qcs405: Add SPI driver support

Add SPI driver support in coreboot.

Change-Id: I813ba0b5cc8344c463c3e41ff6db80bc0d8ebd96
Signed-off-by: Prudhvi Yarlagadda <pyarlaga@codeaurora.org>
Signed-off-by: Nitheesh Sekar <nsekar@codeaurora.org>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/32058
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
Prudhvi Yarlagadda 2019-03-14 11:01:12 +05:30 committed by Patrick Georgi
parent 37e957f334
commit 13539d2f9d
4 changed files with 1202 additions and 17 deletions

View File

@ -19,4 +19,13 @@ config VBOOT
select VBOOT_SEPARATE_VERSTAGE
select VBOOT_RETURN_FROM_VERSTAGE
select VBOOT_STARTS_IN_BOOTBLOCK
config QCS405_BLSP_SPI
bool
default y
prompt "Build Flash Using SPI-NOR"
config BOOT_DEVICE_SPI_FLASH_BUS
int
default 5
endif

View File

@ -0,0 +1,232 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2018 - 2019 The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __QUP_H__
#define __QUP_H__
/* QUP block registers */
#define QUP_CONFIG 0x000
#define QUP_STATE 0x004
#define QUP_IO_MODES 0x008
#define QUP_SW_RESET 0x00C
#define QUP_TRANSFER_CANCEL 0x014
#define QUP_OPERATIONAL 0x018
#define QUP_ERROR_FLAGS 0x01C
#define QUP_ERROR_FLAGS_EN 0x020
#define QUP_TEST_CTRL 0x024
#define QUP_OPERATIONAL_MASK 0x028
#define QUP_HW_VERSION 0x030
#define QUP_MX_OUTPUT_COUNT 0x100
#define QUP_MX_OUTPUT_CNT_CURRENT 0x104
#define QUP_OUTPUT_DEBUG 0x108
#define QUP_OUTPUT_FIFO_WORD_CNT 0x10C
#define QUP_OUTPUT_FIFO 0x110
#define QUP_OUTPUT_FIFO_SIZE 64 /* bytes */
#define QUP_MX_WRITE_COUNT 0x150
#define QUP_MX_WRITE_CNT_CURRENT 0x154
#define QUP_MX_INPUT_COUNT 0x200
#define QUP_MX_INPUT_CNT_CURRENT 0x204
#define QUP_MX_READ_COUNT 0x208
#define QUP_MX_READ_CNT_CURRENT 0x20C
#define QUP_INPUT_DEBUG 0x210
#define QUP_INPUT_FIFO_WORD_CNT 0x214
#define QUP_INPUT_FIFO 0x218
#define QUP_INPUT_FIFO_SIZE 64 /* bytes */
#define QUP_I2C_MASTER_CLK_CTL 0x400
#define QUP_I2C_MASTER_STATUS 0x404
#define QUP_I2C_MASTER_CONFIG 0x408
#define QUP_I2C_MASTER_BUS_CLEAR 0x40C
#define QUP_I2C_MASTER_LOCAL_ID 0x410
#define QUP_I2C_MASTER_COMMAND 0x414
#define OUTPUT_FIFO_FULL (1<<6)
#define INPUT_FIFO_NOT_EMPTY (1<<5)
#define OUTPUT_FIFO_NOT_EMPTY (1<<4)
#define MAX_OUTPUT_DONE_FLAG (1<<10)
#define MAX_INPUT_DONE_FLAG (1<<11)
#define INPUT_SERVICE_FLAG (1<<9)
#define OUTPUT_SERVICE_FLAG (1<<8)
#define QUP_UNPACK_EN (1<<14)
#define QUP_PACK_EN (1<<15)
#define QUP_OUTPUT_BIT_SHIFT_EN (1<<16)
#define QUP_MODE_MASK (0x03)
#define QUP_OUTPUT_MODE_SHFT (10)
#define QUP_INPUT_MODE_SHFT (12)
#define QUP_FS_DIVIDER_MASK (0xFF)
#define QUP_APP_CLK_ON_EN (1 << 12)
#define QUP_CORE_CLK_ON_EN (1 << 13)
#define QUP_MINI_CORE_PROTO_SHFT (8)
#define QUP_MINI_CORE_PROTO_MASK (0x0F)
/* Mini-core states */
#define QUP_STATE_RESET 0x0
#define QUP_STATE_RUN 0x1
#define QUP_STATE_PAUSE 0x3
#define QUP_STATE_VALID (1<<2)
#define QUP_STATE_MASK 0x3
#define QUP_STATE_VALID_MASK (1<<2)
/* Tags for output FIFO */
#define QUP_I2C_1CLK_NOOP_SEQ 0x1 /*MSB 8-bit NOP, LSB 8-bits 1 clk.*/
#define QUP_I2C_START_SEQ (0x1 << 8)
#define QUP_I2C_DATA_SEQ (0x2 << 8)
#define QUP_I2C_STOP_SEQ (0x3 << 8)
#define QUP_I2C_RECV_SEQ (0x4 << 8)
/* Tags for input FIFO */
#define QUP_I2C_MIDATA_SEQ (0x5 << 8)
#define QUP_I2C_MISTOP_SEQ (0x6 << 8)
#define QUP_I2C_MINACK_SEQ (0x7 << 8)
#define QUP_I2C_ADDR(x) ((x & 0xFF) << 1)
#define QUP_I2C_DATA(x) (x & 0xFF)
#define QUP_I2C_MI_TAG(x) (x & 0xFF00)
#define QUP_I2C_SLAVE_READ (0x1)
/*Bit vals for I2C_MASTER_CLK_CTL register */
#define QUP_HS_DIVIDER_SHFT (8)
#define QUP_DIVIDER_MIN_VAL (0x3)
/* Bit masks for I2C_MASTER_STATUS register */
#define QUP_I2C_INVALID_READ_SEQ (1 << 25)
#define QUP_I2C_INVALID_READ_ADDR (1 << 24)
#define QUP_I2C_INVALID_TAG (1 << 23)
#define QUP_I2C_FAILED_MASK (0x3 << 6)
#define QUP_I2C_INVALID_WRITE (1 << 5)
#define QUP_I2C_ARB_LOST (1 << 4)
#define QUP_I2C_PACKET_NACK (1 << 3)
#define QUP_I2C_BUS_ERROR (1 << 2)
typedef enum {
QUP_SUCCESS = 0,
QUP_ERR_BAD_PARAM,
QUP_ERR_STATE_SET,
QUP_ERR_TIMEOUT,
QUP_ERR_UNSUPPORTED,
QUP_ERR_I2C_FAILED,
QUP_ERR_I2C_ARB_LOST,
QUP_ERR_I2C_BUS_ERROR,
QUP_ERR_I2C_INVALID_SLAVE_ADDR,
QUP_ERR_XFER_FAIL,
QUP_ERR_I2C_NACK,
QUP_ERR_I2C_INVALID_WRITE,
QUP_ERR_I2C_INVALID_TAG,
QUP_ERR_UNDEFINED,
} qup_return_t;
typedef enum {
QUP_MINICORE_SPI = 1,
QUP_MINICORE_I2C_MASTER,
QUP_MINICORE_I2C_SLAVE
} qup_protocol_t;
typedef enum {
QUP_MODE_FIFO = 0,
QUP_MODE_BLOCK,
QUP_MODE_DATAMOVER,
} qup_mode_t;
typedef struct {
qup_protocol_t protocol;
unsigned int clk_frequency;
unsigned int src_frequency;
qup_mode_t mode;
unsigned int initialized;
} qup_config_t;
typedef struct {
qup_protocol_t protocol;
union {
struct {
uint8_t addr;
uint8_t *data;
unsigned int data_len;
} iic;
struct {
void *in;
void *out;
unsigned int size;
} spi;
} p;
} qup_data_t;
/*
* Initialize BLSP QUP block for FIFO I2C transfers.
* id[IN]: BLSP for which QUP is to be initialized.
* config_ptr[IN]: configurations parameters for the QUP.
*
* return: QUP_SUCCESS, if initialization succeeds.
*/
qup_return_t qup_init(blsp_qup_id_t id, const qup_config_t *config_ptr);
/*
* Set QUP state to run, pause, reset.
* id[IN]: BLSP block for which QUP state is to be set.
* state[IN]: New state to transition to.
*
* return: QUP_SUCCESS, if state transition succeeds.
*/
qup_return_t qup_set_state(blsp_qup_id_t id, uint32_t state);
/*
* Reset the status bits set during an i2c transfer.
* id[IN]: BLSP block for which i2c status bits are to be cleared.
*
* return: QUP_SUCCESS, if status bits are cleared successfully.
*/
qup_return_t qup_reset_i2c_master_status(blsp_qup_id_t id);
/*
* Send data to the peripheral on the bus.
* id[IN]: BLSP block for which data is to be sent.
* p_tx_obj[IN]: Data to be sent to the slave on the bus.
* stop_seq[IN]: When set to non-zero QUP engine sends i2c stop sequnce.
*
* return: QUP_SUCCESS, when data is sent successfully to the peripheral.
*/
qup_return_t qup_send_data(blsp_qup_id_t id, qup_data_t *p_tx_obj,
uint8_t stop_seq);
/*
* Receive data from peripheral on the bus.
* id[IN]: BLSP block from which data is to be received.
* p_tx_obj[IN]: length of data to be received, slave address.
* [OUT]: buffer filled with data from slave.
*
* return: QUP_SUCCESS, when data is received successfully.
*/
qup_return_t qup_recv_data(blsp_qup_id_t id, qup_data_t *p_tx_obj);
#endif //__QUP_H__

View File

@ -0,0 +1,210 @@
/*
* Register definitions for the IPQ BLSP SPI Controller
*
* Copyright (c) 2012-2019 The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _QCS405_SPI_H_
#define _QCS405_SPI_H_
#include <soc/iomap.h>
#include <soc/qup.h>
#include <spi-generic.h>
#define BLSP0_QUP_REG_BASE ((void *)0x78b5000u)
#define BLSP4_QUP_REG_BASE ((void *)0x78b9000u)
#define BLSP5_QUP_REG_BASE ((void *)0x7af5000u)
#define BLSP0_SPI_CONFIG_REG (BLSP0_QUP_REG_BASE + 0x00000300)
#define BLSP4_SPI_CONFIG_REG (BLSP4_QUP_REG_BASE + 0x00000300)
#define BLSP5_SPI_CONFIG_REG (BLSP5_QUP_REG_BASE + 0x00000300)
#define BLSP0_SPI_IO_CONTROL_REG (BLSP0_QUP_REG_BASE + 0x00000304)
#define BLSP4_SPI_IO_CONTROL_REG (BLSP4_QUP_REG_BASE + 0x00000304)
#define BLSP5_SPI_IO_CONTROL_REG (BLSP5_QUP_REG_BASE + 0x00000304)
#define BLSP0_SPI_ERROR_FLAGS_REG (BLSP0_QUP_REG_BASE + 0x00000308)
#define BLSP4_SPI_ERROR_FLAGS_REG (BLSP4_QUP_REG_BASE + 0x00000308)
#define BLSP5_SPI_ERROR_FLAGS_REG (BLSP5_QUP_REG_BASE + 0x00000308)
#define BLSP0_SPI_DEASSERT_WAIT_REG (BLSP0_QUP_REG_BASE + 0x00000310)
#define BLSP4_SPI_DEASSERT_WAIT_REG (BLSP4_QUP_REG_BASE + 0x00000310)
#define BLSP5_SPI_DEASSERT_WAIT_REG (BLSP5_QUP_REG_BASE + 0x00000310)
#define BLSP0_SPI_ERROR_FLAGS_EN_REG (BLSP0_QUP_REG_BASE + 0x0000030c)
#define BLSP4_SPI_ERROR_FLAGS_EN_REG (BLSP4_QUP_REG_BASE + 0x0000030c)
#define BLSP5_SPI_ERROR_FLAGS_EN_REG (BLSP5_QUP_REG_BASE + 0x0000030c)
#define BLSP0_QUP_CONFIG_REG (BLSP0_QUP_REG_BASE + 0x00000000)
#define BLSP4_QUP_CONFIG_REG (BLSP4_QUP_REG_BASE + 0x00000000)
#define BLSP5_QUP_CONFIG_REG (BLSP5_QUP_REG_BASE + 0x00000000)
#define BLSP0_QUP_ERROR_FLAGS_REG (BLSP0_QUP_REG_BASE + 0x0000001c)
#define BLSP4_QUP_ERROR_FLAGS_REG (BLSP4_QUP_REG_BASE + 0x0000001c)
#define BLSP5_QUP_ERROR_FLAGS_REG (BLSP5_QUP_REG_BASE + 0x0000001c)
#define BLSP0_QUP_ERROR_FLAGS_EN_REG (BLSP0_QUP_REG_BASE + 0x00000020)
#define BLSP4_QUP_ERROR_FLAGS_EN_REG (BLSP4_QUP_REG_BASE + 0x00000020)
#define BLSP5_QUP_ERROR_FLAGS_EN_REG (BLSP5_QUP_REG_BASE + 0x00000020)
#define BLSP0_QUP_OPERATIONAL_MASK (BLSP0_QUP_REG_BASE + 0x00000028)
#define BLSP4_QUP_OPERATIONAL_MASK (BLSP4_QUP_REG_BASE + 0x00000028)
#define BLSP5_QUP_OPERATIONAL_MASK (BLSP5_QUP_REG_BASE + 0x00000028)
#define BLSP0_QUP_OPERATIONAL_REG (BLSP0_QUP_REG_BASE + 0x00000018)
#define BLSP4_QUP_OPERATIONAL_REG (BLSP4_QUP_REG_BASE + 0x00000018)
#define BLSP5_QUP_OPERATIONAL_REG (BLSP5_QUP_REG_BASE + 0x00000018)
#define BLSP0_QUP_IO_MODES_REG (BLSP0_QUP_REG_BASE + 0x00000008)
#define BLSP4_QUP_IO_MODES_REG (BLSP4_QUP_REG_BASE + 0x00000008)
#define BLSP5_QUP_IO_MODES_REG (BLSP5_QUP_REG_BASE + 0x00000008)
#define BLSP0_QUP_STATE_REG (BLSP0_QUP_REG_BASE + 0x00000004)
#define BLSP4_QUP_STATE_REG (BLSP4_QUP_REG_BASE + 0x00000004)
#define BLSP5_QUP_STATE_REG (BLSP5_QUP_REG_BASE + 0x00000004)
#define BLSP0_QUP_INPUT_FIFOc_REG(c) \
(BLSP0_QUP_REG_BASE + 0x00000218 + 4 * (c))
#define BLSP4_QUP_INPUT_FIFOc_REG(c) \
(BLSP4_QUP_REG_BASE + 0x00000218 + 4 * (c))
#define BLSP5_QUP_INPUT_FIFOc_REG(c) \
(BLSP5_QUP_REG_BASE + 0x00000218 + 4 * (c))
#define BLSP0_QUP_OUTPUT_FIFOc_REG(c) \
(BLSP0_QUP_REG_BASE + 0x00000110 + 4 * (c))
#define BLSP4_QUP_OUTPUT_FIFOc_REG(c) \
(BLSP4_QUP_REG_BASE + 0x00000110 + 4 * (c))
#define BLSP5_QUP_OUTPUT_FIFOc_REG(c) \
(BLSP5_QUP_REG_BASE + 0x00000110 + 4 * (c))
#define BLSP0_QUP_MX_INPUT_COUNT_REG (BLSP0_QUP_REG_BASE + 0x00000200)
#define BLSP4_QUP_MX_INPUT_COUNT_REG (BLSP4_QUP_REG_BASE + 0x00000200)
#define BLSP5_QUP_MX_INPUT_COUNT_REG (BLSP5_QUP_REG_BASE + 0x00000200)
#define BLSP0_QUP_MX_OUTPUT_COUNT_REG (BLSP0_QUP_REG_BASE + 0x00000100)
#define BLSP4_QUP_MX_OUTPUT_COUNT_REG (BLSP4_QUP_REG_BASE + 0x00000100)
#define BLSP5_QUP_MX_OUTPUT_COUNT_REG (BLSP5_QUP_REG_BASE + 0x00000100)
#define BLSP0_QUP_SW_RESET_REG (BLSP0_QUP_REG_BASE + 0x0000000c)
#define BLSP4_QUP_SW_RESET_REG (BLSP4_QUP_REG_BASE + 0x0000000c)
#define BLSP5_QUP_SW_RESET_REG (BLSP5_QUP_REG_BASE + 0x0000000c)
#define QUP_CONFIG_MINI_CORE_MSK (0x0F << 8)
#define QUP_CONFIG_MINI_CORE_SPI (1 << 8)
#define QUP_CONF_INPUT_MSK (1 << 7)
#define QUP_CONF_INPUT_ENA (0 << 7)
#define QUP_CONF_NO_INPUT (1 << 7)
#define QUP_CONF_OUTPUT_MSK (1 << 6)
#define QUP_CONF_OUTPUT_ENA (0 << 6)
#define QUP_CONF_NO_OUTPUT (1 << 6)
#define QUP_CONF_N_MASK 0x1F
#define QUP_CONF_N_SPI_8_BIT_WORD 0x07
#define SPI_CONFIG_INPUT_FIRST (1 << 9)
#define SPI_CONFIG_INPUT_FIRST_BACK (0 << 9)
#define SPI_CONFIG_LOOP_BACK_MSK (1 << 8)
#define SPI_CONFIG_NO_LOOP_BACK (0 << 8)
#define SPI_CONFIG_NO_SLAVE_OPER_MSK (1 << 5)
#define SPI_CONFIG_NO_SLAVE_OPER (0 << 5)
#define SPI_IO_CTRL_CLK_ALWAYS_ON (0 << 9)
#define SPI_IO_CTRL_MX_CS_MODE (1 << 8)
#define SPI_IO_CTRL_NO_TRI_STATE (1 << 0)
#define SPI_IO_CTRL_FORCE_CS_MSK (1 << 11)
#define SPI_IO_CTRL_FORCE_CS_EN (1 << 11)
#define SPI_IO_CTRL_FORCE_CS_DIS (0 << 11)
#define SPI_IO_CTRL_CLOCK_IDLE_HIGH (1 << 10)
#define QUP_IO_MODES_OUTPUT_BIT_SHIFT_MSK (1 << 16)
#define QUP_IO_MODES_OUTPUT_BIT_SHIFT_EN (1 << 16)
#define QUP_IO_MODES_INPUT_MODE_MSK (0x03 << 12)
#define QUP_IO_MODES_INPUT_BLOCK_MODE (0x01 << 12)
#define QUP_IO_MODES_OUTPUT_MODE_MSK (0x03 << 10)
#define QUP_IO_MODES_OUTPUT_BLOCK_MODE (0x01 << 10)
#define SPI_INPUT_BLOCK_SIZE 4
#define SPI_OUTPUT_BLOCK_SIZE 4
#define MAX_COUNT_SIZE 0xffff
#define SPI_CORE_RESET 0
#define SPI_CORE_RUNNING 1
#define SPI_MODE0 0
#define SPI_MODE1 1
#define SPI_MODE2 2
#define SPI_MODE3 3
#define BLSP0_SPI 0
#define BLSP4_SPI 4
#define BLSP5_SPI 5
struct blsp_spi {
void *spi_config;
void *io_control;
void *error_flags;
void *error_flags_en;
void *qup_config;
void *qup_error_flags;
void *qup_error_flags_en;
void *qup_operational;
void *qup_io_modes;
void *qup_state;
void *qup_input_fifo;
void *qup_output_fifo;
void *qup_mx_input_count;
void *qup_mx_output_count;
void *qup_sw_reset;
void *qup_ns_reg;
void *qup_md_reg;
void *qup_op_mask;
void *qup_deassert_wait;
};
#define SUCCESS 0
#define DUMMY_DATA_VAL 0
#define TIMEOUT_CNT 100
#define ETIMEDOUT -10
#define EINVAL -11
#define EIO -12
/* MX_INPUT_COUNT and MX_OUTPUT_COUNT are 16-bits. Zero has a special meaning
* (count function disabled) and does not hold significance in the count. */
#define MAX_PACKET_COUNT ((64 * KiB) - 1)
struct qcs_spi_slave {
struct spi_slave slave;
const struct blsp_spi *regs;
unsigned int mode;
unsigned int initialized;
unsigned long freq;
int allocated;
};
#endif

View File

@ -1,49 +1,783 @@
/*
* This file is part of the coreboot project.
* Copyright (c) 2012-2019 The Linux Foundation. All rights reserved.
*
* Copyright (C) 2018, The Linux Foundation. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <spi-generic.h>
#include <device/mmio.h>
#include <console/console.h>
#include <delay.h>
#include <gpio.h>
#include <soc/iomap.h>
#include <soc/spi.h>
#include <soc/clock.h>
#include <stdlib.h>
#include <string.h>
#include <spi_flash.h>
#include <timer.h>
static const struct blsp_spi spi_reg[] = {
/* BLSP0 registers for SPI interface */
{
BLSP0_SPI_CONFIG_REG,
BLSP0_SPI_IO_CONTROL_REG,
BLSP0_SPI_ERROR_FLAGS_REG,
BLSP0_SPI_ERROR_FLAGS_EN_REG,
BLSP0_QUP_CONFIG_REG,
BLSP0_QUP_ERROR_FLAGS_REG,
BLSP0_QUP_ERROR_FLAGS_EN_REG,
BLSP0_QUP_OPERATIONAL_REG,
BLSP0_QUP_IO_MODES_REG,
BLSP0_QUP_STATE_REG,
BLSP0_QUP_INPUT_FIFOc_REG(0),
BLSP0_QUP_OUTPUT_FIFOc_REG(0),
BLSP0_QUP_MX_INPUT_COUNT_REG,
BLSP0_QUP_MX_OUTPUT_COUNT_REG,
BLSP0_QUP_SW_RESET_REG,
0,
0,
BLSP0_QUP_OPERATIONAL_MASK,
BLSP0_SPI_DEASSERT_WAIT_REG,
},
{0}, {0}, {0},
/* BLSP4 registers for SPI interface */
{
BLSP4_SPI_CONFIG_REG,
BLSP4_SPI_IO_CONTROL_REG,
BLSP4_SPI_ERROR_FLAGS_REG,
BLSP4_SPI_ERROR_FLAGS_EN_REG,
BLSP4_QUP_CONFIG_REG,
BLSP4_QUP_ERROR_FLAGS_REG,
BLSP4_QUP_ERROR_FLAGS_EN_REG,
BLSP4_QUP_OPERATIONAL_REG,
BLSP4_QUP_IO_MODES_REG,
BLSP4_QUP_STATE_REG,
BLSP4_QUP_INPUT_FIFOc_REG(0),
BLSP4_QUP_OUTPUT_FIFOc_REG(0),
BLSP4_QUP_MX_INPUT_COUNT_REG,
BLSP4_QUP_MX_OUTPUT_COUNT_REG,
BLSP4_QUP_SW_RESET_REG,
0,
0,
BLSP4_QUP_OPERATIONAL_MASK,
BLSP4_SPI_DEASSERT_WAIT_REG,
},
/* BLSP5 registers for SPI interface */
{
BLSP5_SPI_CONFIG_REG,
BLSP5_SPI_IO_CONTROL_REG,
BLSP5_SPI_ERROR_FLAGS_REG,
BLSP5_SPI_ERROR_FLAGS_EN_REG,
BLSP5_QUP_CONFIG_REG,
BLSP5_QUP_ERROR_FLAGS_REG,
BLSP5_QUP_ERROR_FLAGS_EN_REG,
BLSP5_QUP_OPERATIONAL_REG,
BLSP5_QUP_IO_MODES_REG,
BLSP5_QUP_STATE_REG,
BLSP5_QUP_INPUT_FIFOc_REG(0),
BLSP5_QUP_OUTPUT_FIFOc_REG(0),
BLSP5_QUP_MX_INPUT_COUNT_REG,
BLSP5_QUP_MX_OUTPUT_COUNT_REG,
BLSP5_QUP_SW_RESET_REG,
0,
0,
BLSP5_QUP_OPERATIONAL_MASK,
BLSP5_SPI_DEASSERT_WAIT_REG,
},
};
static int check_bit_state(void *reg_addr, int mask,
int val, int us_delay)
{
unsigned int count = TIMEOUT_CNT;
while ((read32(reg_addr) & mask) != val) {
count--;
if (count == 0)
return -ETIMEDOUT;
udelay(us_delay);
}
return SUCCESS;
}
/*
* Check whether QUPn State is valid
*/
static int check_qup_state_valid(struct qcs_spi_slave *ds)
{
return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_MASK,
QUP_STATE_VALID, 1);
}
/*
* Configure QUPn Core state
*/
static int config_spi_state(struct qcs_spi_slave *ds, unsigned int state)
{
uint32_t val;
int ret = SUCCESS;
ret = check_qup_state_valid(ds);
if (ret != SUCCESS)
return ret;
switch (state) {
case QUP_STATE_RUN:
/* Set the state to RUN */
val = ((read32(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RUN);
write32(ds->regs->qup_state, val);
ret = check_qup_state_valid(ds);
break;
case QUP_STATE_RESET:
/* Set the state to RESET */
val = ((read32(ds->regs->qup_state) & ~QUP_STATE_MASK)
| QUP_STATE_RESET);
write32(ds->regs->qup_state, val);
ret = check_qup_state_valid(ds);
break;
default:
printk(BIOS_ERR, "unsupported QUP SPI state : %d\n", state);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Set QUPn SPI Mode
*/
static void spi_set_mode(struct qcs_spi_slave *ds, unsigned int mode)
{
unsigned int clk_idle_state;
unsigned int input_first_mode;
uint32_t val;
switch (mode) {
case SPI_MODE0:
clk_idle_state = 0;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE1:
clk_idle_state = 0;
input_first_mode = 0;
break;
case SPI_MODE2:
clk_idle_state = 1;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE3:
clk_idle_state = 1;
input_first_mode = 0;
break;
default:
printk(BIOS_ERR, "unsupported spi mode : %d\n", mode);
return;
}
val = read32(ds->regs->spi_config);
val |= input_first_mode;
write32(ds->regs->spi_config, val);
val = read32(ds->regs->io_control);
if (clk_idle_state)
val |= SPI_IO_CTRL_CLOCK_IDLE_HIGH;
else
val &= ~SPI_IO_CTRL_CLOCK_IDLE_HIGH;
write32(ds->regs->io_control, val);
}
/*
* Reset entire QUP and all mini cores
*/
static void spi_reset(struct qcs_spi_slave *ds)
{
write32(ds->regs->qup_sw_reset, 0x1);
udelay(5);
check_qup_state_valid(ds);
}
static struct qcs_spi_slave spi_slave_pool[3];
static struct qcs_spi_slave *to_qcs_spi(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds;
size_t i;
for (i = 0; i < ARRAY_SIZE(spi_slave_pool); i++) {
ds = spi_slave_pool + i;
if (!ds->allocated)
continue;
if ((ds->slave.bus == slave->bus) &&
(ds->slave.cs == slave->cs))
return ds;
}
return NULL;
}
static void write_force_cs(const struct spi_slave *slave, int assert)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
if (assert)
clrsetbits_le32(ds->regs->io_control,
SPI_IO_CTRL_FORCE_CS_MSK, SPI_IO_CTRL_FORCE_CS_EN);
else
clrsetbits_le32(ds->regs->io_control,
SPI_IO_CTRL_FORCE_CS_MSK, SPI_IO_CTRL_FORCE_CS_DIS);
}
/*
* BLSP QUPn SPI Hardware Initialisation
*/
static int spi_hw_init(struct qcs_spi_slave *ds)
{
int ret;
ds->initialized = 0;
/* QUPn module configuration */
spi_reset(ds);
/* Set the QUPn state */
ret = config_spi_state(ds, QUP_STATE_RESET);
if (ret)
return ret;
/*
* Configure Mini core to SPI core with Input Output enabled,
* SPI master, N = 8 bits
*/
clrsetbits_le32(ds->regs->qup_config, QUP_CONFIG_MINI_CORE_MSK |
QUP_CONF_INPUT_MSK |
QUP_CONF_OUTPUT_MSK |
QUP_CONF_N_MASK,
QUP_CONFIG_MINI_CORE_SPI |
QUP_CONF_INPUT_ENA |
QUP_CONF_OUTPUT_ENA |
QUP_CONF_N_SPI_8_BIT_WORD);
/*
* Configure Input first SPI protocol,
* SPI master mode and no loopback
*/
clrsetbits_le32(ds->regs->spi_config, SPI_CONFIG_LOOP_BACK_MSK |
SPI_CONFIG_NO_SLAVE_OPER_MSK,
SPI_CONFIG_NO_LOOP_BACK |
SPI_CONFIG_NO_SLAVE_OPER);
/*
* Configure SPI IO Control Register
* CLK_ALWAYS_ON = 0
* MX_CS_MODE = 0
* NO_TRI_STATE = 1
*/
write32(ds->regs->io_control, SPI_IO_CTRL_CLK_ALWAYS_ON |
SPI_IO_CTRL_NO_TRI_STATE | SPI_IO_CTRL_MX_CS_MODE);
/*
* Configure SPI IO Modes.
* OUTPUT_BIT_SHIFT_EN = 1
* INPUT_MODE = Block Mode
* OUTPUT MODE = Block Mode
*/
clrsetbits_le32(ds->regs->qup_io_modes,
QUP_IO_MODES_OUTPUT_BIT_SHIFT_MSK |
QUP_IO_MODES_INPUT_MODE_MSK |
QUP_IO_MODES_OUTPUT_MODE_MSK,
QUP_IO_MODES_OUTPUT_BIT_SHIFT_EN |
QUP_IO_MODES_INPUT_BLOCK_MODE |
QUP_IO_MODES_OUTPUT_BLOCK_MODE);
spi_set_mode(ds, ds->mode);
/* Disable Error mask */
write32(ds->regs->error_flags_en, 0);
write32(ds->regs->qup_error_flags_en, 0);
write32(ds->regs->qup_deassert_wait, 0);
ds->initialized = 1;
return SUCCESS;
}
static int spi_ctrlr_claim_bus(const struct spi_slave *slave)
{
return 0;
struct qcs_spi_slave *ds = to_qcs_spi(slave);
unsigned int ret;
ret = spi_hw_init(ds);
if (ret)
return -EIO;
switch (slave->bus) {
case 4:
gpio_configure
(GPIO(37), 2, GPIO_PULL_DOWN, GPIO_6MA, GPIO_INPUT); // MOSI
gpio_configure
(GPIO(38), 2, GPIO_PULL_DOWN, GPIO_6MA, GPIO_OUTPUT); // MISO
gpio_configure
(GPIO(117), 2, GPIO_NO_PULL, GPIO_6MA, GPIO_OUTPUT); // CS
gpio_configure
(GPIO(118), 2, GPIO_PULL_DOWN, GPIO_6MA, GPIO_OUTPUT);// CLK
break;
case 5:
gpio_configure
(GPIO(26), 3, GPIO_NO_PULL, GPIO_16MA, GPIO_INPUT); // MOSI
gpio_configure
(GPIO(27), 3, GPIO_NO_PULL, GPIO_16MA, GPIO_INPUT); // MISO
gpio_configure
(GPIO(28), 4, GPIO_PULL_UP, GPIO_16MA, GPIO_INPUT); // CS
gpio_configure
(GPIO(29), 4, GPIO_NO_PULL, GPIO_16MA, GPIO_INPUT); // CLK
break;
default:
printk(BIOS_ERR, "SPI error: unsupported bus %d "
"(Supported buses 0, 1, 2, 3, 4, 5)\n", slave->bus);
break;
}
write_force_cs(slave, 1);
return SUCCESS;
}
static void spi_ctrlr_release_bus(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
/* Reset the SPI hardware */
write_force_cs(slave, 0);
spi_reset(ds);
ds->initialized = 0;
}
static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
size_t bytes_out, void *din, size_t bytes_in)
/*
* Function to write data to OUTPUT FIFO
*/
static void spi_write_byte(struct qcs_spi_slave *ds, unsigned char data)
{
/* Wait for space in the FIFO */
while ((read32(ds->regs->qup_operational) & OUTPUT_FIFO_FULL))
udelay(1);
/* Write the byte of data */
write32(ds->regs->qup_output_fifo, data);
}
/*
* Function to read data from Input FIFO
*/
static unsigned char spi_read_byte(struct qcs_spi_slave *ds)
{
/* Wait for Data in FIFO */
while (!(read32(ds->regs->qup_operational) & INPUT_FIFO_NOT_EMPTY))
udelay(1);
/* Read a byte of data */
return read32(ds->regs->qup_input_fifo) & 0xff;
}
/*
* Function to check wheather Input or Output FIFO
* has data to be serviced
*/
static int check_fifo_status(void *reg_addr)
{
unsigned int count = TIMEOUT_CNT;
unsigned int status_flag;
unsigned int val;
do {
val = read32(reg_addr);
count--;
if (count == 0)
return -ETIMEDOUT;
status_flag = ((val & OUTPUT_SERVICE_FLAG) |
(val & INPUT_SERVICE_FLAG));
} while (!status_flag);
return SUCCESS;
}
/*
* Function to configure Input and Output enable/disable
*/
static void enable_io_config(struct qcs_spi_slave *ds,
uint32_t write_cnt, uint32_t read_cnt)
{
if (write_cnt) {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA);
} else {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT);
}
if (read_cnt) {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA);
} else {
clrsetbits_le32(ds->regs->qup_config,
QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT);
}
}
/*
* Function to read bytes number of data from the Input FIFO
*/
static int __blsp_spi_read(struct qcs_spi_slave *ds, u8 *data_buffer,
unsigned int bytes)
{
uint32_t val;
unsigned int i;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
struct stopwatch sw;
/* Configure no of bytes to read */
state_config = config_spi_state(ds, QUP_STATE_RESET);
if (state_config)
return state_config;
/* Configure input and output enable */
enable_io_config(ds, 0, bytes);
write32(ds->regs->qup_mx_input_count, bytes);
state_config = config_spi_state(ds, QUP_STATE_RUN);
if (state_config)
return state_config;
while (bytes) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = read32(ds->regs->qup_operational);
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* read input data
*/
val &= INPUT_SERVICE_FLAG;
write32(ds->regs->qup_operational, val);
fifo_count = ((bytes > SPI_INPUT_BLOCK_SIZE) ?
SPI_INPUT_BLOCK_SIZE : bytes);
for (i = 0; i < fifo_count; i++) {
*data_buffer = spi_read_byte(ds);
data_buffer++;
bytes--;
}
}
}
stopwatch_init_msecs_expire(&sw, 10);
do {
val = read32(ds->regs->qup_operational);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "SPI FIFO read timeout\n");
ret = -ETIMEDOUT;
goto out;
}
} while (!(val & MAX_INPUT_DONE_FLAG));
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, QUP_STATE_RESET);
return ret;
}
static int blsp_spi_read(struct qcs_spi_slave *ds, u8 *data_buffer,
unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __blsp_spi_read(ds, data_buffer, length);
if (ret != SUCCESS)
return ret;
data_buffer += length;
bytes -= length;
}
return 0;
}
/*
* Function to write data to the Output FIFO
*/
static int __blsp_spi_write(struct qcs_spi_slave *ds, const u8 *cmd_buffer,
unsigned int bytes)
{
uint32_t val;
unsigned int i;
unsigned int write_len = bytes;
unsigned int read_len = bytes;
unsigned int fifo_count;
int ret = SUCCESS;
int state_config;
struct stopwatch sw;
state_config = config_spi_state(ds, QUP_STATE_RESET);
if (state_config)
return state_config;
/* Configure input and output enable */
enable_io_config(ds, write_len, read_len);
/* No of bytes to be written in Output FIFO */
write32(ds->regs->qup_mx_output_count, bytes);
write32(ds->regs->qup_mx_input_count, bytes);
state_config = config_spi_state(ds, QUP_STATE_RUN);
if (state_config)
return state_config;
/*
* read_len considered to ensure that we read the dummy data for the
* write we performed. This is needed to ensure with WR-RD transaction
* to get the actual data on the subsequent read cycle that happens
*/
while (write_len || read_len) {
ret = check_fifo_status(ds->regs->qup_operational);
if (ret != SUCCESS)
goto out;
val = read32(ds->regs->qup_operational);
if (val & OUTPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will write
* expected output data
*/
val &= OUTPUT_SERVICE_FLAG;
write32(ds->regs->qup_operational, val);
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
else
fifo_count = write_len;
for (i = 0; i < fifo_count; i++) {
/* Write actual data to output FIFO */
spi_write_byte(ds, *cmd_buffer);
cmd_buffer++;
write_len--;
}
}
if (val & INPUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software
* will read input data
*/
val &= INPUT_SERVICE_FLAG;
write32(ds->regs->qup_operational, val);
if (read_len > SPI_INPUT_BLOCK_SIZE)
fifo_count = SPI_INPUT_BLOCK_SIZE;
else
fifo_count = read_len;
for (i = 0; i < fifo_count; i++) {
/* Read dummy data for the data written */
(void)spi_read_byte(ds);
/* Decrement the read count after reading the
* dummy data from the device. This is to make
* sure we read dummy data before we write the
* data to fifo
*/
read_len--;
}
}
}
stopwatch_init_msecs_expire(&sw, 10);
do {
val = read32(ds->regs->qup_operational);
if (stopwatch_expired(&sw)) {
printk(BIOS_ERR, "SPI FIFO write timeout\n");
ret = -ETIMEDOUT;
goto out;
}
} while (!(val & MAX_OUTPUT_DONE_FLAG));
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, QUP_STATE_RESET);
return ret;
}
static int blsp_spi_write(struct qcs_spi_slave *ds, u8 *cmd_buffer,
unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __blsp_spi_write(ds, cmd_buffer, length);
if (ret != SUCCESS) {
printk(BIOS_ERR, "SPI:DBG write not success\n");
return ret;
}
cmd_buffer += length;
bytes -= length;
}
return 0;
}
/*
* This function is invoked with either tx_buf or rx_buf.
* Calling this function with both null does a chip select change.
*/
static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout,
size_t out_bytes, void *din, size_t in_bytes)
{
struct qcs_spi_slave *ds = to_qcs_spi(slave);
u8 *txp = (u8 *)dout;
u8 *rxp = (u8 *)din;
int ret;
ret = config_spi_state(ds, QUP_STATE_RESET);
if (ret != SUCCESS)
return ret;
if (dout != NULL) {
ret = blsp_spi_write(ds, txp, (unsigned int) out_bytes);
if (ret != SUCCESS)
goto out;
}
if (din != NULL) {
ret = blsp_spi_read(ds, rxp, in_bytes);
if (ret != SUCCESS)
goto out;
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)config_spi_state(ds, QUP_STATE_RESET);
return ret;
}
static int spi_ctrlr_setup(const struct spi_slave *slave)
{
struct qcs_spi_slave *ds = NULL;
int i;
unsigned int bus = slave->bus;
unsigned int cs = slave->cs;
int qup = 0;
int blsp = 2;
if (((bus != BLSP4_SPI) && (bus != BLSP5_SPI)) || cs != 0) {
printk(BIOS_ERR,
"SPI error: unsupported bus %d or cs %d\n", bus, cs);
return -1;
}
for (i = 0; i < ARRAY_SIZE(spi_slave_pool); i++) {
if (spi_slave_pool[i].allocated)
continue;
ds = spi_slave_pool + i;
ds->slave.bus = bus;
ds->slave.cs = cs;
ds->regs = &spi_reg[bus];
ds->mode = SPI_MODE0;
ds->freq = 50000000;
if (bus == BLSP4_SPI) {
ds->freq = 1000000;
qup = 4;
blsp = 1;
}
clock_configure_spi(blsp, qup, ds->freq);
clock_enable_spi(blsp, qup);
ds->allocated = 1;
return 0;
}
printk(BIOS_ERR, "SPI error: all %d pools busy\n", i);
return -1;
}
static int xfer_vectors(const struct spi_slave *slave,
struct spi_op vectors[], size_t count)
{
return spi_flash_vector_helper(slave, vectors, count, spi_ctrlr_xfer);
}
static const struct spi_ctrlr spi_ctrlr = {
.setup = spi_ctrlr_setup,
.claim_bus = spi_ctrlr_claim_bus,
.release_bus = spi_ctrlr_release_bus,
.xfer = spi_ctrlr_xfer,
.max_xfer_size = 65535,
.xfer_vector = xfer_vectors,
.max_xfer_size = MAX_PACKET_COUNT,
};
const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = {
{
.ctrlr = &spi_ctrlr,
.bus_start = 0,
.bus_end = 0,
.bus_start = BLSP5_SPI,
.bus_end = BLSP5_SPI,
},
{
.ctrlr = &spi_ctrlr,
.bus_start = BLSP4_SPI,
.bus_end = BLSP4_SPI,
},
};