h> #include <device/chip.h>
#include <console/console.h>
#include <string.h>
#include <bitops.h>
#include "chip.h" #include "chip.h"
void pnp_output(char address, char data) void pnp_output(char address, char data)
@ -11,7 +15,7 @@ void pnp_output(char address, char data)
outb(data, PNP_DATA_REG); outb(data, PNP_DATA_REG);
} }
void sio_enable(struct chip *chip, enum chip_pass pass) static void sio_enable(struct chip *chip, enum chip_pass pass)
{ {
struct superio_NSC_pc87360_config *conf = (struct superio_NSC_pc87360_config *)chip->chip_info; struct superio_NSC_pc87360_config *conf = (struct superio_NSC_pc87360_config *)chip->chip_info;
@ -31,7 +35,281 @@ void sio_enable(struct chip *chip, enum chip_pass pass)
} }
} }
struct chip_control superio_NSC_pc87360_control = { static void pnp_write_config(device_t dev, unsigned char value, unsigned char reg)
enable: sio_enable, {
name: "NSC 87360" outb(reg, dev->path.u.pnp.port);
outb(value, dev->path.u.pnp.port + 1);
}
static unsigned char pnp_read_config(device_t dev, unsigned char reg)
{
outb(reg, dev->path.u.pnp.port);
return inb(dev->path.u.pnp.port + 1);
}
static void pnp_set_logical_device(device_t dev)
{
pnp_write_config(dev, dev->path.u.pnp.device, 0x07);
}
static void pnp_set_enable(device_t dev, int enable)
{
pnp_write_config(dev, enable?0x1:0x0, 0x30);
}
static int pnp_read_enable(device_t dev)
{
return !!pnp_read_config(dev, 0x30);
}
#define FLOPPY_DEVICE 0
#define PARALLEL_DEVICE 1
#define COM2_DEVICE 2
#define COM1_DEVICE 3
#define SWC_DEVICE 4
#define MOUSE_DEVICE 5
#define KBC_DEVICE 6
#define GPIO_DEVICE 7
#define ACB_DEVICE 8
#define FSCM_DEVICE 9
#define WDT_DEVICE 10
struct io_info {
unsigned mask, set;
};
struct pnp_info {
unsigned flags;
#define PNP_IO0 0x01
#define PNP_IO1 0x02
#define PNP_IRQ0 0x04
#define PNP_IRQ1 0x08
#define PNP_DRQ0 0x10
#define PNP_DRQ1 0x20
struct io_info io0, io1;
};
static struct pnp_info pnp_dev_info[] = {
[ 0] = { PNP_IO0 | PNP_IRQ0 | PNP_DRQ0, { 0x07fa, 0}, },
[ 1] = { PNP_IO0 | PNP_IRQ0 | PNP_DRQ0, { 0x04f8, 0}, },
[ 2] = { PNP_IO0 | PNP_IRQ0 | PNP_DRQ0 | PNP_DRQ1, { 0x7f8, 0 }, },
[ 3] = { PNP_IO0 | PNP_IRQ0, { 0x7f8, 0 }, },
[ 4] = { PNP_IO0 | PNP_IRQ0, { 0xfff0, 0 }, },
[ 5] = { PNP_IRQ0 },
[ 6] = { PNP_IO0 | PNP_IO1 | PNP_IRQ0, { 0x7f8, 0 }, { 0x7f8, 0x4}, },
[ 7] = { PNP_IO0 | PNP_IRQ0, { 0xfff8, 0 } },
[ 8] = { PNP_IO0 | PNP_IRQ0, { 0xfff8, 0 } },
[ 9] = { PNP_IO0 | PNP_IRQ0, { 0xfff8, 0 } },
[10] = { PNP_IO0 | PNP_IRQ0, { 0xfffc, 0 } },
};
static struct resource *get_resource(device_t dev, unsigned index)
{
struct resource *resource;
int i;
resource = 0;
for(i = 0; i < dev->resources; i++) {
resource = &dev->resource[i];
if (resource->index == index) {
break;
}
}
if (!resource || (resource->index != index)) {
resource = &dev->resource[dev->resources];
memset(resource, 0, sizeof(*resource));
dev->resources++;
}
/* Initialize the resource values */
if (!(resource->flags & IORESOURCE_FIXED)) {
resource->flags = 0;
resource->base = 0;
}
resource->size = 0;
resource->limit = 0;
resource->flags = 0;
resource->index = index;
resource->align = 0;
resource->gran = 0;
return resource;
}
static void pnp_read_ioresource(device_t dev, unsigned index, struct io_info *info)
{
struct resource *resource;
uint32_t size;
resource = get_resource(dev, index);
/* Initilize the resource */
resource->limit = 0xffff;
resource->flags |= IORESOURCE_IO;
/* Set the resource size and alignment */
size = (0xffff & info->mask);
resource->size = (~(size | 0xfffff800) + 1);
resource->align = log2(resource->size);
resource->gran = resource->align;
}
static void pnp_read_resources(device_t dev)
{
struct pnp_info *info;
struct resource *resource;
pnp_set_logical_device(dev);
info = &pnp_dev_info[dev->path.u.pnp.device];
if (info->flags & PNP_IO0) {
pnp_read_ioresource(dev, 0x60, &info->io0);
}
if (info->flags & PNP_IO1) {
pnp_read_ioresource(dev, 0x62, &info->io1);
}
if (info->flags & PNP_IRQ0) {
resource = get_resource(dev, 0x70);
resource->size = 1;
resource->flags |= IORESOURCE_IRQ;
}
if (info->flags & PNP_IRQ1) {
resource = get_resource(dev, 0x72);
resource->size = 1;
resource->flags |= IORESOURCE_IRQ;
}
if (info->flags & PNP_DRQ0) {
resource = get_resource(dev, 0x74);
resource->size = 1;
resource->flags |= IORESOURCE_DRQ;
}
if (info->flags & PNP_DRQ1) {
resource = get_resource(dev, 0x75);
resource->size = 1;
resource->flags |= IORESOURCE_DRQ;
}
}
static void pnp_set_iobase(device_t dev, unsigned iobase, unsigned index)
{
/* Index == 0x60 or 0x62 */
pnp_write_config(dev, (iobase >> 8) & 0xff, index);
pnp_write_config(dev, iobase & 0xff, index + 1);
}
static void pnp_set_irq(device_t dev, unsigned irq, unsigned index)
{
/* Index == 0x70 or 0x72 */
pnp_write_config(dev, irq, index);
}
static void pnp_set_drq(device_t dev, unsigned drq, unsigned index)
{
/* Index == 0x74 */
pnp_write_config(dev, drq & 0xff, index);
}
static void pnp_set_resource(device_t dev, struct resource *resource)
{
if (!(resource->flags & IORESOURCE_SET)) {
#if 1
printk_err("ERROR: %s %02x not allocated\n",
dev_path(dev), resource->index);
#endif
return;
}
if (resource->flags & IORESOURCE_IO) {
pnp_set_iobase(dev, resource->base, resource->index);
}
else if (resource->flags & IORESOURCE_DRQ) {
pnp_set_drq(dev, resource->base, resource->index);
}
else if (resource->flags & IORESOURCE_IRQ) {
pnp_set_irq(dev, resource->base, resource->index);
}
else {
printk_err("ERROR: %s %02x unknown resource type\n",
dev_path(dev), resource->index);
return;
}
printk_debug(
"%s %02x <- [0x%08lx - 0x%08lx %s\n",
dev_path(dev),
resource->index,
resource->base, resource->base + resource->size - 1,
(resource->flags & IORESOURCE_IO)? "io":
(resource->flags & IORESOURCE_DRQ)? "drq":
(resource->flags & IORESOURCE_IRQ)? "irq":
(resource->flags & IORESOURCE_MEM)? "mem":
"???");
}
static void pnp_set_resources(device_t dev)
{
int i;
pnp_set_logical_device(dev);
for(i = 0; i < dev->resources; i++) {
pnp_set_resource(dev, &dev->resource[i]);
}
}
static void pnp_enable_resources(device_t dev)
{
pnp_set_logical_device(dev);
pnp_set_enable(dev, 1);
}
static void pnp_enable(device_t dev)
{
pnp_set_logical_device(dev);
if (!dev->enable) {
pnp_set_enable(dev, 0);
}
}
static struct device_operations pnp_ops = {
.read_resources = pnp_read_resources,
.set_resources = pnp_set_resources,
.enable_resources = pnp_enable_resources,
.enable = pnp_enable,
};
#define MAX_FUNCTION 10
static void enumerate(struct chip *chip)
{
struct superio_NSC_pc87360_config *conf = (struct superio_NSC_pc87360_config *)chip->chip_info;
struct resource *resource;
struct device_path path;
device_t dev;
int i;
chip_enumerate(chip);
path.type = DEVICE_PATH_PNP;
path.u.pnp.port = chip->dev->path.u.pnp.port;
/* Set the ops on the newly allocated devices */
for(i = 0; i <= WDT_DEVICE; i++) {
path.u.pnp.device = i;
dev = alloc_find_dev(chip->bus, &path);
dev->ops = &pnp_ops;
}
/* Processes the hard codes for com1 */
path.u.pnp.device = COM1_DEVICE;
dev = alloc_find_dev(chip->bus, &path);
resource = get_resource(dev, 0x60);
if (conf->com1.base) {
resource->base = conf->com1.base;
resource->flags = IORESOURCE_IO | IORESOURCE_FIXED | IORESOURCE_SET;
}
resource = get_resource(dev, 0x70);
if (conf->com1.irq) {
resource->base = conf->com1.irq;
resource->flags = IORESOURCE_IRQ | IORESOURCE_FIXED | IORESOURCE_SET;
}
}
struct chip_control superio_NSC_pc87360_control = {
.enable = sio_enable,
.enumerate = enumerate,
.name = "NSC 87360"
}; };