drop svn:externals in the tree and add it locally.

Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Patrick Georgi <patrick.georgi@coresystems.de>


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@4898 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Stefan Reinauer 2009-10-30 18:16:09 +00:00 committed by Stefan Reinauer
parent 9ac9e94b45
commit 20d626572b
48 changed files with 6510 additions and 0 deletions

View File

@ -0,0 +1,76 @@
// InBuffer.h
#ifndef __INBUFFER_H
#define __INBUFFER_H
#include "../IStream.h"
#include "../../Common/MyCom.h"
#ifndef _NO_EXCEPTIONS
class CInBufferException
{
public:
HRESULT ErrorCode;
CInBufferException(HRESULT errorCode): ErrorCode(errorCode) {}
};
#endif
class CInBuffer
{
Byte *_buffer;
Byte *_bufferLimit;
Byte *_bufferBase;
CMyComPtr<ISequentialInStream> _stream;
UInt64 _processedSize;
UInt32 _bufferSize;
bool _wasFinished;
bool ReadBlock();
Byte ReadBlock2();
public:
#ifdef _NO_EXCEPTIONS
HRESULT ErrorCode;
#endif
CInBuffer();
~CInBuffer() { Free(); }
bool Create(UInt32 bufferSize);
void Free();
void SetStream(ISequentialInStream *stream);
void Init();
void ReleaseStream() { _stream.Release(); }
bool ReadByte(Byte &b)
{
if(_buffer >= _bufferLimit)
if(!ReadBlock())
return false;
b = *_buffer++;
return true;
}
Byte ReadByte()
{
if(_buffer >= _bufferLimit)
return ReadBlock2();
return *_buffer++;
}
void ReadBytes(void *data, UInt32 size, UInt32 &processedSize)
{
for(processedSize = 0; processedSize < size; processedSize++)
if (!ReadByte(((Byte *)data)[processedSize]))
return;
}
bool ReadBytes(void *data, UInt32 size)
{
UInt32 processedSize;
ReadBytes(data, size, processedSize);
return (processedSize == size);
}
UInt64 GetProcessedSize() const { return _processedSize + (_buffer - _bufferBase); }
bool WasFinished() const { return _wasFinished; }
};
#endif

View File

@ -0,0 +1,116 @@
// OutByte.cpp
#include "StdAfx.h"
#include "OutBuffer.h"
#include "../../Common/Alloc.h"
bool COutBuffer::Create(UInt32 bufferSize)
{
const UInt32 kMinBlockSize = 1;
if (bufferSize < kMinBlockSize)
bufferSize = kMinBlockSize;
if (_buffer != 0 && _bufferSize == bufferSize)
return true;
Free();
_bufferSize = bufferSize;
_buffer = (Byte *)::MidAlloc(bufferSize);
return (_buffer != 0);
}
void COutBuffer::Free()
{
::MidFree(_buffer);
_buffer = 0;
}
void COutBuffer::SetStream(ISequentialOutStream *stream)
{
_stream = stream;
}
void COutBuffer::Init()
{
_streamPos = 0;
_limitPos = _bufferSize;
_pos = 0;
_processedSize = 0;
_overDict = false;
#ifdef _NO_EXCEPTIONS
ErrorCode = S_OK;
#endif
}
UInt64 COutBuffer::GetProcessedSize() const
{
UInt64 res = _processedSize + _pos - _streamPos;
if (_streamPos > _pos)
res += _bufferSize;
return res;
}
HRESULT COutBuffer::FlushPart()
{
// _streamPos < _bufferSize
UInt32 size = (_streamPos >= _pos) ? (_bufferSize - _streamPos) : (_pos - _streamPos);
HRESULT result = S_OK;
#ifdef _NO_EXCEPTIONS
result = ErrorCode;
#endif
if (_buffer2 != 0)
{
memmove(_buffer2, _buffer + _streamPos, size);
_buffer2 += size;
}
if (_stream != 0
#ifdef _NO_EXCEPTIONS
&& (ErrorCode == S_OK)
#endif
)
{
UInt32 processedSize = 0;
result = _stream->Write(_buffer + _streamPos, size, &processedSize);
size = processedSize;
}
_streamPos += size;
if (_streamPos == _bufferSize)
_streamPos = 0;
if (_pos == _bufferSize)
{
_overDict = true;
_pos = 0;
}
_limitPos = (_streamPos > _pos) ? _streamPos : _bufferSize;
_processedSize += size;
return result;
}
HRESULT COutBuffer::Flush()
{
#ifdef _NO_EXCEPTIONS
if (ErrorCode != S_OK)
return ErrorCode;
#endif
while(_streamPos != _pos)
{
HRESULT result = FlushPart();
if (result != S_OK)
return result;
}
return S_OK;
}
void COutBuffer::FlushWithCheck()
{
HRESULT result = FlushPart();
#ifdef _NO_EXCEPTIONS
ErrorCode = result;
#else
if (result != S_OK)
throw COutBufferException(result);
#endif
}

View File

@ -0,0 +1,64 @@
// OutBuffer.h
#ifndef __OUTBUFFER_H
#define __OUTBUFFER_H
#include "../IStream.h"
#include "../../Common/MyCom.h"
#ifndef _NO_EXCEPTIONS
struct COutBufferException
{
HRESULT ErrorCode;
COutBufferException(HRESULT errorCode): ErrorCode(errorCode) {}
};
#endif
class COutBuffer
{
protected:
Byte *_buffer;
UInt32 _pos;
UInt32 _limitPos;
UInt32 _streamPos;
UInt32 _bufferSize;
CMyComPtr<ISequentialOutStream> _stream;
UInt64 _processedSize;
Byte *_buffer2;
bool _overDict;
HRESULT FlushPart();
void FlushWithCheck();
public:
#ifdef _NO_EXCEPTIONS
HRESULT ErrorCode;
#endif
COutBuffer(): _buffer(0), _pos(0), _stream(0), _buffer2(0) {}
~COutBuffer() { Free(); }
bool Create(UInt32 bufferSize);
void Free();
void SetMemStream(Byte *buffer) { _buffer2 = buffer; }
void SetStream(ISequentialOutStream *stream);
void Init();
HRESULT Flush();
void ReleaseStream() { _stream.Release(); }
void WriteByte(Byte b)
{
_buffer[_pos++] = b;
if(_pos == _limitPos)
FlushWithCheck();
}
void WriteBytes(const void *data, size_t size)
{
for (size_t i = 0; i < size; i++)
WriteByte(((const Byte *)data)[i]);
}
UInt64 GetProcessedSize() const;
};
#endif

View File

@ -0,0 +1,9 @@
// StdAfx.h
#ifndef __STDAFX_H
#define __STDAFX_H
#include "../../Common/MyWindows.h"
#include "../../Common/NewHandler.h"
#endif

View File

@ -0,0 +1,44 @@
// StreamUtils.cpp
#include "StdAfx.h"
#include "../../Common/MyCom.h"
#include "StreamUtils.h"
HRESULT ReadStream(ISequentialInStream *stream, void *data, UInt32 size, UInt32 *processedSize)
{
if (processedSize != 0)
*processedSize = 0;
while(size != 0)
{
UInt32 processedSizeLoc;
HRESULT res = stream->Read(data, size, &processedSizeLoc);
if (processedSize != 0)
*processedSize += processedSizeLoc;
data = (Byte *)((Byte *)data + processedSizeLoc);
size -= processedSizeLoc;
RINOK(res);
if (processedSizeLoc == 0)
return S_OK;
}
return S_OK;
}
HRESULT WriteStream(ISequentialOutStream *stream, const void *data, UInt32 size, UInt32 *processedSize)
{
if (processedSize != 0)
*processedSize = 0;
while(size != 0)
{
UInt32 processedSizeLoc;
HRESULT res = stream->Write(data, size, &processedSizeLoc);
if (processedSize != 0)
*processedSize += processedSizeLoc;
data = (const void *)((const Byte *)data + processedSizeLoc);
size -= processedSizeLoc;
RINOK(res);
if (processedSizeLoc == 0)
break;
}
return S_OK;
}

View File

@ -0,0 +1,11 @@
// StreamUtils.h
#ifndef __STREAMUTILS_H
#define __STREAMUTILS_H
#include "../IStream.h"
HRESULT ReadStream(ISequentialInStream *stream, void *data, UInt32 size, UInt32 *processedSize);
HRESULT WriteStream(ISequentialOutStream *stream, const void *data, UInt32 size, UInt32 *processedSize);
#endif

View File

@ -0,0 +1,54 @@
// BinTree.h
#include "../LZInWindow.h"
#include "../IMatchFinder.h"
namespace BT_NAMESPACE {
typedef UInt32 CIndex;
const UInt32 kMaxValForNormalize = (UInt32(1) << 31) - 1;
class CMatchFinder:
public IMatchFinder,
public CLZInWindow,
public CMyUnknownImp,
public IMatchFinderSetNumPasses
{
UInt32 _cyclicBufferPos;
UInt32 _cyclicBufferSize; // it must be historySize + 1
UInt32 _matchMaxLen;
CIndex *_hash;
CIndex *_son;
UInt32 _hashMask;
UInt32 _cutValue;
UInt32 _hashSizeSum;
void Normalize();
void FreeThisClassMemory();
void FreeMemory();
MY_UNKNOWN_IMP
STDMETHOD(SetStream)(ISequentialInStream *inStream);
STDMETHOD_(void, ReleaseStream)();
STDMETHOD(Init)();
HRESULT MovePos();
STDMETHOD_(Byte, GetIndexByte)(Int32 index);
STDMETHOD_(UInt32, GetMatchLen)(Int32 index, UInt32 back, UInt32 limit);
STDMETHOD_(UInt32, GetNumAvailableBytes)();
STDMETHOD_(const Byte *, GetPointerToCurrentPos)();
STDMETHOD_(Int32, NeedChangeBufferPos)(UInt32 numCheckBytes);
STDMETHOD_(void, ChangeBufferPos)();
STDMETHOD(Create)(UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter);
STDMETHOD(GetMatches)(UInt32 *distances);
STDMETHOD(Skip)(UInt32 num);
public:
CMatchFinder();
virtual ~CMatchFinder();
virtual void SetNumPasses(UInt32 numPasses) { _cutValue = numPasses; }
};
}

View File

@ -0,0 +1,12 @@
// BinTree2.h
#ifndef __BINTREE2_H
#define __BINTREE2_H
#define BT_NAMESPACE NBT2
#include "BinTreeMain.h"
#undef BT_NAMESPACE
#endif

View File

@ -0,0 +1,16 @@
// BinTree3.h
#ifndef __BINTREE3_H
#define __BINTREE3_H
#define BT_NAMESPACE NBT3
#define HASH_ARRAY_2
#include "BinTreeMain.h"
#undef HASH_ARRAY_2
#undef BT_NAMESPACE
#endif

View File

@ -0,0 +1,18 @@
// BinTree4.h
#ifndef __BINTREE4_H
#define __BINTREE4_H
#define BT_NAMESPACE NBT4
#define HASH_ARRAY_2
#define HASH_ARRAY_3
#include "BinTreeMain.h"
#undef HASH_ARRAY_2
#undef HASH_ARRAY_3
#undef BT_NAMESPACE
#endif

View File

@ -0,0 +1,531 @@
// BinTreeMain.h
#include "../../../../Common/Defs.h"
#include "../../../../Common/CRC.h"
#include "../../../../Common/Alloc.h"
#include "BinTree.h"
// #include <xmmintrin.h>
// It's for prefetch
// But prefetch doesn't give big gain in K8.
namespace BT_NAMESPACE {
#ifdef HASH_ARRAY_2
static const UInt32 kHash2Size = 1 << 10;
#define kNumHashDirectBytes 0
#ifdef HASH_ARRAY_3
static const UInt32 kNumHashBytes = 4;
static const UInt32 kHash3Size = 1 << 16;
#else
static const UInt32 kNumHashBytes = 3;
#endif
static const UInt32 kHashSize = 0;
static const UInt32 kMinMatchCheck = kNumHashBytes;
static const UInt32 kStartMaxLen = 1;
#else
#ifdef HASH_ZIP
#define kNumHashDirectBytes 0
static const UInt32 kNumHashBytes = 3;
static const UInt32 kHashSize = 1 << 16;
static const UInt32 kMinMatchCheck = kNumHashBytes;
static const UInt32 kStartMaxLen = 1;
#else
#define kNumHashDirectBytes 2
static const UInt32 kNumHashBytes = 2;
static const UInt32 kHashSize = 1 << (8 * kNumHashBytes);
static const UInt32 kMinMatchCheck = kNumHashBytes + 1;
static const UInt32 kStartMaxLen = 1;
#endif
#endif
#ifdef HASH_ARRAY_2
#ifdef HASH_ARRAY_3
static const UInt32 kHash3Offset = kHash2Size;
#endif
#endif
static const UInt32 kFixHashSize = 0
#ifdef HASH_ARRAY_2
+ kHash2Size
#ifdef HASH_ARRAY_3
+ kHash3Size
#endif
#endif
;
CMatchFinder::CMatchFinder():
_hash(0)
{
}
void CMatchFinder::FreeThisClassMemory()
{
BigFree(_hash);
_hash = 0;
}
void CMatchFinder::FreeMemory()
{
FreeThisClassMemory();
CLZInWindow::Free();
}
CMatchFinder::~CMatchFinder()
{
FreeMemory();
}
STDMETHODIMP CMatchFinder::Create(UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter)
{
if (historySize > kMaxValForNormalize - 256)
{
FreeMemory();
return E_INVALIDARG;
}
_cutValue =
#ifdef _HASH_CHAIN
8 + (matchMaxLen >> 2);
#else
16 + (matchMaxLen >> 1);
#endif
UInt32 sizeReserv = (historySize + keepAddBufferBefore +
matchMaxLen + keepAddBufferAfter) / 2 + 256;
if (CLZInWindow::Create(historySize + keepAddBufferBefore,
matchMaxLen + keepAddBufferAfter, sizeReserv))
{
_matchMaxLen = matchMaxLen;
UInt32 newCyclicBufferSize = historySize + 1;
if (_hash != 0 && newCyclicBufferSize == _cyclicBufferSize)
return S_OK;
FreeThisClassMemory();
_cyclicBufferSize = newCyclicBufferSize; // don't change it
UInt32 hs = kHashSize;
#ifdef HASH_ARRAY_2
hs = historySize - 1;
hs |= (hs >> 1);
hs |= (hs >> 2);
hs |= (hs >> 4);
hs |= (hs >> 8);
hs >>= 1;
hs |= 0xFFFF;
if (hs > (1 << 24))
{
#ifdef HASH_ARRAY_3
hs >>= 1;
#else
hs = (1 << 24) - 1;
#endif
}
_hashMask = hs;
hs++;
#endif
_hashSizeSum = hs + kFixHashSize;
UInt32 numItems = _hashSizeSum + _cyclicBufferSize
#ifndef _HASH_CHAIN
* 2
#endif
;
size_t sizeInBytes = (size_t)numItems * sizeof(CIndex);
if (sizeInBytes / sizeof(CIndex) != numItems)
return E_OUTOFMEMORY;
_hash = (CIndex *)BigAlloc(sizeInBytes);
_son = _hash + _hashSizeSum;
if (_hash != 0)
return S_OK;
}
FreeMemory();
return E_OUTOFMEMORY;
}
static const UInt32 kEmptyHashValue = 0;
STDMETHODIMP CMatchFinder::SetStream(ISequentialInStream *stream)
{
CLZInWindow::SetStream(stream);
return S_OK;
}
STDMETHODIMP CMatchFinder::Init()
{
RINOK(CLZInWindow::Init());
for(UInt32 i = 0; i < _hashSizeSum; i++)
_hash[i] = kEmptyHashValue;
_cyclicBufferPos = 0;
ReduceOffsets(-1);
return S_OK;
}
STDMETHODIMP_(void) CMatchFinder::ReleaseStream()
{
// ReleaseStream();
}
#ifdef HASH_ARRAY_2
#ifdef HASH_ARRAY_3
#define HASH_CALC { \
UInt32 temp = CCRC::Table[cur[0]] ^ cur[1]; \
hash2Value = temp & (kHash2Size - 1); \
hash3Value = (temp ^ (UInt32(cur[2]) << 8)) & (kHash3Size - 1); \
hashValue = (temp ^ (UInt32(cur[2]) << 8) ^ (CCRC::Table[cur[3]] << 5)) & _hashMask; }
#else // no HASH_ARRAY_3
#define HASH_CALC { \
UInt32 temp = CCRC::Table[cur[0]] ^ cur[1]; \
hash2Value = temp & (kHash2Size - 1); \
hashValue = (temp ^ (UInt32(cur[2]) << 8)) & _hashMask; }
#endif // HASH_ARRAY_3
#else // no HASH_ARRAY_2
#ifdef HASH_ZIP
inline UInt32 Hash(const Byte *pointer)
{
return ((UInt32(pointer[0]) << 8) ^ CCRC::Table[pointer[1]] ^ pointer[2]) & (kHashSize - 1);
}
#else // no HASH_ZIP
inline UInt32 Hash(const Byte *pointer)
{
return pointer[0] ^ (UInt32(pointer[1]) << 8);
}
#endif // HASH_ZIP
#endif // HASH_ARRAY_2
STDMETHODIMP CMatchFinder::GetMatches(UInt32 *distances)
{
UInt32 lenLimit;
if (_pos + _matchMaxLen <= _streamPos)
lenLimit = _matchMaxLen;
else
{
lenLimit = _streamPos - _pos;
if(lenLimit < kMinMatchCheck)
{
distances[0] = 0;
return MovePos();
}
}
int offset = 1;
UInt32 matchMinPos = (_pos > _cyclicBufferSize) ? (_pos - _cyclicBufferSize) : 0;
const Byte *cur = _buffer + _pos;
UInt32 maxLen = kStartMaxLen; // to avoid items for len < hashSize;
#ifdef HASH_ARRAY_2
UInt32 hash2Value;
#ifdef HASH_ARRAY_3
UInt32 hash3Value;
#endif
UInt32 hashValue;
HASH_CALC;
#else
UInt32 hashValue = Hash(cur);
#endif
UInt32 curMatch = _hash[kFixHashSize + hashValue];
#ifdef HASH_ARRAY_2
UInt32 curMatch2 = _hash[hash2Value];
#ifdef HASH_ARRAY_3
UInt32 curMatch3 = _hash[kHash3Offset + hash3Value];
#endif
_hash[hash2Value] = _pos;
if(curMatch2 > matchMinPos)
if (_buffer[curMatch2] == cur[0])
{
distances[offset++] = maxLen = 2;
distances[offset++] = _pos - curMatch2 - 1;
}
#ifdef HASH_ARRAY_3
_hash[kHash3Offset + hash3Value] = _pos;
if(curMatch3 > matchMinPos)
if (_buffer[curMatch3] == cur[0])
{
if (curMatch3 == curMatch2)
offset -= 2;
distances[offset++] = maxLen = 3;
distances[offset++] = _pos - curMatch3 - 1;
curMatch2 = curMatch3;
}
#endif
if (offset != 1 && curMatch2 == curMatch)
{
offset -= 2;
maxLen = kStartMaxLen;
}
#endif
_hash[kFixHashSize + hashValue] = _pos;
CIndex *son = _son;
#ifdef _HASH_CHAIN
son[_cyclicBufferPos] = curMatch;
#else
CIndex *ptr0 = son + (_cyclicBufferPos << 1) + 1;
CIndex *ptr1 = son + (_cyclicBufferPos << 1);
UInt32 len0, len1;
len0 = len1 = kNumHashDirectBytes;
#endif
#if kNumHashDirectBytes != 0
if(curMatch > matchMinPos)
{
if (_buffer[curMatch + kNumHashDirectBytes] != cur[kNumHashDirectBytes])
{
distances[offset++] = maxLen = kNumHashDirectBytes;
distances[offset++] = _pos - curMatch - 1;
}
}
#endif
UInt32 count = _cutValue;
while(true)
{
if(curMatch <= matchMinPos || count-- == 0)
{
#ifndef _HASH_CHAIN
*ptr0 = *ptr1 = kEmptyHashValue;
#endif
break;
}
UInt32 delta = _pos - curMatch;
UInt32 cyclicPos = (delta <= _cyclicBufferPos) ?
(_cyclicBufferPos - delta):
(_cyclicBufferPos - delta + _cyclicBufferSize);
CIndex *pair = son +
#ifdef _HASH_CHAIN
cyclicPos;
#else
(cyclicPos << 1);
#endif
// _mm_prefetch((const char *)pair, _MM_HINT_T0);
const Byte *pb = _buffer + curMatch;
UInt32 len =
#ifdef _HASH_CHAIN
kNumHashDirectBytes;
if (pb[maxLen] == cur[maxLen])
#else
MyMin(len0, len1);
#endif
if (pb[len] == cur[len])
{
while(++len != lenLimit)
if (pb[len] != cur[len])
break;
if (maxLen < len)
{
distances[offset++] = maxLen = len;
distances[offset++] = delta - 1;
if (len == lenLimit)
{
#ifndef _HASH_CHAIN
*ptr1 = pair[0];
*ptr0 = pair[1];
#endif
break;
}
}
}
#ifdef _HASH_CHAIN
curMatch = *pair;
#else
if (pb[len] < cur[len])
{
*ptr1 = curMatch;
ptr1 = pair + 1;
curMatch = *ptr1;
len1 = len;
}
else
{
*ptr0 = curMatch;
ptr0 = pair;
curMatch = *ptr0;
len0 = len;
}
#endif
}
distances[0] = offset - 1;
if (++_cyclicBufferPos == _cyclicBufferSize)
_cyclicBufferPos = 0;
RINOK(CLZInWindow::MovePos());
if (_pos == kMaxValForNormalize)
Normalize();
return S_OK;
}
STDMETHODIMP CMatchFinder::Skip(UInt32 num)
{
do
{
#ifdef _HASH_CHAIN
if (_streamPos - _pos < kNumHashBytes)
{
RINOK(MovePos());
continue;
}
#else
UInt32 lenLimit;
if (_pos + _matchMaxLen <= _streamPos)
lenLimit = _matchMaxLen;
else
{
lenLimit = _streamPos - _pos;
if(lenLimit < kMinMatchCheck)
{
RINOK(MovePos());
continue;
}
}
UInt32 matchMinPos = (_pos > _cyclicBufferSize) ? (_pos - _cyclicBufferSize) : 0;
#endif
const Byte *cur = _buffer + _pos;
#ifdef HASH_ARRAY_2
UInt32 hash2Value;
#ifdef HASH_ARRAY_3
UInt32 hash3Value;
UInt32 hashValue;
HASH_CALC;
_hash[kHash3Offset + hash3Value] = _pos;
#else
UInt32 hashValue;
HASH_CALC;
#endif
_hash[hash2Value] = _pos;
#else
UInt32 hashValue = Hash(cur);
#endif
UInt32 curMatch = _hash[kFixHashSize + hashValue];
_hash[kFixHashSize + hashValue] = _pos;
#ifdef _HASH_CHAIN
_son[_cyclicBufferPos] = curMatch;
#else
CIndex *son = _son;
CIndex *ptr0 = son + (_cyclicBufferPos << 1) + 1;
CIndex *ptr1 = son + (_cyclicBufferPos << 1);
UInt32 len0, len1;
len0 = len1 = kNumHashDirectBytes;
UInt32 count = _cutValue;
while(true)
{
if(curMatch <= matchMinPos || count-- == 0)
{
*ptr0 = *ptr1 = kEmptyHashValue;
break;
}
UInt32 delta = _pos - curMatch;
UInt32 cyclicPos = (delta <= _cyclicBufferPos) ?
(_cyclicBufferPos - delta):
(_cyclicBufferPos - delta + _cyclicBufferSize);
CIndex *pair = son + (cyclicPos << 1);
// _mm_prefetch((const char *)pair, _MM_HINT_T0);
const Byte *pb = _buffer + curMatch;
UInt32 len = MyMin(len0, len1);
if (pb[len] == cur[len])
{
while(++len != lenLimit)
if (pb[len] != cur[len])
break;
if (len == lenLimit)
{
*ptr1 = pair[0];
*ptr0 = pair[1];
break;
}
}
if (pb[len] < cur[len])
{
*ptr1 = curMatch;
ptr1 = pair + 1;
curMatch = *ptr1;
len1 = len;
}
else
{
*ptr0 = curMatch;
ptr0 = pair;
curMatch = *ptr0;
len0 = len;
}
}
#endif
if (++_cyclicBufferPos == _cyclicBufferSize)
_cyclicBufferPos = 0;
RINOK(CLZInWindow::MovePos());
if (_pos == kMaxValForNormalize)
Normalize();
}
while(--num != 0);
return S_OK;
}
void CMatchFinder::Normalize()
{
UInt32 subValue = _pos - _cyclicBufferSize;
CIndex *items = _hash;
UInt32 numItems = (_hashSizeSum + _cyclicBufferSize
#ifndef _HASH_CHAIN
* 2
#endif
);
for (UInt32 i = 0; i < numItems; i++)
{
UInt32 value = items[i];
if (value <= subValue)
value = kEmptyHashValue;
else
value -= subValue;
items[i] = value;
}
ReduceOffsets(subValue);
}
HRESULT CMatchFinder::MovePos()
{
if (++_cyclicBufferPos == _cyclicBufferSize)
_cyclicBufferPos = 0;
RINOK(CLZInWindow::MovePos());
if (_pos == kMaxValForNormalize)
Normalize();
return S_OK;
}
STDMETHODIMP_(Byte) CMatchFinder::GetIndexByte(Int32 index)
{ return CLZInWindow::GetIndexByte(index); }
STDMETHODIMP_(UInt32) CMatchFinder::GetMatchLen(Int32 index,
UInt32 back, UInt32 limit)
{ return CLZInWindow::GetMatchLen(index, back, limit); }
STDMETHODIMP_(UInt32) CMatchFinder::GetNumAvailableBytes()
{ return CLZInWindow::GetNumAvailableBytes(); }
STDMETHODIMP_(const Byte *) CMatchFinder::GetPointerToCurrentPos()
{ return CLZInWindow::GetPointerToCurrentPos(); }
STDMETHODIMP_(Int32) CMatchFinder::NeedChangeBufferPos(UInt32 numCheckBytes)
{ return CLZInWindow::NeedMove(numCheckBytes) ? 1: 0; }
STDMETHODIMP_(void) CMatchFinder::ChangeBufferPos()
{ CLZInWindow::MoveBlock();}
#undef HASH_CALC
#undef kNumHashDirectBytes
}

View File

@ -0,0 +1,19 @@
// HC4.h
#ifndef __HC4_H
#define __HC4_H
#define BT_NAMESPACE NHC4
#define HASH_ARRAY_2
#define HASH_ARRAY_3
#include "HCMain.h"
#undef HASH_ARRAY_2
#undef HASH_ARRAY_3
#undef BT_NAMESPACE
#endif

View File

@ -0,0 +1,6 @@
// HCMain.h
#define _HASH_CHAIN
#include "../BinTree/BinTreeMain.h"
#undef _HASH_CHAIN

View File

@ -0,0 +1,33 @@
// MatchFinders/IMatchFinder.h
#ifndef __IMATCHFINDER_H
#define __IMATCHFINDER_H
struct IInWindowStream: public IUnknown
{
STDMETHOD(SetStream)(ISequentialInStream *inStream) PURE;
STDMETHOD_(void, ReleaseStream)() PURE;
STDMETHOD(Init)() PURE;
STDMETHOD_(Byte, GetIndexByte)(Int32 index) PURE;
STDMETHOD_(UInt32, GetMatchLen)(Int32 index, UInt32 distance, UInt32 limit) PURE;
STDMETHOD_(UInt32, GetNumAvailableBytes)() PURE;
STDMETHOD_(const Byte *, GetPointerToCurrentPos)() PURE;
STDMETHOD_(Int32, NeedChangeBufferPos)(UInt32 numCheckBytes) PURE;
STDMETHOD_(void, ChangeBufferPos)() PURE;
};
struct IMatchFinder: public IInWindowStream
{
STDMETHOD(Create)(UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter) PURE;
STDMETHOD(GetMatches)(UInt32 *distances) PURE;
STDMETHOD(Skip)(UInt32 num) PURE;
};
struct IMatchFinderSetNumPasses
{
//virtual ~IMatchFinderSetNumPasses(){}
virtual void SetNumPasses(UInt32 numPasses) PURE;
};
#endif

View File

@ -0,0 +1,105 @@
// LZInWindow.cpp
#include "StdAfx.h"
#include "LZInWindow.h"
#include "../../../Common/MyCom.h"
#include "../../../Common/Alloc.h"
void CLZInWindow::Free()
{
::BigFree(_bufferBase);
_bufferBase = 0;
}
bool CLZInWindow::Create(UInt32 keepSizeBefore, UInt32 keepSizeAfter, UInt32 keepSizeReserv)
{
_keepSizeBefore = keepSizeBefore;
_keepSizeAfter = keepSizeAfter;
UInt32 blockSize = keepSizeBefore + keepSizeAfter + keepSizeReserv;
if (_bufferBase == 0 || _blockSize != blockSize)
{
Free();
_blockSize = blockSize;
if (_blockSize != 0)
_bufferBase = (Byte *)::BigAlloc(_blockSize);
}
_pointerToLastSafePosition = _bufferBase + _blockSize - keepSizeAfter;
if (_blockSize == 0)
return true;
return (_bufferBase != 0);
}
void CLZInWindow::SetStream(ISequentialInStream *stream)
{
_stream = stream;
}
HRESULT CLZInWindow::Init()
{
_buffer = _bufferBase;
_pos = 0;
_streamPos = 0;
_streamEndWasReached = false;
return ReadBlock();
}
/*
void CLZInWindow::ReleaseStream()
{
_stream.Release();
}
*/
///////////////////////////////////////////
// ReadBlock
// In State:
// (_buffer + _streamPos) <= (_bufferBase + _blockSize)
// Out State:
// _posLimit <= _blockSize - _keepSizeAfter;
// if(_streamEndWasReached == false):
// _streamPos >= _pos + _keepSizeAfter
// _posLimit = _streamPos - _keepSizeAfter;
// else
//
HRESULT CLZInWindow::ReadBlock()
{
if(_streamEndWasReached)
return S_OK;
while(true)
{
UInt32 size = (UInt32)(_bufferBase - _buffer) + _blockSize - _streamPos;
if(size == 0)
return S_OK;
UInt32 numReadBytes;
RINOK(_stream->Read(_buffer + _streamPos, size, &numReadBytes));
if(numReadBytes == 0)
{
_posLimit = _streamPos;
const Byte *pointerToPostion = _buffer + _posLimit;
if(pointerToPostion > _pointerToLastSafePosition)
_posLimit = (UInt32)(_pointerToLastSafePosition - _buffer);
_streamEndWasReached = true;
return S_OK;
}
_streamPos += numReadBytes;
if(_streamPos >= _pos + _keepSizeAfter)
{
_posLimit = _streamPos - _keepSizeAfter;
return S_OK;
}
}
}
void CLZInWindow::MoveBlock()
{
UInt32 offset = (UInt32)(_buffer - _bufferBase) + _pos - _keepSizeBefore;
// we need one additional byte, since MovePos moves on 1 byte.
if (offset > 0)
offset--;
UInt32 numBytes = (UInt32)(_buffer - _bufferBase) + _streamPos - offset;
memmove(_bufferBase, _bufferBase + offset, numBytes);
_buffer -= offset;
}

View File

@ -0,0 +1,87 @@
// LZInWindow.h
#ifndef __LZ_IN_WINDOW_H
#define __LZ_IN_WINDOW_H
#include "../../IStream.h"
class CLZInWindow
{
Byte *_bufferBase; // pointer to buffer with data
ISequentialInStream *_stream;
UInt32 _posLimit; // offset (from _buffer) when new block reading must be done
bool _streamEndWasReached; // if (true) then _streamPos shows real end of stream
const Byte *_pointerToLastSafePosition;
protected:
Byte *_buffer; // Pointer to virtual Buffer begin
UInt32 _blockSize; // Size of Allocated memory block
UInt32 _pos; // offset (from _buffer) of curent byte
UInt32 _keepSizeBefore; // how many BYTEs must be kept in buffer before _pos
UInt32 _keepSizeAfter; // how many BYTEs must be kept buffer after _pos
UInt32 _streamPos; // offset (from _buffer) of first not read byte from Stream
void MoveBlock();
HRESULT ReadBlock();
void Free();
public:
CLZInWindow(): _bufferBase(0) {}
virtual ~CLZInWindow() { Free(); }
// keepSizeBefore + keepSizeAfter + keepSizeReserv < 4G)
bool Create(UInt32 keepSizeBefore, UInt32 keepSizeAfter, UInt32 keepSizeReserv = (1<<17));
void SetStream(ISequentialInStream *stream);
HRESULT Init();
// void ReleaseStream();
Byte *GetBuffer() const { return _buffer; }
const Byte *GetPointerToCurrentPos() const { return _buffer + _pos; }
HRESULT MovePos()
{
_pos++;
if (_pos > _posLimit)
{
const Byte *pointerToPostion = _buffer + _pos;
if(pointerToPostion > _pointerToLastSafePosition)
MoveBlock();
return ReadBlock();
}
else
return S_OK;
}
Byte GetIndexByte(Int32 index) const { return _buffer[(size_t)_pos + index]; }
// index + limit have not to exceed _keepSizeAfter;
// -2G <= index < 2G
UInt32 GetMatchLen(Int32 index, UInt32 distance, UInt32 limit) const
{
if(_streamEndWasReached)
if ((_pos + index) + limit > _streamPos)
limit = _streamPos - (_pos + index);
distance++;
const Byte *pby = _buffer + (size_t)_pos + index;
UInt32 i;
for(i = 0; i < limit && pby[i] == pby[(size_t)i - distance]; i++);
return i;
}
UInt32 GetNumAvailableBytes() const { return _streamPos - _pos; }
void ReduceOffsets(Int32 subValue)
{
_buffer += subValue;
_posLimit -= subValue;
_pos -= subValue;
_streamPos -= subValue;
}
bool NeedMove(UInt32 numCheckBytes)
{
UInt32 reserv = _pointerToLastSafePosition - (_buffer + _pos);
return (reserv <= numCheckBytes);
}
};
#endif

View File

@ -0,0 +1,6 @@
// StdAfx.h
#ifndef __STDAFX_H
#define __STDAFX_H
#endif

View File

@ -0,0 +1,82 @@
// LZMA.h
#ifndef __LZMA_H
#define __LZMA_H
namespace NCompress {
namespace NLZMA {
const UInt32 kNumRepDistances = 4;
const int kNumStates = 12;
const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
const Byte kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
const Byte kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
class CState
{
public:
Byte Index;
void Init() { Index = 0; }
void UpdateChar() { Index = kLiteralNextStates[Index]; }
void UpdateMatch() { Index = kMatchNextStates[Index]; }
void UpdateRep() { Index = kRepNextStates[Index]; }
void UpdateShortRep() { Index = kShortRepNextStates[Index]; }
bool IsCharState() const { return Index < 7; }
};
const int kNumPosSlotBits = 6;
const int kDicLogSizeMin = 0;
const int kDicLogSizeMax = 32;
const int kDistTableSizeMax = kDicLogSizeMax * 2;
const UInt32 kNumLenToPosStates = 4;
inline UInt32 GetLenToPosState(UInt32 len)
{
len -= 2;
if (len < kNumLenToPosStates)
return len;
return kNumLenToPosStates - 1;
}
namespace NLength {
const int kNumPosStatesBitsMax = 4;
const UInt32 kNumPosStatesMax = (1 << kNumPosStatesBitsMax);
const int kNumPosStatesBitsEncodingMax = 4;
const UInt32 kNumPosStatesEncodingMax = (1 << kNumPosStatesBitsEncodingMax);
const int kNumLowBits = 3;
const int kNumMidBits = 3;
const int kNumHighBits = 8;
const UInt32 kNumLowSymbols = 1 << kNumLowBits;
const UInt32 kNumMidSymbols = 1 << kNumMidBits;
const UInt32 kNumSymbolsTotal = kNumLowSymbols + kNumMidSymbols + (1 << kNumHighBits);
}
const UInt32 kMatchMinLen = 2;
const UInt32 kMatchMaxLen = kMatchMinLen + NLength::kNumSymbolsTotal - 1;
const int kNumAlignBits = 4;
const UInt32 kAlignTableSize = 1 << kNumAlignBits;
const UInt32 kAlignMask = (kAlignTableSize - 1);
const UInt32 kStartPosModelIndex = 4;
const UInt32 kEndPosModelIndex = 14;
const UInt32 kNumPosModels = kEndPosModelIndex - kStartPosModelIndex;
const UInt32 kNumFullDistances = 1 << (kEndPosModelIndex / 2);
const int kNumLitPosStatesBitsEncodingMax = 4;
const int kNumLitContextBitsMax = 8;
const int kNumMoveBits = 5;
}}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,411 @@
// LZMA/Encoder.h
#ifndef __LZMA_ENCODER_H
#define __LZMA_ENCODER_H
#include "../../../Common/MyCom.h"
#include "../../../Common/Alloc.h"
#include "../../ICoder.h"
#include "../LZ/IMatchFinder.h"
#include "../RangeCoder/RangeCoderBitTree.h"
#include "LZMA.h"
namespace NCompress {
namespace NLZMA {
typedef NRangeCoder::CBitEncoder<kNumMoveBits> CMyBitEncoder;
class CBaseState
{
protected:
CState _state;
Byte _previousByte;
UInt32 _repDistances[kNumRepDistances];
void Init()
{
_state.Init();
_previousByte = 0;
for(UInt32 i = 0 ; i < kNumRepDistances; i++)
_repDistances[i] = 0;
}
};
struct COptimal
{
CState State;
bool Prev1IsChar;
bool Prev2;
UInt32 PosPrev2;
UInt32 BackPrev2;
UInt32 Price;
UInt32 PosPrev; // posNext;
UInt32 BackPrev;
UInt32 Backs[kNumRepDistances];
void MakeAsChar() { BackPrev = UInt32(-1); Prev1IsChar = false; }
void MakeAsShortRep() { BackPrev = 0; ; Prev1IsChar = false; }
bool IsShortRep() { return (BackPrev == 0); }
};
extern Byte g_FastPos[1 << 11];
inline UInt32 GetPosSlot(UInt32 pos)
{
if (pos < (1 << 11))
return g_FastPos[pos];
if (pos < (1 << 21))
return g_FastPos[pos >> 10] + 20;
return g_FastPos[pos >> 20] + 40;
}
inline UInt32 GetPosSlot2(UInt32 pos)
{
if (pos < (1 << 17))
return g_FastPos[pos >> 6] + 12;
if (pos < (1 << 27))
return g_FastPos[pos >> 16] + 32;
return g_FastPos[pos >> 26] + 52;
}
const UInt32 kIfinityPrice = 0xFFFFFFF;
const UInt32 kNumOpts = 1 << 12;
class CLiteralEncoder2
{
CMyBitEncoder _encoders[0x300];
public:
void Init()
{
for (int i = 0; i < 0x300; i++)
_encoders[i].Init();
}
void Encode(NRangeCoder::CEncoder *rangeEncoder, Byte symbol);
void EncodeMatched(NRangeCoder::CEncoder *rangeEncoder, Byte matchByte, Byte symbol);
UInt32 GetPrice(bool matchMode, Byte matchByte, Byte symbol) const;
};
class CLiteralEncoder
{
CLiteralEncoder2 *_coders;
int _numPrevBits;
int _numPosBits;
UInt32 _posMask;
public:
CLiteralEncoder(): _coders(0) {}
~CLiteralEncoder() { Free(); }
void Free()
{
MyFree(_coders);
_coders = 0;
}
bool Create(int numPosBits, int numPrevBits)
{
if (_coders == 0 || (numPosBits + numPrevBits) != (_numPrevBits + _numPosBits))
{
Free();
UInt32 numStates = 1 << (numPosBits + numPrevBits);
_coders = (CLiteralEncoder2 *)MyAlloc(numStates * sizeof(CLiteralEncoder2));
}
_numPosBits = numPosBits;
_posMask = (1 << numPosBits) - 1;
_numPrevBits = numPrevBits;
return (_coders != 0);
}
void Init()
{
UInt32 numStates = 1 << (_numPrevBits + _numPosBits);
for (UInt32 i = 0; i < numStates; i++)
_coders[i].Init();
}
CLiteralEncoder2 *GetSubCoder(UInt32 pos, Byte prevByte)
{ return &_coders[((pos & _posMask) << _numPrevBits) + (prevByte >> (8 - _numPrevBits))]; }
};
namespace NLength {
class CEncoder
{
CMyBitEncoder _choice;
CMyBitEncoder _choice2;
NRangeCoder::CBitTreeEncoder<kNumMoveBits, kNumLowBits> _lowCoder[kNumPosStatesEncodingMax];
NRangeCoder::CBitTreeEncoder<kNumMoveBits, kNumMidBits> _midCoder[kNumPosStatesEncodingMax];
NRangeCoder::CBitTreeEncoder<kNumMoveBits, kNumHighBits> _highCoder;
public:
void Init(UInt32 numPosStates);
void Encode(NRangeCoder::CEncoder *rangeEncoder, UInt32 symbol, UInt32 posState);
void SetPrices(UInt32 posState, UInt32 numSymbols, UInt32 *prices) const;
};
const UInt32 kNumSpecSymbols = kNumLowSymbols + kNumMidSymbols;
class CPriceTableEncoder: public CEncoder
{
UInt32 _prices[kNumPosStatesEncodingMax][kNumSymbolsTotal];
UInt32 _tableSize;
UInt32 _counters[kNumPosStatesEncodingMax];
public:
void SetTableSize(UInt32 tableSize) { _tableSize = tableSize; }
UInt32 GetPrice(UInt32 symbol, UInt32 posState) const { return _prices[posState][symbol]; }
void UpdateTable(UInt32 posState)
{
SetPrices(posState, _tableSize, _prices[posState]);
_counters[posState] = _tableSize;
}
void UpdateTables(UInt32 numPosStates)
{
for (UInt32 posState = 0; posState < numPosStates; posState++)
UpdateTable(posState);
}
void Encode(NRangeCoder::CEncoder *rangeEncoder, UInt32 symbol, UInt32 posState, bool updatePrice)
{
CEncoder::Encode(rangeEncoder, symbol, posState);
if (updatePrice)
if (--_counters[posState] == 0)
UpdateTable(posState);
}
};
}
class CEncoder :
public ICompressCoder,
public ICompressSetOutStream,
public ICompressSetCoderProperties,
public ICompressWriteCoderProperties,
public CBaseState,
public CMyUnknownImp
{
COptimal _optimum[kNumOpts];
CMyComPtr<IMatchFinder> _matchFinder; // test it
NRangeCoder::CEncoder _rangeEncoder;
CMyBitEncoder _isMatch[kNumStates][NLength::kNumPosStatesEncodingMax];
CMyBitEncoder _isRep[kNumStates];
CMyBitEncoder _isRepG0[kNumStates];
CMyBitEncoder _isRepG1[kNumStates];
CMyBitEncoder _isRepG2[kNumStates];
CMyBitEncoder _isRep0Long[kNumStates][NLength::kNumPosStatesEncodingMax];
NRangeCoder::CBitTreeEncoder<kNumMoveBits, kNumPosSlotBits> _posSlotEncoder[kNumLenToPosStates];
CMyBitEncoder _posEncoders[kNumFullDistances - kEndPosModelIndex];
NRangeCoder::CBitTreeEncoder<kNumMoveBits, kNumAlignBits> _posAlignEncoder;
NLength::CPriceTableEncoder _lenEncoder;
NLength::CPriceTableEncoder _repMatchLenEncoder;
CLiteralEncoder _literalEncoder;
UInt32 _matchDistances[kMatchMaxLen * 2 + 2 + 1];
bool _fastMode;
// bool _maxMode;
UInt32 _numFastBytes;
UInt32 _longestMatchLength;
UInt32 _numDistancePairs;
UInt32 _additionalOffset;
UInt32 _optimumEndIndex;
UInt32 _optimumCurrentIndex;
bool _longestMatchWasFound;
UInt32 _posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
UInt32 _distancesPrices[kNumLenToPosStates][kNumFullDistances];
UInt32 _alignPrices[kAlignTableSize];
UInt32 _alignPriceCount;
UInt32 _distTableSize;
UInt32 _posStateBits;
UInt32 _posStateMask;
UInt32 _numLiteralPosStateBits;
UInt32 _numLiteralContextBits;
UInt32 _dictionarySize;
UInt32 _dictionarySizePrev;
UInt32 _numFastBytesPrev;
UInt32 _matchPriceCount;
UInt64 nowPos64;
bool _finished;
ISequentialInStream *_inStream;
UInt32 _matchFinderCycles;
int _matchFinderIndex;
#ifdef COMPRESS_MF_MT
bool _multiThread;
#endif
bool _writeEndMark;
bool _needReleaseMFStream;
IMatchFinderSetNumPasses *setMfPasses;
void ReleaseMatchFinder()
{
setMfPasses = 0;
_matchFinder.Release();
}
HRESULT ReadMatchDistances(UInt32 &len, UInt32 &numDistancePairs);
HRESULT MovePos(UInt32 num);
UInt32 GetRepLen1Price(CState state, UInt32 posState) const
{
return _isRepG0[state.Index].GetPrice0() +
_isRep0Long[state.Index][posState].GetPrice0();
}
UInt32 GetPureRepPrice(UInt32 repIndex, CState state, UInt32 posState) const
{
UInt32 price;
if(repIndex == 0)
{
price = _isRepG0[state.Index].GetPrice0();
price += _isRep0Long[state.Index][posState].GetPrice1();
}
else
{
price = _isRepG0[state.Index].GetPrice1();
if (repIndex == 1)
price += _isRepG1[state.Index].GetPrice0();
else
{
price += _isRepG1[state.Index].GetPrice1();
price += _isRepG2[state.Index].GetPrice(repIndex - 2);
}
}
return price;
}
UInt32 GetRepPrice(UInt32 repIndex, UInt32 len, CState state, UInt32 posState) const
{
return _repMatchLenEncoder.GetPrice(len - kMatchMinLen, posState) +
GetPureRepPrice(repIndex, state, posState);
}
/*
UInt32 GetPosLen2Price(UInt32 pos, UInt32 posState) const
{
if (pos >= kNumFullDistances)
return kIfinityPrice;
return _distancesPrices[0][pos] + _lenEncoder.GetPrice(0, posState);
}
UInt32 GetPosLen3Price(UInt32 pos, UInt32 len, UInt32 posState) const
{
UInt32 price;
UInt32 lenToPosState = GetLenToPosState(len);
if (pos < kNumFullDistances)
price = _distancesPrices[lenToPosState][pos];
else
price = _posSlotPrices[lenToPosState][GetPosSlot2(pos)] +
_alignPrices[pos & kAlignMask];
return price + _lenEncoder.GetPrice(len - kMatchMinLen, posState);
}
*/
UInt32 GetPosLenPrice(UInt32 pos, UInt32 len, UInt32 posState) const
{
UInt32 price;
UInt32 lenToPosState = GetLenToPosState(len);
if (pos < kNumFullDistances)
price = _distancesPrices[lenToPosState][pos];
else
price = _posSlotPrices[lenToPosState][GetPosSlot2(pos)] +
_alignPrices[pos & kAlignMask];
return price + _lenEncoder.GetPrice(len - kMatchMinLen, posState);
}
UInt32 Backward(UInt32 &backRes, UInt32 cur);
HRESULT GetOptimum(UInt32 position, UInt32 &backRes, UInt32 &lenRes);
HRESULT GetOptimumFast(UInt32 position, UInt32 &backRes, UInt32 &lenRes);
void FillDistancesPrices();
void FillAlignPrices();
void ReleaseMFStream()
{
if (_matchFinder && _needReleaseMFStream)
{
_matchFinder->ReleaseStream();
_needReleaseMFStream = false;
}
}
void ReleaseStreams()
{
ReleaseMFStream();
ReleaseOutStream();
}
HRESULT Flush(UInt32 nowPos);
class CCoderReleaser
{
CEncoder *_coder;
public:
CCoderReleaser(CEncoder *coder): _coder(coder) {}
~CCoderReleaser()
{
_coder->ReleaseStreams();
}
};
friend class CCoderReleaser;
void WriteEndMarker(UInt32 posState);
public:
CEncoder();
void SetWriteEndMarkerMode(bool writeEndMarker)
{ _writeEndMark= writeEndMarker; }
HRESULT Create();
MY_UNKNOWN_IMP3(
ICompressSetOutStream,
ICompressSetCoderProperties,
ICompressWriteCoderProperties
)
HRESULT Init();
// ICompressCoder interface
HRESULT SetStreams(ISequentialInStream *inStream,
ISequentialOutStream *outStream,
const UInt64 *inSize, const UInt64 *outSize);
HRESULT CodeOneBlock(UInt64 *inSize, UInt64 *outSize, Int32 *finished);
HRESULT CodeReal(ISequentialInStream *inStream,
ISequentialOutStream *outStream,
const UInt64 *inSize, const UInt64 *outSize,
ICompressProgressInfo *progress);
// ICompressCoder interface
STDMETHOD(Code)(ISequentialInStream *inStream,
ISequentialOutStream *outStream,
const UInt64 *inSize, const UInt64 *outSize,
ICompressProgressInfo *progress);
// ICompressSetCoderProperties2
STDMETHOD(SetCoderProperties)(const PROPID *propIDs,
const PROPVARIANT *properties, UInt32 numProperties);
// ICompressWriteCoderProperties
STDMETHOD(WriteCoderProperties)(ISequentialOutStream *outStream);
STDMETHOD(SetOutStream)(ISequentialOutStream *outStream);
STDMETHOD(ReleaseOutStream)();
virtual ~CEncoder() {}
};
}}
#endif

View File

@ -0,0 +1,8 @@
// StdAfx.h
#ifndef __STDAFX_H
#define __STDAFX_H
#include "../../../Common/MyWindows.h"
#endif

View File

@ -0,0 +1,205 @@
// Compress/RangeCoder/RangeCoder.h
#ifndef __COMPRESS_RANGECODER_H
#define __COMPRESS_RANGECODER_H
#include "../../Common/InBuffer.h"
#include "../../Common/OutBuffer.h"
namespace NCompress {
namespace NRangeCoder {
const int kNumTopBits = 24;
const UInt32 kTopValue = (1 << kNumTopBits);
class CEncoder
{
UInt32 _cacheSize;
Byte _cache;
public:
UInt64 Low;
UInt32 Range;
COutBuffer Stream;
bool Create(UInt32 bufferSize) { return Stream.Create(bufferSize); }
void SetStream(ISequentialOutStream *stream) { Stream.SetStream(stream); }
void Init()
{
Stream.Init();
Low = 0;
Range = 0xFFFFFFFF;
_cacheSize = 1;
_cache = 0;
}
void FlushData()
{
// Low += 1;
for(int i = 0; i < 5; i++)
ShiftLow();
}
HRESULT FlushStream() { return Stream.Flush(); }
void ReleaseStream() { Stream.ReleaseStream(); }
void Encode(UInt32 start, UInt32 size, UInt32 total)
{
Low += start * (Range /= total);
Range *= size;
while (Range < kTopValue)
{
Range <<= 8;
ShiftLow();
}
}
void ShiftLow()
{
if ((UInt32)Low < (UInt32)0xFF000000 || (int)(Low >> 32) != 0)
{
Byte temp = _cache;
do
{
Stream.WriteByte((Byte)(temp + (Byte)(Low >> 32)));
temp = 0xFF;
}
while(--_cacheSize != 0);
_cache = (Byte)((UInt32)Low >> 24);
}
_cacheSize++;
Low = (UInt32)Low << 8;
}
void EncodeDirectBits(UInt32 value, int numTotalBits)
{
for (int i = numTotalBits - 1; i >= 0; i--)
{
Range >>= 1;
if (((value >> i) & 1) == 1)
Low += Range;
if (Range < kTopValue)
{
Range <<= 8;
ShiftLow();
}
}
}
void EncodeBit(UInt32 size0, UInt32 numTotalBits, UInt32 symbol)
{
UInt32 newBound = (Range >> numTotalBits) * size0;
if (symbol == 0)
Range = newBound;
else
{
Low += newBound;
Range -= newBound;
}
while (Range < kTopValue)
{
Range <<= 8;
ShiftLow();
}
}
UInt64 GetProcessedSize() { return Stream.GetProcessedSize() + _cacheSize + 4; }
};
class CDecoder
{
public:
CInBuffer Stream;
UInt32 Range;
UInt32 Code;
bool Create(UInt32 bufferSize) { return Stream.Create(bufferSize); }
void Normalize()
{
while (Range < kTopValue)
{
Code = (Code << 8) | Stream.ReadByte();
Range <<= 8;
}
}
void SetStream(ISequentialInStream *stream) { Stream.SetStream(stream); }
void Init()
{
Stream.Init();
Code = 0;
Range = 0xFFFFFFFF;
for(int i = 0; i < 5; i++)
Code = (Code << 8) | Stream.ReadByte();
}
void ReleaseStream() { Stream.ReleaseStream(); }
UInt32 GetThreshold(UInt32 total)
{
return (Code) / ( Range /= total);
}
void Decode(UInt32 start, UInt32 size)
{
Code -= start * Range;
Range *= size;
Normalize();
}
UInt32 DecodeDirectBits(int numTotalBits)
{
UInt32 range = Range;
UInt32 code = Code;
UInt32 result = 0;
for (int i = numTotalBits; i != 0; i--)
{
range >>= 1;
/*
result <<= 1;
if (code >= range)
{
code -= range;
result |= 1;
}
*/
UInt32 t = (code - range) >> 31;
code -= range & (t - 1);
result = (result << 1) | (1 - t);
if (range < kTopValue)
{
code = (code << 8) | Stream.ReadByte();
range <<= 8;
}
}
Range = range;
Code = code;
return result;
}
UInt32 DecodeBit(UInt32 size0, UInt32 numTotalBits)
{
UInt32 newBound = (Range >> numTotalBits) * size0;
UInt32 symbol;
if (Code < newBound)
{
symbol = 0;
Range = newBound;
}
else
{
symbol = 1;
Code -= newBound;
Range -= newBound;
}
Normalize();
return symbol;
}
UInt64 GetProcessedSize() {return Stream.GetProcessedSize(); }
};
}}
#endif

View File

@ -0,0 +1,80 @@
// Compress/RangeCoder/RangeCoderBit.cpp
#include "StdAfx.h"
#include "RangeCoderBit.h"
namespace NCompress {
namespace NRangeCoder {
UInt32 CPriceTables::ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
static CPriceTables g_PriceTables;
CPriceTables::CPriceTables() { Init(); }
void CPriceTables::Init()
{
const int kNumBits = (kNumBitModelTotalBits - kNumMoveReducingBits);
for(int i = kNumBits - 1; i >= 0; i--)
{
UInt32 start = 1 << (kNumBits - i - 1);
UInt32 end = 1 << (kNumBits - i);
for (UInt32 j = start; j < end; j++)
ProbPrices[j] = (i << kNumBitPriceShiftBits) +
(((end - j) << kNumBitPriceShiftBits) >> (kNumBits - i - 1));
}
/*
// simplest: bad solution
for(UInt32 i = 1; i < (kBitModelTotal >> kNumMoveReducingBits) - 1; i++)
ProbPrices[i] = kBitPrice;
*/
/*
const double kDummyMultMid = (1.0 / kBitPrice) / 2;
const double kDummyMultMid = 0;
// float solution
double ln2 = log(double(2));
double lnAll = log(double(kBitModelTotal >> kNumMoveReducingBits));
for(UInt32 i = 1; i < (kBitModelTotal >> kNumMoveReducingBits) - 1; i++)
ProbPrices[i] = UInt32((fabs(lnAll - log(double(i))) / ln2 + kDummyMultMid) * kBitPrice);
*/
/*
// experimental, slow, solution:
for(UInt32 i = 1; i < (kBitModelTotal >> kNumMoveReducingBits) - 1; i++)
{
const int kCyclesBits = 5;
const UInt32 kCycles = (1 << kCyclesBits);
UInt32 range = UInt32(-1);
UInt32 bitCount = 0;
for (UInt32 j = 0; j < kCycles; j++)
{
range >>= (kNumBitModelTotalBits - kNumMoveReducingBits);
range *= i;
while(range < (1 << 31))
{
range <<= 1;
bitCount++;
}
}
bitCount <<= kNumBitPriceShiftBits;
range -= (1 << 31);
for (int k = kNumBitPriceShiftBits - 1; k >= 0; k--)
{
range <<= 1;
if (range > (1 << 31))
{
bitCount += (1 << k);
range -= (1 << 31);
}
}
ProbPrices[i] = (bitCount
// + (1 << (kCyclesBits - 1))
) >> kCyclesBits;
}
*/
}
}}

View File

@ -0,0 +1,120 @@
// Compress/RangeCoder/RangeCoderBit.h
#ifndef __COMPRESS_RANGECODER_BIT_H
#define __COMPRESS_RANGECODER_BIT_H
#include "RangeCoder.h"
namespace NCompress {
namespace NRangeCoder {
const int kNumBitModelTotalBits = 11;
const UInt32 kBitModelTotal = (1 << kNumBitModelTotalBits);
const int kNumMoveReducingBits = 2;
const int kNumBitPriceShiftBits = 6;
const UInt32 kBitPrice = 1 << kNumBitPriceShiftBits;
class CPriceTables
{
public:
static UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
static void Init();
CPriceTables();
};
template <int numMoveBits>
class CBitModel
{
public:
UInt32 Prob;
void UpdateModel(UInt32 symbol)
{
/*
Prob -= (Prob + ((symbol - 1) & ((1 << numMoveBits) - 1))) >> numMoveBits;
Prob += (1 - symbol) << (kNumBitModelTotalBits - numMoveBits);
*/
if (symbol == 0)
Prob += (kBitModelTotal - Prob) >> numMoveBits;
else
Prob -= (Prob) >> numMoveBits;
}
public:
void Init() { Prob = kBitModelTotal / 2; }
};
template <int numMoveBits>
class CBitEncoder: public CBitModel<numMoveBits>
{
public:
void Encode(CEncoder *encoder, UInt32 symbol)
{
/*
encoder->EncodeBit(this->Prob, kNumBitModelTotalBits, symbol);
this->UpdateModel(symbol);
*/
UInt32 newBound = (encoder->Range >> kNumBitModelTotalBits) * this->Prob;
if (symbol == 0)
{
encoder->Range = newBound;
this->Prob += (kBitModelTotal - this->Prob) >> numMoveBits;
}
else
{
encoder->Low += newBound;
encoder->Range -= newBound;
this->Prob -= (this->Prob) >> numMoveBits;
}
if (encoder->Range < kTopValue)
{
encoder->Range <<= 8;
encoder->ShiftLow();
}
}
UInt32 GetPrice(UInt32 symbol) const
{
return CPriceTables::ProbPrices[
(((this->Prob - symbol) ^ ((-(int)symbol))) & (kBitModelTotal - 1)) >> kNumMoveReducingBits];
}
UInt32 GetPrice0() const { return CPriceTables::ProbPrices[this->Prob >> kNumMoveReducingBits]; }
UInt32 GetPrice1() const { return CPriceTables::ProbPrices[(kBitModelTotal - this->Prob) >> kNumMoveReducingBits]; }
};
template <int numMoveBits>
class CBitDecoder: public CBitModel<numMoveBits>
{
public:
UInt32 Decode(CDecoder *decoder)
{
UInt32 newBound = (decoder->Range >> kNumBitModelTotalBits) * this->Prob;
if (decoder->Code < newBound)
{
decoder->Range = newBound;
this->Prob += (kBitModelTotal - this->Prob) >> numMoveBits;
if (decoder->Range < kTopValue)
{
decoder->Code = (decoder->Code << 8) | decoder->Stream.ReadByte();
decoder->Range <<= 8;
}
return 0;
}
else
{
decoder->Range -= newBound;
decoder->Code -= newBound;
this->Prob -= (this->Prob) >> numMoveBits;
if (decoder->Range < kTopValue)
{
decoder->Code = (decoder->Code << 8) | decoder->Stream.ReadByte();
decoder->Range <<= 8;
}
return 1;
}
}
};
}}
#endif

View File

@ -0,0 +1,161 @@
// Compress/RangeCoder/RangeCoderBitTree.h
#ifndef __COMPRESS_RANGECODER_BIT_TREE_H
#define __COMPRESS_RANGECODER_BIT_TREE_H
#include "RangeCoderBit.h"
#include "RangeCoderOpt.h"
namespace NCompress {
namespace NRangeCoder {
template <int numMoveBits, int NumBitLevels>
class CBitTreeEncoder
{
CBitEncoder<numMoveBits> Models[1 << NumBitLevels];
public:
void Init()
{
for(UInt32 i = 1; i < (1 << NumBitLevels); i++)
Models[i].Init();
}
void Encode(CEncoder *rangeEncoder, UInt32 symbol)
{
UInt32 modelIndex = 1;
for (int bitIndex = NumBitLevels; bitIndex != 0 ;)
{
bitIndex--;
UInt32 bit = (symbol >> bitIndex) & 1;
Models[modelIndex].Encode(rangeEncoder, bit);
modelIndex = (modelIndex << 1) | bit;
}
};
void ReverseEncode(CEncoder *rangeEncoder, UInt32 symbol)
{
UInt32 modelIndex = 1;
for (int i = 0; i < NumBitLevels; i++)
{
UInt32 bit = symbol & 1;
Models[modelIndex].Encode(rangeEncoder, bit);
modelIndex = (modelIndex << 1) | bit;
symbol >>= 1;
}
}
UInt32 GetPrice(UInt32 symbol) const
{
symbol |= (1 << NumBitLevels);
UInt32 price = 0;
while (symbol != 1)
{
price += Models[symbol >> 1].GetPrice(symbol & 1);
symbol >>= 1;
}
return price;
}
UInt32 ReverseGetPrice(UInt32 symbol) const
{
UInt32 price = 0;
UInt32 modelIndex = 1;
for (int i = NumBitLevels; i != 0; i--)
{
UInt32 bit = symbol & 1;
symbol >>= 1;
price += Models[modelIndex].GetPrice(bit);
modelIndex = (modelIndex << 1) | bit;
}
return price;
}
};
template <int numMoveBits, int NumBitLevels>
class CBitTreeDecoder
{
CBitDecoder<numMoveBits> Models[1 << NumBitLevels];
public:
void Init()
{
for(UInt32 i = 1; i < (1 << NumBitLevels); i++)
Models[i].Init();
}
UInt32 Decode(CDecoder *rangeDecoder)
{
UInt32 modelIndex = 1;
RC_INIT_VAR
for(int bitIndex = NumBitLevels; bitIndex != 0; bitIndex--)
{
// modelIndex = (modelIndex << 1) + Models[modelIndex].Decode(rangeDecoder);
RC_GETBIT(numMoveBits, Models[modelIndex].Prob, modelIndex)
}
RC_FLUSH_VAR
return modelIndex - (1 << NumBitLevels);
};
UInt32 ReverseDecode(CDecoder *rangeDecoder)
{
UInt32 modelIndex = 1;
UInt32 symbol = 0;
RC_INIT_VAR
for(int bitIndex = 0; bitIndex < NumBitLevels; bitIndex++)
{
// UInt32 bit = Models[modelIndex].Decode(rangeDecoder);
// modelIndex <<= 1;
// modelIndex += bit;
// symbol |= (bit << bitIndex);
RC_GETBIT2(numMoveBits, Models[modelIndex].Prob, modelIndex, ; , symbol |= (1 << bitIndex))
}
RC_FLUSH_VAR
return symbol;
}
};
template <int numMoveBits>
void ReverseBitTreeEncode(CBitEncoder<numMoveBits> *Models,
CEncoder *rangeEncoder, int NumBitLevels, UInt32 symbol)
{
UInt32 modelIndex = 1;
for (int i = 0; i < NumBitLevels; i++)
{
UInt32 bit = symbol & 1;
Models[modelIndex].Encode(rangeEncoder, bit);
modelIndex = (modelIndex << 1) | bit;
symbol >>= 1;
}
}
template <int numMoveBits>
UInt32 ReverseBitTreeGetPrice(CBitEncoder<numMoveBits> *Models,
UInt32 NumBitLevels, UInt32 symbol)
{
UInt32 price = 0;
UInt32 modelIndex = 1;
for (int i = NumBitLevels; i != 0; i--)
{
UInt32 bit = symbol & 1;
symbol >>= 1;
price += Models[modelIndex].GetPrice(bit);
modelIndex = (modelIndex << 1) | bit;
}
return price;
}
template <int numMoveBits>
UInt32 ReverseBitTreeDecode(CBitDecoder<numMoveBits> *Models,
CDecoder *rangeDecoder, int NumBitLevels)
{
UInt32 modelIndex = 1;
UInt32 symbol = 0;
RC_INIT_VAR
for(int bitIndex = 0; bitIndex < NumBitLevels; bitIndex++)
{
// UInt32 bit = Models[modelIndex].Decode(rangeDecoder);
// modelIndex <<= 1;
// modelIndex += bit;
// symbol |= (bit << bitIndex);
RC_GETBIT2(numMoveBits, Models[modelIndex].Prob, modelIndex, ; , symbol |= (1 << bitIndex))
}
RC_FLUSH_VAR
return symbol;
}
}}
#endif

View File

@ -0,0 +1,31 @@
// Compress/RangeCoder/RangeCoderOpt.h
#ifndef __COMPRESS_RANGECODER_OPT_H
#define __COMPRESS_RANGECODER_OPT_H
#define RC_INIT_VAR \
UInt32 range = rangeDecoder->Range; \
UInt32 code = rangeDecoder->Code;
#define RC_FLUSH_VAR \
rangeDecoder->Range = range; \
rangeDecoder->Code = code;
#define RC_NORMALIZE \
if (range < NCompress::NRangeCoder::kTopValue) \
{ code = (code << 8) | rangeDecoder->Stream.ReadByte(); range <<= 8; }
#define RC_GETBIT2(numMoveBits, prob, mi, A0, A1) \
{ UInt32 bound = (range >> NCompress::NRangeCoder::kNumBitModelTotalBits) * prob; \
if (code < bound) \
{ A0; range = bound; \
prob += (NCompress::NRangeCoder::kBitModelTotal - prob) >> numMoveBits; \
mi <<= 1; } \
else \
{ A1; range -= bound; code -= bound; prob -= (prob) >> numMoveBits; \
mi = (mi + mi) + 1; }} \
RC_NORMALIZE
#define RC_GETBIT(numMoveBits, prob, mi) RC_GETBIT2(numMoveBits, prob, mi, ; , ;)
#endif

View File

@ -0,0 +1,6 @@
// StdAfx.h
#ifndef __STDAFX_H
#define __STDAFX_H
#endif

View File

@ -0,0 +1,588 @@
/*
LzmaDecode.c
LZMA Decoder (optimized for Speed version)
LZMA SDK 4.22 Copyright (c) 1999-2005 Igor Pavlov (2005-06-10)
http://www.7-zip.org/
LZMA SDK is licensed under two licenses:
1) GNU Lesser General Public License (GNU LGPL)
2) Common Public License (CPL)
It means that you can select one of these two licenses and
follow rules of that license.
SPECIAL EXCEPTION:
Igor Pavlov, as the author of this Code, expressly permits you to
statically or dynamically link your Code (or bind by name) to the
interfaces of this file without subjecting your linked Code to the
terms of the CPL or GNU LGPL. Any modifications or additions
to this file, however, are subject to the LGPL or CPL terms.
*/
#include "LzmaDecode.h"
#ifndef Byte
#define Byte unsigned char
#endif
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define RC_READ_BYTE (*Buffer++)
#define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \
{ int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }}
#ifdef _LZMA_IN_CB
#define RC_TEST { if (Buffer == BufferLim) \
{ SizeT size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) return result; \
BufferLim = Buffer + size; if (size == 0) return LZMA_RESULT_DATA_ERROR; }}
#define RC_INIT Buffer = BufferLim = 0; RC_INIT2
#else
#define RC_TEST { if (Buffer == BufferLim) return LZMA_RESULT_DATA_ERROR; }
#define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2
#endif
#define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; }
#define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound)
#define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits;
#define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits;
#define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \
{ UpdateBit0(p); mi <<= 1; A0; } else \
{ UpdateBit1(p); mi = (mi + mi) + 1; A1; }
#define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)
#define RangeDecoderBitTreeDecode(probs, numLevels, res) \
{ int i = numLevels; res = 1; \
do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \
res -= (1 << numLevels); }
#define kNumPosBitsMax 4
#define kNumPosStatesMax (1 << kNumPosBitsMax)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumMidBits 3
#define kLenNumMidSymbols (1 << kLenNumMidBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define LenChoice 0
#define LenChoice2 (LenChoice + 1)
#define LenLow (LenChoice2 + 1)
#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
#define kNumStates 12
#define kNumLitStates 7
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
#define kNumPosSlotBits 6
#define kNumLenToPosStates 4
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kMatchMinLen 2
#define IsMatch 0
#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
#define IsRepG0 (IsRep + kNumStates)
#define IsRepG1 (IsRepG0 + kNumStates)
#define IsRepG2 (IsRepG1 + kNumStates)
#define IsRep0Long (IsRepG2 + kNumStates)
#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
#define LenCoder (Align + kAlignTableSize)
#define RepLenCoder (LenCoder + kNumLenProbs)
#define Literal (RepLenCoder + kNumLenProbs)
#if Literal != LZMA_BASE_SIZE
StopCompilingDueBUG
#endif
int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size)
{
unsigned char prop0;
if (size < LZMA_PROPERTIES_SIZE)
return LZMA_RESULT_DATA_ERROR;
prop0 = propsData[0];
if (prop0 >= (9 * 5 * 5))
return LZMA_RESULT_DATA_ERROR;
{
for (propsRes->pb = 0; prop0 >= (9 * 5); propsRes->pb++, prop0 -= (9 * 5));
for (propsRes->lp = 0; prop0 >= 9; propsRes->lp++, prop0 -= 9);
propsRes->lc = prop0;
/*
unsigned char remainder = (unsigned char)(prop0 / 9);
propsRes->lc = prop0 % 9;
propsRes->pb = remainder / 5;
propsRes->lp = remainder % 5;
*/
}
#ifdef _LZMA_OUT_READ
{
int i;
propsRes->DictionarySize = 0;
for (i = 0; i < 4; i++)
propsRes->DictionarySize += (UInt32)(propsData[1 + i]) << (i * 8);
if (propsRes->DictionarySize == 0)
propsRes->DictionarySize = 1;
}
#endif
return LZMA_RESULT_OK;
}
#define kLzmaStreamWasFinishedId (-1)
int LzmaDecode(CLzmaDecoderState *vs,
#ifdef _LZMA_IN_CB
ILzmaInCallback *InCallback,
#else
const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed,
#endif
unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed)
{
CProb *p = vs->Probs;
SizeT nowPos = 0;
Byte previousByte = 0;
UInt32 posStateMask = (1 << (vs->Properties.pb)) - 1;
UInt32 literalPosMask = (1 << (vs->Properties.lp)) - 1;
int lc = vs->Properties.lc;
#ifdef _LZMA_OUT_READ
UInt32 Range = vs->Range;
UInt32 Code = vs->Code;
#ifdef _LZMA_IN_CB
const Byte *Buffer = vs->Buffer;
const Byte *BufferLim = vs->BufferLim;
#else
const Byte *Buffer = inStream;
const Byte *BufferLim = inStream + inSize;
#endif
int state = vs->State;
UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
int len = vs->RemainLen;
UInt32 globalPos = vs->GlobalPos;
UInt32 distanceLimit = vs->DistanceLimit;
Byte *dictionary = vs->Dictionary;
UInt32 dictionarySize = vs->Properties.DictionarySize;
UInt32 dictionaryPos = vs->DictionaryPos;
Byte tempDictionary[4];
#ifndef _LZMA_IN_CB
*inSizeProcessed = 0;
#endif
*outSizeProcessed = 0;
if (len == kLzmaStreamWasFinishedId)
return LZMA_RESULT_OK;
if (dictionarySize == 0)
{
dictionary = tempDictionary;
dictionarySize = 1;
tempDictionary[0] = vs->TempDictionary[0];
}
if (len == kLzmaNeedInitId)
{
{
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp));
UInt32 i;
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
rep0 = rep1 = rep2 = rep3 = 1;
state = 0;
globalPos = 0;
distanceLimit = 0;
dictionaryPos = 0;
dictionary[dictionarySize - 1] = 0;
#ifdef _LZMA_IN_CB
RC_INIT;
#else
RC_INIT(inStream, inSize);
#endif
}
len = 0;
}
while(len != 0 && nowPos < outSize)
{
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
len--;
}
if (dictionaryPos == 0)
previousByte = dictionary[dictionarySize - 1];
else
previousByte = dictionary[dictionaryPos - 1];
#else /* if !_LZMA_OUT_READ */
int state = 0;
UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
int len = 0;
const Byte *Buffer;
const Byte *BufferLim;
UInt32 Range;
UInt32 Code;
#ifndef _LZMA_IN_CB
*inSizeProcessed = 0;
#endif
*outSizeProcessed = 0;
{
UInt32 i;
UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + vs->Properties.lp));
for (i = 0; i < numProbs; i++)
p[i] = kBitModelTotal >> 1;
}
#ifdef _LZMA_IN_CB
RC_INIT;
#else
RC_INIT(inStream, inSize);
#endif
#endif /* _LZMA_OUT_READ */
while(nowPos < outSize)
{
CProb *prob;
UInt32 bound;
int posState = (int)(
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& posStateMask);
prob = p + IsMatch + (state << kNumPosBitsMax) + posState;
IfBit0(prob)
{
int symbol = 1;
UpdateBit0(prob)
prob = p + Literal + (LZMA_LIT_SIZE *
(((
(nowPos
#ifdef _LZMA_OUT_READ
+ globalPos
#endif
)
& literalPosMask) << lc) + (previousByte >> (8 - lc))));
if (state >= kNumLitStates)
{
int matchByte;
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
matchByte = dictionary[pos];
#else
matchByte = outStream[nowPos - rep0];
#endif
do
{
int bit;
CProb *probLit;
matchByte <<= 1;
bit = (matchByte & 0x100);
probLit = prob + 0x100 + bit + symbol;
RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break)
}
while (symbol < 0x100);
}
while (symbol < 0x100)
{
CProb *probLit = prob + symbol;
RC_GET_BIT(probLit, symbol)
}
previousByte = (Byte)symbol;
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
if (distanceLimit < dictionarySize)
distanceLimit++;
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#endif
if (state < 4) state = 0;
else if (state < 10) state -= 3;
else state -= 6;
}
else
{
UpdateBit1(prob);
prob = p + IsRep + state;
IfBit0(prob)
{
UpdateBit0(prob);
rep3 = rep2;
rep2 = rep1;
rep1 = rep0;
state = state < kNumLitStates ? 0 : 3;
prob = p + LenCoder;
}
else
{
UpdateBit1(prob);
prob = p + IsRepG0 + state;
IfBit0(prob)
{
UpdateBit0(prob);
prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState;
IfBit0(prob)
{
#ifdef _LZMA_OUT_READ
UInt32 pos;
#endif
UpdateBit0(prob);
#ifdef _LZMA_OUT_READ
if (distanceLimit == 0)
#else
if (nowPos == 0)
#endif
return LZMA_RESULT_DATA_ERROR;
state = state < kNumLitStates ? 9 : 11;
#ifdef _LZMA_OUT_READ
pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
outStream[nowPos++] = previousByte;
#ifdef _LZMA_OUT_READ
if (distanceLimit < dictionarySize)
distanceLimit++;
#endif
continue;
}
else
{
UpdateBit1(prob);
}
}
else
{
UInt32 distance;
UpdateBit1(prob);
prob = p + IsRepG1 + state;
IfBit0(prob)
{
UpdateBit0(prob);
distance = rep1;
}
else
{
UpdateBit1(prob);
prob = p + IsRepG2 + state;
IfBit0(prob)
{
UpdateBit0(prob);
distance = rep2;
}
else
{
UpdateBit1(prob);
distance = rep3;
rep3 = rep2;
}
rep2 = rep1;
}
rep1 = rep0;
rep0 = distance;
}
state = state < kNumLitStates ? 8 : 11;
prob = p + RepLenCoder;
}
{
int numBits, offset;
CProb *probLen = prob + LenChoice;
IfBit0(probLen)
{
UpdateBit0(probLen);
probLen = prob + LenLow + (posState << kLenNumLowBits);
offset = 0;
numBits = kLenNumLowBits;
}
else
{
UpdateBit1(probLen);
probLen = prob + LenChoice2;
IfBit0(probLen)
{
UpdateBit0(probLen);
probLen = prob + LenMid + (posState << kLenNumMidBits);
offset = kLenNumLowSymbols;
numBits = kLenNumMidBits;
}
else
{
UpdateBit1(probLen);
probLen = prob + LenHigh;
offset = kLenNumLowSymbols + kLenNumMidSymbols;
numBits = kLenNumHighBits;
}
}
RangeDecoderBitTreeDecode(probLen, numBits, len);
len += offset;
}
if (state < 4)
{
int posSlot;
state += kNumLitStates;
prob = p + PosSlot +
((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
kNumPosSlotBits);
RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot);
if (posSlot >= kStartPosModelIndex)
{
int numDirectBits = ((posSlot >> 1) - 1);
rep0 = (2 | ((UInt32)posSlot & 1));
if (posSlot < kEndPosModelIndex)
{
rep0 <<= numDirectBits;
prob = p + SpecPos + rep0 - posSlot - 1;
}
else
{
numDirectBits -= kNumAlignBits;
do
{
RC_NORMALIZE
Range >>= 1;
rep0 <<= 1;
if (Code >= Range)
{
Code -= Range;
rep0 |= 1;
}
}
while (--numDirectBits != 0);
prob = p + Align;
rep0 <<= kNumAlignBits;
numDirectBits = kNumAlignBits;
}
{
int i = 1;
int mi = 1;
do
{
CProb *prob3 = prob + mi;
RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
i <<= 1;
}
while(--numDirectBits != 0);
}
}
else
rep0 = posSlot;
if (++rep0 == (UInt32)(0))
{
/* it's for stream version */
len = kLzmaStreamWasFinishedId;
break;
}
}
len += kMatchMinLen;
#ifdef _LZMA_OUT_READ
if (rep0 > distanceLimit)
#else
if (rep0 > nowPos)
#endif
return LZMA_RESULT_DATA_ERROR;
#ifdef _LZMA_OUT_READ
if (dictionarySize - distanceLimit > (UInt32)len)
distanceLimit += len;
else
distanceLimit = dictionarySize;
#endif
do
{
#ifdef _LZMA_OUT_READ
UInt32 pos = dictionaryPos - rep0;
if (pos >= dictionarySize)
pos += dictionarySize;
previousByte = dictionary[pos];
dictionary[dictionaryPos] = previousByte;
if (++dictionaryPos == dictionarySize)
dictionaryPos = 0;
#else
previousByte = outStream[nowPos - rep0];
#endif
len--;
outStream[nowPos++] = previousByte;
}
while(len != 0 && nowPos < outSize);
}
}
RC_NORMALIZE;
#ifdef _LZMA_OUT_READ
vs->Range = Range;
vs->Code = Code;
vs->DictionaryPos = dictionaryPos;
vs->GlobalPos = globalPos + (UInt32)nowPos;
vs->DistanceLimit = distanceLimit;
vs->Reps[0] = rep0;
vs->Reps[1] = rep1;
vs->Reps[2] = rep2;
vs->Reps[3] = rep3;
vs->State = state;
vs->RemainLen = len;
vs->TempDictionary[0] = tempDictionary[0];
#endif
#ifdef _LZMA_IN_CB
vs->Buffer = Buffer;
vs->BufferLim = BufferLim;
#else
*inSizeProcessed = (SizeT)(Buffer - inStream);
#endif
*outSizeProcessed = nowPos;
return LZMA_RESULT_OK;
}

View File

@ -0,0 +1,131 @@
/*
LzmaDecode.h
LZMA Decoder interface
LZMA SDK 4.21 Copyright (c) 1999-2005 Igor Pavlov (2005-06-08)
http://www.7-zip.org/
LZMA SDK is licensed under two licenses:
1) GNU Lesser General Public License (GNU LGPL)
2) Common Public License (CPL)
It means that you can select one of these two licenses and
follow rules of that license.
SPECIAL EXCEPTION:
Igor Pavlov, as the author of this code, expressly permits you to
statically or dynamically link your code (or bind by name) to the
interfaces of this file without subjecting your linked code to the
terms of the CPL or GNU LGPL. Any modifications or additions
to this file, however, are subject to the LGPL or CPL terms.
*/
#ifndef __LZMADECODE_H
#define __LZMADECODE_H
/* #define _LZMA_IN_CB */
/* Use callback for input data */
/* #define _LZMA_OUT_READ */
/* Use read function for output data */
/* #define _LZMA_PROB32 */
/* It can increase speed on some 32-bit CPUs,
but memory usage will be doubled in that case */
/* #define _LZMA_LOC_OPT */
/* Enable local speed optimizations inside code */
/* #define _LZMA_SYSTEM_SIZE_T */
/* Use system's size_t. You can use it to enable 64-bit sizes supporting*/
#ifndef UInt32
#ifdef _LZMA_UINT32_IS_ULONG
#define UInt32 unsigned long
#else
#define UInt32 unsigned int
#endif
#endif
#ifndef SizeT
#ifdef _LZMA_SYSTEM_SIZE_T
#include <stddef.h>
#define SizeT size_t
#else
#define SizeT UInt32
#endif
#endif
#ifdef _LZMA_PROB32
#define CProb UInt32
#else
#define CProb unsigned short
#endif
#define LZMA_RESULT_OK 0
#define LZMA_RESULT_DATA_ERROR 1
#ifdef _LZMA_IN_CB
typedef struct _ILzmaInCallback
{
int (*Read)(void *object, const unsigned char **buffer, SizeT *bufferSize);
} ILzmaInCallback;
#endif
#define LZMA_BASE_SIZE 1846
#define LZMA_LIT_SIZE 768
#define LZMA_PROPERTIES_SIZE 5
typedef struct _CLzmaProperties
{
int lc;
int lp;
int pb;
#ifdef _LZMA_OUT_READ
UInt32 DictionarySize;
#endif
}CLzmaProperties;
int LzmaDecodeProperties(CLzmaProperties *propsRes, const unsigned char *propsData, int size);
#define LzmaGetNumProbs(Properties) (LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((Properties)->lc + (Properties)->lp)))
#define kLzmaNeedInitId (-2)
typedef struct _CLzmaDecoderState
{
CLzmaProperties Properties;
CProb *Probs;
#ifdef _LZMA_IN_CB
const unsigned char *Buffer;
const unsigned char *BufferLim;
#endif
#ifdef _LZMA_OUT_READ
unsigned char *Dictionary;
UInt32 Range;
UInt32 Code;
UInt32 DictionaryPos;
UInt32 GlobalPos;
UInt32 DistanceLimit;
UInt32 Reps[4];
int State;
int RemainLen;
unsigned char TempDictionary[4];
#endif
} CLzmaDecoderState;
#ifdef _LZMA_OUT_READ
#define LzmaDecoderInit(vs) { (vs)->RemainLen = kLzmaNeedInitId; }
#endif
int LzmaDecode(CLzmaDecoderState *vs,
#ifdef _LZMA_IN_CB
ILzmaInCallback *inCallback,
#else
const unsigned char *inStream, SizeT inSize, SizeT *inSizeProcessed,
#endif
unsigned char *outStream, SizeT outSize, SizeT *outSizeProcessed);
#endif

View File

@ -0,0 +1,163 @@
// ICoder.h
#ifndef __ICODER_H
#define __ICODER_H
#include "IStream.h"
// "23170F69-40C1-278A-0000-000400xx0000"
#define CODER_INTERFACE(i, x) \
DEFINE_GUID(IID_ ## i, \
0x23170F69, 0x40C1, 0x278A, 0x00, 0x00, 0x00, 0x04, 0x00, x, 0x00, 0x00); \
struct i: public IUnknown
CODER_INTERFACE(ICompressProgressInfo, 0x04)
{
STDMETHOD(SetRatioInfo)(const UInt64 *inSize, const UInt64 *outSize) PURE;
};
CODER_INTERFACE(ICompressCoder, 0x05)
{
STDMETHOD(Code)(ISequentialInStream *inStream,
ISequentialOutStream *outStream,
const UInt64 *inSize,
const UInt64 *outSize,
ICompressProgressInfo *progress) PURE;
};
CODER_INTERFACE(ICompressCoder2, 0x18)
{
STDMETHOD(Code)(ISequentialInStream **inStreams,
const UInt64 **inSizes,
UInt32 numInStreams,
ISequentialOutStream **outStreams,
const UInt64 **outSizes,
UInt32 numOutStreams,
ICompressProgressInfo *progress) PURE;
};
namespace NCoderPropID
{
enum EEnum
{
kDictionarySize = 0x400,
kUsedMemorySize,
kOrder,
kPosStateBits = 0x440,
kLitContextBits,
kLitPosBits,
kNumFastBytes = 0x450,
kMatchFinder,
kMatchFinderCycles,
kNumPasses = 0x460,
kAlgorithm = 0x470,
kMultiThread = 0x480,
kNumThreads,
kEndMarker = 0x490
};
}
CODER_INTERFACE(ICompressSetCoderProperties, 0x20)
{
STDMETHOD(SetCoderProperties)(const PROPID *propIDs,
const PROPVARIANT *properties, UInt32 numProperties) PURE;
};
/*
CODER_INTERFACE(ICompressSetCoderProperties, 0x21)
{
STDMETHOD(SetDecoderProperties)(ISequentialInStream *inStream) PURE;
};
*/
CODER_INTERFACE(ICompressSetDecoderProperties2, 0x22)
{
STDMETHOD(SetDecoderProperties2)(const Byte *data, UInt32 size) PURE;
};
CODER_INTERFACE(ICompressWriteCoderProperties, 0x23)
{
STDMETHOD(WriteCoderProperties)(ISequentialOutStream *outStreams) PURE;
};
CODER_INTERFACE(ICompressGetInStreamProcessedSize, 0x24)
{
STDMETHOD(GetInStreamProcessedSize)(UInt64 *value) PURE;
};
CODER_INTERFACE(ICompressSetCoderMt, 0x25)
{
STDMETHOD(SetNumberOfThreads)(UInt32 numThreads) PURE;
};
CODER_INTERFACE(ICompressGetSubStreamSize, 0x30)
{
STDMETHOD(GetSubStreamSize)(UInt64 subStream, UInt64 *value) PURE;
};
CODER_INTERFACE(ICompressSetInStream, 0x31)
{
STDMETHOD(SetInStream)(ISequentialInStream *inStream) PURE;
STDMETHOD(ReleaseInStream)() PURE;
};
CODER_INTERFACE(ICompressSetOutStream, 0x32)
{
STDMETHOD(SetOutStream)(ISequentialOutStream *outStream) PURE;
STDMETHOD(ReleaseOutStream)() PURE;
};
CODER_INTERFACE(ICompressSetInStreamSize, 0x33)
{
STDMETHOD(SetInStreamSize)(const UInt64 *inSize) PURE;
};
CODER_INTERFACE(ICompressSetOutStreamSize, 0x34)
{
STDMETHOD(SetOutStreamSize)(const UInt64 *outSize) PURE;
};
CODER_INTERFACE(ICompressFilter, 0x40)
{
STDMETHOD(Init)() PURE;
STDMETHOD_(UInt32, Filter)(Byte *data, UInt32 size) PURE;
// Filter return outSize (UInt32)
// if (outSize <= size): Filter have converted outSize bytes
// if (outSize > size): Filter have not converted anything.
// and it needs at least outSize bytes to convert one block
// (it's for crypto block algorithms).
};
CODER_INTERFACE(ICryptoProperties, 0x80)
{
STDMETHOD(SetKey)(const Byte *data, UInt32 size) PURE;
STDMETHOD(SetInitVector)(const Byte *data, UInt32 size) PURE;
};
CODER_INTERFACE(ICryptoSetPassword, 0x90)
{
STDMETHOD(CryptoSetPassword)(const Byte *data, UInt32 size) PURE;
};
CODER_INTERFACE(ICryptoSetCRC, 0xA0)
{
STDMETHOD(CryptoSetCRC)(UInt32 crc) PURE;
};
//////////////////////
// It's for DLL file
namespace NMethodPropID
{
enum EEnum
{
kID,
kName,
kDecoder,
kEncoder,
kInStreams,
kOutStreams,
kDescription
};
}
#endif

View File

@ -0,0 +1,62 @@
// IStream.h
#ifndef __ISTREAM_H
#define __ISTREAM_H
#include "../Common/MyUnknown.h"
#include "../Common/Types.h"
// "23170F69-40C1-278A-0000-000300xx0000"
#define STREAM_INTERFACE_SUB(i, b, x) \
DEFINE_GUID(IID_ ## i, \
0x23170F69, 0x40C1, 0x278A, 0x00, 0x00, 0x00, 0x03, 0x00, x, 0x00, 0x00); \
struct i: public b
#define STREAM_INTERFACE(i, x) STREAM_INTERFACE_SUB(i, IUnknown, x)
STREAM_INTERFACE(ISequentialInStream, 0x01)
{
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize) PURE;
/*
Out: if size != 0, return_value = S_OK and (*processedSize == 0),
then there are no more bytes in stream.
if (size > 0) && there are bytes in stream,
this function must read at least 1 byte.
This function is allowed to read less than number of remaining bytes in stream.
You must call Read function in loop, if you need exact amount of data
*/
};
STREAM_INTERFACE(ISequentialOutStream, 0x02)
{
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize) PURE;
/*
if (size > 0) this function must write at least 1 byte.
This function is allowed to write less than "size".
You must call Write function in loop, if you need to write exact amount of data
*/
};
STREAM_INTERFACE_SUB(IInStream, ISequentialInStream, 0x03)
{
STDMETHOD(Seek)(Int64 offset, UInt32 seekOrigin, UInt64 *newPosition) PURE;
};
STREAM_INTERFACE_SUB(IOutStream, ISequentialOutStream, 0x04)
{
STDMETHOD(Seek)(Int64 offset, UInt32 seekOrigin, UInt64 *newPosition) PURE;
STDMETHOD(SetSize)(Int64 newSize) PURE;
};
STREAM_INTERFACE(IStreamGetSize, 0x06)
{
STDMETHOD(GetSize)(UInt64 *size) PURE;
};
STREAM_INTERFACE(IOutStreamFlush, 0x07)
{
STDMETHOD(Flush)() PURE;
};
#endif

View File

@ -0,0 +1,118 @@
// Common/Alloc.cpp
#include "StdAfx.h"
#ifdef _WIN32
#include "MyWindows.h"
#else
#include <stdlib.h>
#endif
#include "Alloc.h"
/* #define _SZ_ALLOC_DEBUG */
/* use _SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef _SZ_ALLOC_DEBUG
#include <stdio.h>
int g_allocCount = 0;
int g_allocCountMid = 0;
int g_allocCountBig = 0;
#endif
void *MyAlloc(size_t size) throw()
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc %10d bytes; count = %10d", size, g_allocCount++);
#endif
return ::malloc(size);
}
void MyFree(void *address) throw()
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree; count = %10d", --g_allocCount);
#endif
::free(address);
}
#ifdef _WIN32
void *MidAlloc(size_t size) throw()
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_Mid %10d bytes; count = %10d", size, g_allocCountMid++);
#endif
return ::VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE);
}
void MidFree(void *address) throw()
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree_Mid; count = %10d", --g_allocCountMid);
#endif
if (address == 0)
return;
::VirtualFree(address, 0, MEM_RELEASE);
}
static SIZE_T g_LargePageSize =
#ifdef _WIN64
(1 << 21);
#else
(1 << 22);
#endif
typedef SIZE_T (WINAPI *GetLargePageMinimumP)();
bool SetLargePageSize()
{
GetLargePageMinimumP largePageMinimum = (GetLargePageMinimumP)
::GetProcAddress(::GetModuleHandle(TEXT("kernel32.dll")), "GetLargePageMinimum");
if (largePageMinimum == 0)
return false;
SIZE_T size = largePageMinimum();
if (size == 0 || (size & (size - 1)) != 0)
return false;
g_LargePageSize = size;
return true;
}
void *BigAlloc(size_t size) throw()
{
if (size == 0)
return 0;
#ifdef _SZ_ALLOC_DEBUG
fprintf(stderr, "\nAlloc_Big %10d bytes; count = %10d", size, g_allocCountBig++);
#endif
if (size >= (1 << 18))
{
void *res = ::VirtualAlloc(0, (size + g_LargePageSize - 1) & (~(g_LargePageSize - 1)),
MEM_COMMIT | MEM_LARGE_PAGES, PAGE_READWRITE);
if (res != 0)
return res;
}
return ::VirtualAlloc(0, size, MEM_COMMIT, PAGE_READWRITE);
}
void BigFree(void *address) throw()
{
#ifdef _SZ_ALLOC_DEBUG
if (address != 0)
fprintf(stderr, "\nFree_Big; count = %10d", --g_allocCountBig);
#endif
if (address == 0)
return;
::VirtualFree(address, 0, MEM_RELEASE);
}
#endif

View File

@ -0,0 +1,29 @@
// Common/Alloc.h
#ifndef __COMMON_ALLOC_H
#define __COMMON_ALLOC_H
#include <stddef.h>
void *MyAlloc(size_t size) throw();
void MyFree(void *address) throw();
#ifdef _WIN32
bool SetLargePageSize();
void *MidAlloc(size_t size) throw();
void MidFree(void *address) throw();
void *BigAlloc(size_t size) throw();
void BigFree(void *address) throw();
#else
#define MidAlloc(size) MyAlloc(size)
#define MidFree(address) MyFree(address)
#define BigAlloc(size) MyAlloc(size)
#define BigFree(address) MyFree(address)
#endif
#endif

View File

@ -0,0 +1,61 @@
// Common/CRC.cpp
#include "StdAfx.h"
#include "CRC.h"
static const UInt32 kCRCPoly = 0xEDB88320;
UInt32 CCRC::Table[256];
void CCRC::InitTable()
{
for (UInt32 i = 0; i < 256; i++)
{
UInt32 r = i;
for (int j = 0; j < 8; j++)
if (r & 1)
r = (r >> 1) ^ kCRCPoly;
else
r >>= 1;
CCRC::Table[i] = r;
}
}
class CCRCTableInit
{
public:
CCRCTableInit() { CCRC::InitTable(); }
} g_CRCTableInit;
void CCRC::UpdateByte(Byte b)
{
_value = Table[((Byte)(_value)) ^ b] ^ (_value >> 8);
}
void CCRC::UpdateUInt16(UInt16 v)
{
UpdateByte(Byte(v));
UpdateByte(Byte(v >> 8));
}
void CCRC::UpdateUInt32(UInt32 v)
{
for (int i = 0; i < 4; i++)
UpdateByte((Byte)(v >> (8 * i)));
}
void CCRC::UpdateUInt64(UInt64 v)
{
for (int i = 0; i < 8; i++)
UpdateByte((Byte)(v >> (8 * i)));
}
void CCRC::Update(const void *data, size_t size)
{
UInt32 v = _value;
const Byte *p = (const Byte *)data;
for (; size > 0 ; size--, p++)
v = Table[((Byte)(v)) ^ *p] ^ (v >> 8);
_value = v;
}

View File

@ -0,0 +1,36 @@
// Common/CRC.h
#ifndef __COMMON_CRC_H
#define __COMMON_CRC_H
#include <stddef.h>
#include "Types.h"
class CCRC
{
UInt32 _value;
public:
static UInt32 Table[256];
static void InitTable();
CCRC(): _value(0xFFFFFFFF){};
void Init() { _value = 0xFFFFFFFF; }
void UpdateByte(Byte v);
void UpdateUInt16(UInt16 v);
void UpdateUInt32(UInt32 v);
void UpdateUInt64(UInt64 v);
void Update(const void *data, size_t size);
UInt32 GetDigest() const { return _value ^ 0xFFFFFFFF; }
static UInt32 CalculateDigest(const void *data, size_t size)
{
CCRC crc;
crc.Update(data, size);
return crc.GetDigest();
}
static bool VerifyDigest(UInt32 digest, const void *data, size_t size)
{
return (CalculateDigest(data, size) == digest);
}
};
#endif

View File

@ -0,0 +1,20 @@
// Common/Defs.h
#ifndef __COMMON_DEFS_H
#define __COMMON_DEFS_H
template <class T> inline T MyMin(T a, T b)
{ return a < b ? a : b; }
template <class T> inline T MyMax(T a, T b)
{ return a > b ? a : b; }
template <class T> inline int MyCompare(T a, T b)
{ return a < b ? -1 : (a == b ? 0 : 1); }
inline int BoolToInt(bool value)
{ return (value ? 1: 0); }
inline bool IntToBool(int value)
{ return (value != 0); }
#endif

View File

@ -0,0 +1,203 @@
// MyCom.h
#ifndef __MYCOM_H
#define __MYCOM_H
#include "MyWindows.h"
#define RINOK(x) { HRESULT __result_ = (x); if(__result_ != S_OK) return __result_; }
template <class T>
class CMyComPtr
{
T* _p;
public:
// typedef T _PtrClass;
CMyComPtr() { _p = NULL;}
CMyComPtr(T* p) {if ((_p = p) != NULL) p->AddRef(); }
CMyComPtr(const CMyComPtr<T>& lp)
{
if ((_p = lp._p) != NULL)
_p->AddRef();
}
~CMyComPtr() { if (_p) _p->Release(); }
void Release() { if (_p) { _p->Release(); _p = NULL; } }
operator T*() const { return (T*)_p; }
// T& operator*() const { return *_p; }
T** operator&() { return &_p; }
T* operator->() const { return _p; }
T* operator=(T* p)
{
if (p != 0)
p->AddRef();
if (_p)
_p->Release();
_p = p;
return p;
}
T* operator=(const CMyComPtr<T>& lp) { return (*this = lp._p); }
bool operator!() const { return (_p == NULL); }
// bool operator==(T* pT) const { return _p == pT; }
// Compare two objects for equivalence
void Attach(T* p2)
{
Release();
_p = p2;
}
T* Detach()
{
T* pt = _p;
_p = NULL;
return pt;
}
#ifdef _WIN32
HRESULT CoCreateInstance(REFCLSID rclsid, REFIID iid, LPUNKNOWN pUnkOuter = NULL, DWORD dwClsContext = CLSCTX_ALL)
{
return ::CoCreateInstance(rclsid, pUnkOuter, dwClsContext, iid, (void**)&_p);
}
#endif
/*
HRESULT CoCreateInstance(LPCOLESTR szProgID, LPUNKNOWN pUnkOuter = NULL, DWORD dwClsContext = CLSCTX_ALL)
{
CLSID clsid;
HRESULT hr = CLSIDFromProgID(szProgID, &clsid);
ATLASSERT(_p == NULL);
if (SUCCEEDED(hr))
hr = ::CoCreateInstance(clsid, pUnkOuter, dwClsContext, __uuidof(T), (void**)&_p);
return hr;
}
*/
template <class Q>
HRESULT QueryInterface(REFGUID iid, Q** pp) const
{
return _p->QueryInterface(iid, (void**)pp);
}
};
//////////////////////////////////////////////////////////
class CMyComBSTR
{
public:
BSTR m_str;
CMyComBSTR() { m_str = NULL; }
CMyComBSTR(LPCOLESTR pSrc) { m_str = ::SysAllocString(pSrc); }
// CMyComBSTR(int nSize) { m_str = ::SysAllocStringLen(NULL, nSize); }
// CMyComBSTR(int nSize, LPCOLESTR sz) { m_str = ::SysAllocStringLen(sz, nSize); }
CMyComBSTR(const CMyComBSTR& src) { m_str = src.MyCopy(); }
/*
CMyComBSTR(REFGUID src)
{
LPOLESTR szGuid;
StringFromCLSID(src, &szGuid);
m_str = ::SysAllocString(szGuid);
CoTaskMemFree(szGuid);
}
*/
~CMyComBSTR() { ::SysFreeString(m_str); }
CMyComBSTR& operator=(const CMyComBSTR& src)
{
if (m_str != src.m_str)
{
if (m_str)
::SysFreeString(m_str);
m_str = src.MyCopy();
}
return *this;
}
CMyComBSTR& operator=(LPCOLESTR pSrc)
{
::SysFreeString(m_str);
m_str = ::SysAllocString(pSrc);
return *this;
}
unsigned int Length() const { return ::SysStringLen(m_str); }
operator BSTR() const { return m_str; }
BSTR* operator&() { return &m_str; }
BSTR MyCopy() const
{
int byteLen = ::SysStringByteLen(m_str);
BSTR res = ::SysAllocStringByteLen(NULL, byteLen);
memmove(res, m_str, byteLen);
return res;
}
void Attach(BSTR src) { m_str = src; }
BSTR Detach()
{
BSTR s = m_str;
m_str = NULL;
return s;
}
void Empty()
{
::SysFreeString(m_str);
m_str = NULL;
}
bool operator!() const { return (m_str == NULL); }
};
//////////////////////////////////////////////////////////
class CMyUnknownImp
{
public:
ULONG __m_RefCount;
CMyUnknownImp(): __m_RefCount(0) {}
};
#define MY_QUERYINTERFACE_BEGIN STDMETHOD(QueryInterface) \
(REFGUID iid, void **outObject) {
#define MY_QUERYINTERFACE_ENTRY(i) if (iid == IID_ ## i) \
{ *outObject = (void *)(i *)this; AddRef(); return S_OK; }
#define MY_QUERYINTERFACE_END return E_NOINTERFACE; }
#define MY_ADDREF_RELEASE \
STDMETHOD_(ULONG, AddRef)() { return ++__m_RefCount; } \
STDMETHOD_(ULONG, Release)() { if (--__m_RefCount != 0) \
return __m_RefCount; delete this; return 0; }
#define MY_UNKNOWN_IMP_SPEC(i) \
MY_QUERYINTERFACE_BEGIN \
i \
MY_QUERYINTERFACE_END \
MY_ADDREF_RELEASE
#define MY_UNKNOWN_IMP STDMETHOD(QueryInterface)(REFGUID, void **) { \
MY_QUERYINTERFACE_END \
MY_ADDREF_RELEASE
#define MY_UNKNOWN_IMP1(i) MY_UNKNOWN_IMP_SPEC( \
MY_QUERYINTERFACE_ENTRY(i) \
)
#define MY_UNKNOWN_IMP2(i1, i2) MY_UNKNOWN_IMP_SPEC( \
MY_QUERYINTERFACE_ENTRY(i1) \
MY_QUERYINTERFACE_ENTRY(i2) \
)
#define MY_UNKNOWN_IMP3(i1, i2, i3) MY_UNKNOWN_IMP_SPEC( \
MY_QUERYINTERFACE_ENTRY(i1) \
MY_QUERYINTERFACE_ENTRY(i2) \
MY_QUERYINTERFACE_ENTRY(i3) \
)
#define MY_UNKNOWN_IMP4(i1, i2, i3, i4) MY_UNKNOWN_IMP_SPEC( \
MY_QUERYINTERFACE_ENTRY(i1) \
MY_QUERYINTERFACE_ENTRY(i2) \
MY_QUERYINTERFACE_ENTRY(i3) \
MY_QUERYINTERFACE_ENTRY(i4) \
)
#define MY_UNKNOWN_IMP5(i1, i2, i3, i4, i5) MY_UNKNOWN_IMP_SPEC( \
MY_QUERYINTERFACE_ENTRY(i1) \
MY_QUERYINTERFACE_ENTRY(i2) \
MY_QUERYINTERFACE_ENTRY(i3) \
MY_QUERYINTERFACE_ENTRY(i4) \
MY_QUERYINTERFACE_ENTRY(i5) \
)
#endif

View File

@ -0,0 +1,54 @@
// Common/MyGuidDef.h
#ifndef GUID_DEFINED
#define GUID_DEFINED
#include "Types.h"
typedef struct {
UInt32 Data1;
UInt16 Data2;
UInt16 Data3;
unsigned char Data4[8];
} GUID;
#ifdef __cplusplus
#define REFGUID const GUID &
#else
#define REFGUID const GUID *
#endif
#define REFCLSID REFGUID
#define REFIID REFGUID
#ifdef __cplusplus
inline bool operator==(REFGUID g1, REFGUID g2)
{
for (int i = 0; i < (int)sizeof(g1); i++)
if (((const unsigned char *)&g1)[i] != ((const unsigned char *)&g2)[i])
return false;
return true;
}
inline bool operator!=(REFGUID g1, REFGUID g2) { return !(g1 == g2); }
#endif
#ifdef __cplusplus
#define MY_EXTERN_C extern "C"
#else
#define MY_EXTERN_C extern
#endif
#endif // GUID_DEFINED
#ifdef DEFINE_GUID
#undef DEFINE_GUID
#endif
#ifdef INITGUID
#define DEFINE_GUID(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
MY_EXTERN_C const GUID name = { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } }
#else
#define DEFINE_GUID(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
MY_EXTERN_C const GUID name
#endif

View File

@ -0,0 +1,13 @@
// Common/MyInitGuid.h
#ifndef __COMMON_MYINITGUID_H
#define __COMMON_MYINITGUID_H
#ifdef _WIN32
#include <initguid.h>
#else
#define INITGUID
#include "MyGuidDef.h"
#endif
#endif

View File

@ -0,0 +1,24 @@
// MyUnknown.h
#ifndef __MYUNKNOWN_H
#define __MYUNKNOWN_H
#ifdef _WIN32
#ifdef _WIN32_WCE
#if (_WIN32_WCE > 300)
#include <basetyps.h>
#else
#define MIDL_INTERFACE(x) struct
#endif
#else
#include <basetyps.h>
#endif
#include <unknwn.h>
#else
#include "MyWindows.h"
#endif
#endif

View File

@ -0,0 +1,201 @@
// MyWindows.h
#ifndef __MYWINDOWS_H
#define __MYWINDOWS_H
#ifdef _WIN32
#include <windows.h>
#define CHAR_PATH_SEPARATOR '\\'
#define WCHAR_PATH_SEPARATOR L'\\'
#define STRING_PATH_SEPARATOR "\\"
#define WSTRING_PATH_SEPARATOR L"\\"
#else
#define CHAR_PATH_SEPARATOR '/'
#define WCHAR_PATH_SEPARATOR L'/'
#define STRING_PATH_SEPARATOR "/"
#define WSTRING_PATH_SEPARATOR L"/"
#include <stddef.h> // for wchar_t
#include <string.h>
#include "MyGuidDef.h"
typedef char CHAR;
typedef unsigned char UCHAR;
#undef BYTE
typedef unsigned char BYTE;
typedef short SHORT;
typedef unsigned short USHORT;
#undef WORD
typedef unsigned short WORD;
typedef short VARIANT_BOOL;
typedef int INT;
typedef Int32 INT32;
typedef unsigned int UINT;
typedef UInt32 UINT32;
typedef INT32 LONG; // LONG, ULONG and DWORD must be 32-bit
typedef UINT32 ULONG;
#undef DWORD
typedef UINT32 DWORD;
typedef Int64 LONGLONG;
typedef UInt64 ULONGLONG;
typedef struct LARGE_INTEGER { LONGLONG QuadPart; }LARGE_INTEGER;
typedef struct _ULARGE_INTEGER { ULONGLONG QuadPart;} ULARGE_INTEGER;
typedef const CHAR *LPCSTR;
typedef CHAR TCHAR;
typedef const TCHAR *LPCTSTR;
typedef wchar_t WCHAR;
typedef WCHAR OLECHAR;
typedef const WCHAR *LPCWSTR;
typedef OLECHAR *BSTR;
typedef const OLECHAR *LPCOLESTR;
typedef OLECHAR *LPOLESTR;
typedef struct _FILETIME
{
DWORD dwLowDateTime;
DWORD dwHighDateTime;
}FILETIME;
#define HRESULT LONG
#define FAILED(Status) ((HRESULT)(Status)<0)
typedef ULONG PROPID;
typedef LONG SCODE;
#define S_OK ((HRESULT)0x00000000L)
#define S_FALSE ((HRESULT)0x00000001L)
#define E_NOTIMPL ((HRESULT)0x80004001L)
#define E_NOINTERFACE ((HRESULT)0x80004002L)
#define E_ABORT ((HRESULT)0x80004004L)
#define E_FAIL ((HRESULT)0x80004005L)
#define STG_E_INVALIDFUNCTION ((HRESULT)0x80030001L)
#define E_OUTOFMEMORY ((HRESULT)0x8007000EL)
#define E_INVALIDARG ((HRESULT)0x80070057L)
#ifdef _MSC_VER
#define STDMETHODCALLTYPE __stdcall
#else
#define STDMETHODCALLTYPE
#endif
#define STDMETHOD_(t, f) virtual t STDMETHODCALLTYPE f
#define STDMETHOD(f) STDMETHOD_(HRESULT, f)
#define STDMETHODIMP_(type) type STDMETHODCALLTYPE
#define STDMETHODIMP STDMETHODIMP_(HRESULT)
#define PURE = 0
#define MIDL_INTERFACE(x) struct
struct IUnknown
{
//virtual ~IUnknown() {}
STDMETHOD(QueryInterface) (REFIID iid, void **outObject) PURE;
STDMETHOD_(ULONG, AddRef)() PURE;
STDMETHOD_(ULONG, Release)() PURE;
};
typedef IUnknown *LPUNKNOWN;
#define VARIANT_TRUE ((VARIANT_BOOL)-1)
#define VARIANT_FALSE ((VARIANT_BOOL)0)
enum VARENUM
{
VT_EMPTY = 0,
VT_NULL = 1,
VT_I2 = 2,
VT_I4 = 3,
VT_R4 = 4,
VT_R8 = 5,
VT_CY = 6,
VT_DATE = 7,
VT_BSTR = 8,
VT_DISPATCH = 9,
VT_ERROR = 10,
VT_BOOL = 11,
VT_VARIANT = 12,
VT_UNKNOWN = 13,
VT_DECIMAL = 14,
VT_I1 = 16,
VT_UI1 = 17,
VT_UI2 = 18,
VT_UI4 = 19,
VT_I8 = 20,
VT_UI8 = 21,
VT_INT = 22,
VT_UINT = 23,
VT_VOID = 24,
VT_HRESULT = 25,
VT_FILETIME = 64
};
typedef unsigned short VARTYPE;
typedef WORD PROPVAR_PAD1;
typedef WORD PROPVAR_PAD2;
typedef WORD PROPVAR_PAD3;
typedef struct tagPROPVARIANT
{
VARTYPE vt;
PROPVAR_PAD1 wReserved1;
PROPVAR_PAD2 wReserved2;
PROPVAR_PAD3 wReserved3;
union
{
CHAR cVal;
UCHAR bVal;
SHORT iVal;
USHORT uiVal;
LONG lVal;
ULONG ulVal;
INT intVal;
UINT uintVal;
LARGE_INTEGER hVal;
ULARGE_INTEGER uhVal;
VARIANT_BOOL boolVal;
SCODE scode;
FILETIME filetime;
BSTR bstrVal;
};
} PROPVARIANT;
typedef PROPVARIANT tagVARIANT;
typedef tagVARIANT VARIANT;
typedef VARIANT VARIANTARG;
MY_EXTERN_C BSTR SysAllocStringByteLen(LPCSTR psz, UINT len);
MY_EXTERN_C BSTR SysAllocString(const OLECHAR *sz);
MY_EXTERN_C void SysFreeString(BSTR bstr);
MY_EXTERN_C UINT SysStringByteLen(BSTR bstr);
MY_EXTERN_C UINT SysStringLen(BSTR bstr);
MY_EXTERN_C DWORD GetLastError();
MY_EXTERN_C HRESULT VariantClear(VARIANTARG *prop);
MY_EXTERN_C HRESULT VariantCopy(VARIANTARG *dest, VARIANTARG *src);
MY_EXTERN_C LONG CompareFileTime(const FILETIME* ft1, const FILETIME* ft2);
#define CP_ACP 0
#define CP_OEMCP 1
typedef enum tagSTREAM_SEEK
{
STREAM_SEEK_SET = 0,
STREAM_SEEK_CUR = 1,
STREAM_SEEK_END = 2
} STREAM_SEEK;
#endif
#endif

View File

@ -0,0 +1,16 @@
// Common/NewHandler.h
#ifndef __COMMON_NEWHANDLER_H
#define __COMMON_NEWHANDLER_H
class CNewException {};
#ifdef _WIN32
void
#ifdef _MSC_VER
__cdecl
#endif
operator delete(void *p) throw();
#endif
#endif

View File

@ -0,0 +1,9 @@
// StdAfx.h
#ifndef __STDAFX_H
#define __STDAFX_H
// #include "MyWindows.h"
#include "NewHandler.h"
#endif

View File

@ -0,0 +1,19 @@
// Common/Types.h
#ifndef __COMMON_TYPES_H
#define __COMMON_TYPES_H
typedef unsigned char Byte;
typedef short Int16;
typedef unsigned short UInt16;
typedef int Int32;
typedef unsigned int UInt32;
#ifdef _MSC_VER
typedef __int64 Int64;
typedef unsigned __int64 UInt64;
#else
typedef long long int Int64;
typedef unsigned long long int UInt64;
#endif
#endif

View File

@ -0,0 +1,504 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@ -0,0 +1,3 @@
The contents of this directory are extracted from
the official LZMA SDK, version lzma442.tar.bz2 ,
for the use in mkcromfs.

View File

@ -0,0 +1,63 @@
##
## This file is part of the coreboot project.
##
## Copyright (C) 2007 coresystems GmbH
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
LZMA_OBJ := $(obj)/util/lzma/LZMAEncoder.o $(obj)/util/lzma/LZInWindow.o
LZMA_OBJ += $(obj)/util/lzma/RangeCoderBit.o $(obj)/util/lzma/StreamUtils.o
LZMA_OBJ += $(obj)/util/lzma/OutBuffer.o $(obj)/util/lzma/Alloc.o
LZMA_OBJ += $(obj)/util/lzma/CRC.o
$(obj)/util/lzma/lzma: $(obj)/util/lzma/ $(LZMA_OBJ) $(obj)/util/lzma/minilzma.o
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ $(LZMA_OBJ) $(obj)/util/lzma/minilzma.o
$(obj)/util/lzma/lzma-compress.o: $(src)/util/lzma/minilzma.cc
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c -DCOMPACT $<
$(obj)/util/lzma/:
$(Q)printf " BUILD LZMA\n"
$(Q)mkdir -p $(obj)/util/lzma/
$(obj)/util/lzma/%.o: $(src)/util/lzma/C/7zip/Compress/LZMA/%.cpp
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<
$(obj)/util/lzma/%.o: $(src)/util/lzma/C/7zip/Compress/LZ/%.cpp
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<
$(obj)/util/lzma/%.o: $(src)/util/lzma/C/7zip/Compress/RangeCoder/%.cpp
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<
$(obj)/util/lzma/%.o: $(src)/util/lzma/C/7zip/Decompress/%.cpp
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<
$(obj)/util/lzma/%.o: $(src)/util/lzma/C/7zip/Common/%.cpp
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<
$(obj)/util/lzma/%.o: $(src)/util/lzma/C/Common/%.cpp
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<
$(obj)/util/lzma/%.o: $(src)/util/lzma/%.cc
$(Q)printf " HOSTCXX $(subst $(shell pwd)/,,$(@))\n"
$(Q)$(HOSTCXX) $(HOSTCXXFLAGS) -o $@ -c $<

View File

@ -0,0 +1,318 @@
/*
* minimal lzma implementation
*
* Copyright (C) 2002 Eric Biederman
* Copyright (C) 2005 Joel Yliluoma
* Copyright (C) 2007 coresystems GmbH
* (Adapted by Stefan Reinauer <stepan@coresystems.de> for coresystems GmbH)
* Copyright (C) 2007 Patrick Georgi <patrick@georgi-clan.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include "C/Common/MyInitGuid.h"
#include "C/7zip/Compress/LZMA/LZMAEncoder.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <vector>
#include <algorithm>
#include <stdint.h>
const std::vector<unsigned char> LZMACompress
(const std::vector<unsigned char>& buf);
const std::vector<unsigned char> LZMADeCompress
(const std::vector<unsigned char>& buf);
static inline uint16_t R16(const void* p)
{
const unsigned char* data = (const unsigned char*)p;
return (data[0] << 0) | (data[1] << 8);
}
static inline uint32_t R32(const void* p)
{
const unsigned char* data = (const unsigned char*)p;
return R16(data) | (R16(data+2) << 16);
}
#define L (uint64_t)
static inline uint64_t R64(const void* p)
{
const unsigned char* data = (const unsigned char*)p;
return (L R32(data)) | ((L R32(data+4)) << 32);
}
#undef L
static UInt32 SelectDictionarySizeFor(unsigned datasize)
{
#if 1
return datasize;
#else
#ifdef __GNUC__
/* gnu c can optimize this switch statement into a fast binary
* search, but it cannot do so for the list of the if statements.
*/
switch(datasize)
{
case 0 ... 512 : return 512;
case 513 ... 1024: return 2048;
case 1025 ... 4096: return 8192;
case 4097 ... 16384: return 32768;
case 16385 ... 65536: return 528288;
case 65537 ... 528288: return 1048576*4;
case 528289 ... 786432: return 1048576*16;
default: return 1048576*32;
}
#else
if(datasize <= 512) return 512;
if(datasize <= 1024) return 1024;
if(datasize <= 4096) return 4096;
if(datasize <= 16384) return 32768;
if(datasize <= 65536) return 528288;
if(datasize <= 528288) return 1048576*4;
if(datasize <= 786432) reutrn 1048576*16;
return 32*1048576;
#endif
#endif
}
class CInStreamRam: public ISequentialInStream, public CMyUnknownImp
{
const std::vector<unsigned char>& input;
size_t Pos;
public:
MY_UNKNOWN_IMP
CInStreamRam(const std::vector<unsigned char>& buf) : input(buf), Pos(0)
{
}
virtual ~CInStreamRam() {}
STDMETHOD(Read)(void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP CInStreamRam::Read(void *data, UInt32 size, UInt32 *processedSize)
{
UInt32 remain = input.size() - Pos;
if (size > remain) size = remain;
std::memcpy(data, &input[Pos], size);
Pos += size;
if(processedSize != NULL) *processedSize = size;
return S_OK;
}
class COutStreamRam: public ISequentialOutStream, public CMyUnknownImp
{
std::vector<Byte> result;
size_t Pos;
public:
MY_UNKNOWN_IMP
COutStreamRam(): result(), Pos(0) { }
virtual ~COutStreamRam() { }
void Reserve(unsigned n) { result.reserve(n); }
const std::vector<Byte>& Get() const { return result; }
HRESULT WriteByte(Byte b)
{
if(Pos >= result.size()) result.resize(Pos+1);
result[Pos++] = b;
return S_OK;
}
STDMETHOD(Write)(const void *data, UInt32 size, UInt32 *processedSize);
};
STDMETHODIMP COutStreamRam::Write(const void *data, UInt32 size, UInt32 *processedSize)
{
if(Pos+size > result.size()) result.resize(Pos+size);
std::memcpy(&result[Pos], data, size);
if(processedSize != NULL) *processedSize = size;
Pos += size;
return S_OK;
}
const std::vector<unsigned char> LZMACompress(const std::vector<unsigned char>& buf)
{
if(buf.empty()) return buf;
const UInt32 dictionarysize = SelectDictionarySizeFor(buf.size());
NCompress::NLZMA::CEncoder *encoderSpec = new NCompress::NLZMA::CEncoder;
CMyComPtr<ICompressCoder> encoder = encoderSpec;
const PROPID propIDs[] =
{
NCoderPropID::kAlgorithm,
NCoderPropID::kDictionarySize,
NCoderPropID::kNumFastBytes,
};
const unsigned kNumProps = sizeof(propIDs) / sizeof(propIDs[0]);
PROPVARIANT properties[kNumProps];
properties[0].vt = VT_UI4; properties[0].ulVal = (UInt32)2;
properties[1].vt = VT_UI4; properties[1].ulVal = (UInt32)dictionarysize;
properties[2].vt = VT_UI4; properties[2].ulVal = (UInt32)64;
if (encoderSpec->SetCoderProperties(propIDs, properties, kNumProps) != S_OK)
{
Error:
return std::vector<unsigned char> ();
}
COutStreamRam *const outStreamSpec = new COutStreamRam;
CMyComPtr<ISequentialOutStream> outStream = outStreamSpec;
CInStreamRam *const inStreamSpec = new CInStreamRam(buf);
CMyComPtr<ISequentialInStream> inStream = inStreamSpec;
outStreamSpec->Reserve(buf.size());
if (encoderSpec->WriteCoderProperties(outStream) != S_OK) goto Error;
for (unsigned i = 0; i < 8; i++)
{
UInt64 t = (UInt64)buf.size();
outStreamSpec->WriteByte((Byte)((t) >> (8 * i)));
}
HRESULT lzmaResult = encoder->Code(inStream, outStream, 0, 0, 0);
if (lzmaResult != S_OK) goto Error;
return outStreamSpec->Get();
}
#undef RC_NORMALIZE
#include "C/7zip/Decompress/LzmaDecode.h"
#include "C/7zip/Decompress/LzmaDecode.c"
const std::vector<unsigned char> LZMADeCompress
(const std::vector<unsigned char>& buf)
{
if(buf.size() <= 5+8) return std::vector<unsigned char> ();
uint_least64_t out_sizemax = R64(&buf[5]);
std::vector<unsigned char> result(out_sizemax);
CLzmaDecoderState state;
LzmaDecodeProperties(&state.Properties, &buf[0], LZMA_PROPERTIES_SIZE);
state.Probs = new CProb[LzmaGetNumProbs(&state.Properties)];
SizeT in_done;
SizeT out_done;
LzmaDecode(&state, &buf[13], buf.size()-13, &in_done,
&result[0], result.size(), &out_done);
delete[] state.Probs;
result.resize(out_done);
return result;
}
#ifndef COMPACT
int main(int argc, char *argv[])
{
char *s;
FILE *f, *infile, *outfile;
int c;
if (argc != 4) {
std::fprintf(stderr, "'lzma e file1 file2' encodes file1 into file2.\n"
"'lzma d file2 file1' decodes file2 into file1.\n");
return EXIT_FAILURE;
}
if (argc == 4) {
if ((s = argv[1], s[1] || strpbrk(s, "DEde") == NULL)
|| (s = argv[2], (infile = fopen(s, "rb")) == NULL)
|| (s = argv[3], (outfile = fopen(s, "wb")) == NULL)) {
std::fprintf(stderr, "??? %s\n", s);
return EXIT_FAILURE;
}
}
struct stat fs;
int si;
if (fstat(fileno(infile), &fs)) {
std::perror(strerror(errno));
return EXIT_FAILURE;
}
si=fs.st_size;
char *Buf=(char *)malloc(si);
fread(Buf,si, 1, infile);
std::vector<unsigned char> result;
if (toupper(*argv[1]) == 'E')
result = LZMACompress(std::vector<unsigned char>(Buf,Buf+si));
else
result = LZMADeCompress(std::vector<unsigned char>(Buf,Buf+si));
fwrite(&result[0], result.size(), 1, outfile);
fclose(infile);
fclose(outfile);
return EXIT_SUCCESS;
}
#else
extern "C" {
/**
* Compress a buffer with lzma
* Don't copy the result back if it is too large.
* @param in a pointer to the buffer
* @param in_len the length in bytes
* @param out a pointer to a buffer of at least size in_len
* @param out_len a pointer to the compressed length of in
*/
void do_lzma_compress(char *in, int in_len, char *out, int *out_len) {
std::vector<unsigned char> result;
result = LZMACompress(std::vector<unsigned char>(in, in + in_len));
*out_len = result.size();
if (*out_len < in_len)
std::memcpy(out, &result[0], *out_len);
}
void do_lzma_uncompress(char *dst, int dst_len, char *src, int src_len) {
std::vector<unsigned char> result;
result = LZMADeCompress(std::vector<unsigned char>(src, src + src_len));
if (result.size() <= dst_len)
std::memcpy(dst, &result[0], result.size());
else
{
fprintf(stderr, "Not copying %d bytes to %d-byte buffer!\n",
result.size(), dst_len);
exit(1);
}
}
}
#endif