device_tree: Update comment style to C89

This code was copied from depthcharge which uses C99 comment style, but
coreboot uses C89 comment style. Update to match coreboot.

Change-Id: Ib67bb9ff17b7688826071453ab58894a0835ce10
Signed-off-by: Julius Werner <jwerner@chromium.org>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/32875
Reviewed-by: Patrick Rudolph <siro@das-labor.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
Julius Werner 2019-05-17 22:50:18 -07:00 committed by Patrick Georgi
parent 80f3ac63f2
commit 23df47724d
3 changed files with 119 additions and 109 deletions

View File

@ -74,9 +74,9 @@ struct device_tree_node
const char *name; const char *name;
uint32_t phandle; uint32_t phandle;
// List of struct device_tree_property-s. /* List of struct device_tree_property-s. */
struct list_node properties; struct list_node properties;
// List of struct device_tree_nodes. /* List of struct device_tree_nodes. */
struct list_node children; struct list_node children;
struct list_node list_node; struct list_node list_node;
@ -108,18 +108,18 @@ struct device_tree
* which were consumed reading the requested value. * which were consumed reading the requested value.
*/ */
// Read the property, if any, at offset offset. /* Read the property, if any, at offset offset. */
int fdt_next_property(const void *blob, uint32_t offset, int fdt_next_property(const void *blob, uint32_t offset,
struct fdt_property *prop); struct fdt_property *prop);
// Read the name of the node, if any, at offset offset. /* Read the name of the node, if any, at offset offset. */
int fdt_node_name(const void *blob, uint32_t offset, const char **name); int fdt_node_name(const void *blob, uint32_t offset, const char **name);
void fdt_print_node(const void *blob, uint32_t offset); void fdt_print_node(const void *blob, uint32_t offset);
int fdt_skip_node(const void *blob, uint32_t offset); int fdt_skip_node(const void *blob, uint32_t offset);
// Read a flattened device tree into a heirarchical structure which refers to /* Read a flattened device tree into a heirarchical structure which refers to
// the contents of the flattened tree in place. Modifying the flat tree the contents of the flattened tree in place. Modifying the flat tree
// invalidates the unflattened one. invalidates the unflattened one. */
struct device_tree *fdt_unflatten(const void *blob); struct device_tree *fdt_unflatten(const void *blob);
@ -128,42 +128,42 @@ struct device_tree *fdt_unflatten(const void *blob);
* Unflattened device tree functions. * Unflattened device tree functions.
*/ */
// Figure out how big a device tree would be if it were flattened. /* Figure out how big a device tree would be if it were flattened. */
uint32_t dt_flat_size(const struct device_tree *tree); uint32_t dt_flat_size(const struct device_tree *tree);
// Flatten a device tree into the buffer pointed to by dest. /* Flatten a device tree into the buffer pointed to by dest. */
void dt_flatten(const struct device_tree *tree, void *dest); void dt_flatten(const struct device_tree *tree, void *dest);
void dt_print_node(const struct device_tree_node *node); void dt_print_node(const struct device_tree_node *node);
// Read #address-cells and #size-cells properties from a node. /* Read #address-cells and #size-cells properties from a node. */
void dt_read_cell_props(const struct device_tree_node *node, u32 *addrcp, void dt_read_cell_props(const struct device_tree_node *node, u32 *addrcp,
u32 *sizecp); u32 *sizecp);
// Look up or create a node relative to a parent node, through its path /* Look up or create a node relative to a parent node, through its path
// represented as an array of strings. represented as an array of strings. */
struct device_tree_node *dt_find_node(struct device_tree_node *parent, const char **path, struct device_tree_node *dt_find_node(struct device_tree_node *parent, const char **path,
u32 *addrcp, u32 *sizecp, int create); u32 *addrcp, u32 *sizecp, int create);
struct device_tree_node *dt_find_node_by_phandle(struct device_tree_node *root, struct device_tree_node *dt_find_node_by_phandle(struct device_tree_node *root,
uint32_t phandle); uint32_t phandle);
// Look up or create a node in the tree, through its path /* Look up or create a node in the tree, through its path
// represented as a string of '/' separated node names. represented as a string of '/' separated node names. */
struct device_tree_node *dt_find_node_by_path(struct device_tree *tree, struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
const char *path, u32 *addrcp, u32 *sizecp, int create); const char *path, u32 *addrcp, u32 *sizecp, int create);
// Look up a node through an alias. /* Look up a node through an alias. */
struct device_tree_node *dt_find_node_by_alias(struct device_tree *tree, struct device_tree_node *dt_find_node_by_alias(struct device_tree *tree,
const char *alias); const char *alias);
// Look up a node relative to a parent node, through its compatible string. /* Look up a node relative to a parent node, through its compatible string. */
struct device_tree_node *dt_find_compat(struct device_tree_node *parent, const char *compatible); struct device_tree_node *dt_find_compat(struct device_tree_node *parent, const char *compatible);
// Look up the next child of a parent node, through its compatible string. It /* Look up the next child of a parent node, through its compatible string. It
// uses child pointer as the marker to find next. uses child pointer as the marker to find next. */
struct device_tree_node *dt_find_next_compat_child(struct device_tree_node *parent, struct device_tree_node *dt_find_next_compat_child(struct device_tree_node *parent,
struct device_tree_node *child, struct device_tree_node *child,
const char *compat); const char *compat);
// Look up a node relative to a parent node, through its property value. /* Look up a node relative to a parent node, through its property value. */
struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent, const char *name, struct device_tree_node *dt_find_prop_value(struct device_tree_node *parent, const char *name,
void *data, size_t size); void *data, size_t size);
// Write src into *dest as a 'length'-byte big-endian integer. /* Write src into *dest as a 'length'-byte big-endian integer. */
void dt_write_int(u8 *dest, u64 src, size_t length); void dt_write_int(u8 *dest, u64 src, size_t length);
// Delete a property /* Delete a property */
void dt_delete_prop(struct device_tree_node *node, const char *name); void dt_delete_prop(struct device_tree_node *node, const char *name);
// Add different kinds of properties to a node, or update existing ones. /* Add different kinds of properties to a node, or update existing ones. */
void dt_add_bin_prop(struct device_tree_node *node, const char *name, void dt_add_bin_prop(struct device_tree_node *node, const char *name,
void *data, size_t size); void *data, size_t size);
void dt_add_string_prop(struct device_tree_node *node, const char *name, void dt_add_string_prop(struct device_tree_node *node, const char *name,

View File

@ -133,7 +133,7 @@ static int print_flat_node(const void *blob, uint32_t start_offset, int depth)
offset += size; offset += size;
} }
printk(BIOS_DEBUG, "\n"); // empty line between props and nodes printk(BIOS_DEBUG, "\n"); /* empty line between props and nodes */
while ((size = print_flat_node(blob, offset, depth + 1))) while ((size = print_flat_node(blob, offset, depth + 1)))
offset += size; offset += size;
@ -279,9 +279,9 @@ struct device_tree *fdt_unflatten(const void *blob)
uint32_t min_offset = 0; uint32_t min_offset = 0;
min_offset = MIN(struct_offset, strings_offset); min_offset = MIN(struct_offset, strings_offset);
min_offset = MIN(min_offset, reserve_offset); min_offset = MIN(min_offset, reserve_offset);
// Assume everything up to the first non-header component is part of /* Assume everything up to the first non-header component is part of
// the header and needs to be preserved. This will protect us against the header and needs to be preserved. This will protect us against
// new elements being added in the future. new elements being added in the future. */
tree->header_size = min_offset; tree->header_size = min_offset;
struct device_tree_reserve_map_entry *entry; struct device_tree_reserve_map_entry *entry;
@ -309,25 +309,25 @@ struct device_tree *fdt_unflatten(const void *blob)
static void dt_flat_prop_size(struct device_tree_property *prop, static void dt_flat_prop_size(struct device_tree_property *prop,
uint32_t *struct_size, uint32_t *strings_size) uint32_t *struct_size, uint32_t *strings_size)
{ {
// Starting token. /* Starting token. */
*struct_size += sizeof(uint32_t); *struct_size += sizeof(uint32_t);
// Size. /* Size. */
*struct_size += sizeof(uint32_t); *struct_size += sizeof(uint32_t);
// Name offset. /* Name offset. */
*struct_size += sizeof(uint32_t); *struct_size += sizeof(uint32_t);
// Property value. /* Property value. */
*struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t)); *struct_size += ALIGN_UP(prop->prop.size, sizeof(uint32_t));
// Property name. /* Property name. */
*strings_size += strlen(prop->prop.name) + 1; *strings_size += strlen(prop->prop.name) + 1;
} }
static void dt_flat_node_size(struct device_tree_node *node, static void dt_flat_node_size(struct device_tree_node *node,
uint32_t *struct_size, uint32_t *strings_size) uint32_t *struct_size, uint32_t *strings_size)
{ {
// Starting token. /* Starting token. */
*struct_size += sizeof(uint32_t); *struct_size += sizeof(uint32_t);
// Node name. /* Node name. */
*struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t)); *struct_size += ALIGN_UP(strlen(node->name) + 1, sizeof(uint32_t));
struct device_tree_property *prop; struct device_tree_property *prop;
@ -338,7 +338,7 @@ static void dt_flat_node_size(struct device_tree_node *node,
list_for_each(child, node->children, list_node) list_for_each(child, node->children, list_node)
dt_flat_node_size(child, struct_size, strings_size); dt_flat_node_size(child, struct_size, strings_size);
// End token. /* End token. */
*struct_size += sizeof(uint32_t); *struct_size += sizeof(uint32_t);
} }
@ -355,7 +355,7 @@ uint32_t dt_flat_size(const struct device_tree *tree)
dt_flat_node_size(tree->root, &struct_size, &strings_size); dt_flat_node_size(tree->root, &struct_size, &strings_size);
size += struct_size; size += struct_size;
// End token. /* End token. */
size += sizeof(uint32_t); size += sizeof(uint32_t);
size += strings_size; size += strings_size;
@ -480,7 +480,7 @@ void dt_flatten(const struct device_tree *tree, void *start_dest)
static void print_node(const struct device_tree_node *node, int depth) static void print_node(const struct device_tree_node *node, int depth)
{ {
print_indent(depth); print_indent(depth);
if (depth == 0) // root node has no name, print a starting slash if (depth == 0) /* root node has no name, print a starting slash */
printk(BIOS_DEBUG, "/"); printk(BIOS_DEBUG, "/");
printk(BIOS_DEBUG, "%s {\n", node->name); printk(BIOS_DEBUG, "%s {\n", node->name);
@ -488,7 +488,7 @@ static void print_node(const struct device_tree_node *node, int depth)
list_for_each(prop, node->properties, list_node) list_for_each(prop, node->properties, list_node)
print_property(&prop->prop, depth + 1); print_property(&prop->prop, depth + 1);
printk(BIOS_DEBUG, "\n"); // empty line between props and nodes printk(BIOS_DEBUG, "\n"); /* empty line between props and nodes */
struct device_tree_node *child; struct device_tree_node *child;
list_for_each(child, node->children, list_node) list_for_each(child, node->children, list_node)
@ -548,13 +548,13 @@ struct device_tree_node *dt_find_node(struct device_tree_node *parent,
{ {
struct device_tree_node *node, *found = NULL; struct device_tree_node *node, *found = NULL;
// Update #address-cells and #size-cells for this level. /* Update #address-cells and #size-cells for this level. */
dt_read_cell_props(parent, addrcp, sizecp); dt_read_cell_props(parent, addrcp, sizecp);
if (!*path) if (!*path)
return parent; return parent;
// Find the next node in the path, if it exists. /* Find the next node in the path, if it exists. */
list_for_each(node, parent->children, list_node) { list_for_each(node, parent->children, list_node) {
if (!strcmp(node->name, *path)) { if (!strcmp(node->name, *path)) {
found = node; found = node;
@ -562,7 +562,7 @@ struct device_tree_node *dt_find_node(struct device_tree_node *parent,
} }
} }
// Otherwise create it or return NULL. /* Otherwise create it or return NULL. */
if (!found) { if (!found) {
if (!create) if (!create)
return NULL; return NULL;
@ -609,8 +609,8 @@ struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
int i; int i;
struct device_tree_node *node = NULL; struct device_tree_node *node = NULL;
if (path[0] == '/') { // regular path if (path[0] == '/') { /* regular path */
if (path[1] == '\0') { // special case: "/" is root node if (path[1] == '\0') { /* special case: "/" is root node */
dt_read_cell_props(tree->root, addrcp, sizecp); dt_read_cell_props(tree->root, addrcp, sizecp);
return tree->root; return tree->root;
} }
@ -620,7 +620,7 @@ struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
return NULL; return NULL;
parent = tree->root; parent = tree->root;
} else { // alias } else { /* alias */
char *alias; char *alias;
alias = duped_str = strdup(path); alias = duped_str = strdup(path);
@ -641,7 +641,7 @@ struct device_tree_node *dt_find_node_by_path(struct device_tree *tree,
} }
if (!sub_path) { if (!sub_path) {
// it's just the alias, no sub-path /* it's just the alias, no sub-path */
free(duped_str); free(duped_str);
return parent; return parent;
} }
@ -756,7 +756,7 @@ static int dt_check_compat_match(struct device_tree_node *node,
struct device_tree_node *dt_find_compat(struct device_tree_node *parent, struct device_tree_node *dt_find_compat(struct device_tree_node *parent,
const char *compat) const char *compat)
{ {
// Check if the parent node itself is compatible. /* Check if the parent node itself is compatible. */
if (dt_check_compat_match(parent, compat)) if (dt_check_compat_match(parent, compat))
return parent; return parent;
@ -1091,11 +1091,11 @@ struct device_tree_node *dt_init_reserved_memory_node(struct device_tree *tree)
if (!reserved) if (!reserved)
return NULL; return NULL;
// Binding doc says this should have the same #{address,size}-cells as /* Binding doc says this should have the same #{address,size}-cells as
// the root. the root. */
dt_add_u32_prop(reserved, "#address-cells", addr); dt_add_u32_prop(reserved, "#address-cells", addr);
dt_add_u32_prop(reserved, "#size-cells", size); dt_add_u32_prop(reserved, "#size-cells", size);
// Binding doc says this should be empty (i.e., 1:1 mapping from root). /* Binding doc says this should be empty (1:1 mapping from root). */
dt_add_bin_prop(reserved, "ranges", NULL, 0); dt_add_bin_prop(reserved, "ranges", NULL, 0);
return reserved; return reserved;
@ -1141,7 +1141,7 @@ static uint32_t dt_adjust_phandle(struct device_tree_property *prop,
static uint32_t dt_adjust_all_phandles(struct device_tree_node *node, static uint32_t dt_adjust_all_phandles(struct device_tree_node *node,
uint32_t base) uint32_t base)
{ {
uint32_t new_max = MAX(base, 1); // make sure we don't return 0 uint32_t new_max = MAX(base, 1); /* make sure we don't return 0 */
struct device_tree_property *prop; struct device_tree_property *prop;
struct device_tree_node *child; struct device_tree_node *child;
@ -1154,7 +1154,7 @@ static uint32_t dt_adjust_all_phandles(struct device_tree_node *node,
if (!node->phandle) if (!node->phandle)
return 0; return 0;
new_max = MAX(new_max, node->phandle); new_max = MAX(new_max, node->phandle);
} // no break -- can have more than one phandle prop } /* no break -- can have more than one phandle prop */
list_for_each(child, node->children, list_node) list_for_each(child, node->children, list_node)
new_max = MAX(new_max, dt_adjust_all_phandles(child, base)); new_max = MAX(new_max, dt_adjust_all_phandles(child, base));
@ -1180,11 +1180,13 @@ static int dt_fixup_locals(struct device_tree_node *node,
struct device_tree_node *fixup_child; struct device_tree_node *fixup_child;
int i; int i;
// For local fixups the /__local_fixup__ subtree contains the same node /*
// hierarchy as the main tree we're fixing up. Each property contains * For local fixups the /__local_fixup__ subtree contains the same node
// the fixup offsets for the respective property in the main tree. For * hierarchy as the main tree we're fixing up. Each property contains
// each property in the fixup node, find the corresponding property in * the fixup offsets for the respective property in the main tree. For
// the base node and apply fixups to all offsets it specifies. * each property in the fixup node, find the corresponding property in
* the base node and apply fixups to all offsets it specifies.
*/
list_for_each(fixup_prop, fixup->properties, list_node) { list_for_each(fixup_prop, fixup->properties, list_node) {
struct device_tree_property *base_prop = NULL; struct device_tree_property *base_prop = NULL;
list_for_each(prop, node->properties, list_node) list_for_each(prop, node->properties, list_node)
@ -1193,8 +1195,8 @@ static int dt_fixup_locals(struct device_tree_node *node,
break; break;
} }
// We should always find a corresponding base prop for a fixup, /* We should always find a corresponding base prop for a fixup,
// and fixup props contain a list of 32-bit fixup offsets. and fixup props contain a list of 32-bit fixup offsets. */
if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t)) if (!base_prop || fixup_prop->prop.size % sizeof(uint32_t))
return -1; return -1;
@ -1204,8 +1206,8 @@ static int dt_fixup_locals(struct device_tree_node *node,
return -1; return -1;
} }
// Now recursively descend both the base tree and the /__local_fixups__ /* Now recursively descend both the base tree and the /__local_fixups__
// subtree in sync to apply all fixups. subtree in sync to apply all fixups. */
list_for_each(fixup_child, fixup->children, list_node) { list_for_each(fixup_child, fixup->children, list_node) {
struct device_tree_node *base_child = NULL; struct device_tree_node *base_child = NULL;
list_for_each(child, node->children, list_node) list_for_each(child, node->children, list_node)
@ -1214,7 +1216,7 @@ static int dt_fixup_locals(struct device_tree_node *node,
break; break;
} }
// All fixup nodes should have a corresponding base node. /* All fixup nodes should have a corresponding base node. */
if (!base_child) if (!base_child)
return -1; return -1;
@ -1238,10 +1240,10 @@ static void dt_fix_symbols(struct device_tree_node *symbols,
const char *base_path) const char *base_path)
{ {
struct device_tree_property *prop; struct device_tree_property *prop;
char buf[512]; // Should be enough for maximum DT path length? char buf[512]; /* Should be enough for maximum DT path length? */
char node_path[64]; // easily enough for /fragment@XXXX/__overlay__ char node_path[64]; /* easily enough for /fragment@XXXX/__overlay__ */
if (!symbols) // If the overlay has no /__symbols__ node, we're done! if (!symbols) /* If the overlay has no /__symbols__ node, we're done! */
return; return;
int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__", int len = snprintf(node_path, sizeof(node_path), "/%s/__overlay__",
@ -1275,10 +1277,10 @@ static int dt_fixup_external(struct device_tree *overlay,
{ {
struct device_tree_property *prop; struct device_tree_property *prop;
// External fixup properties are encoded as "<path>:<prop>:<offset>". /* External fixup properties are encoded as "<path>:<prop>:<offset>". */
char *entry = fixup->prop.data; char *entry = fixup->prop.data;
while ((void *)entry < fixup->prop.data + fixup->prop.size) { while ((void *)entry < fixup->prop.data + fixup->prop.size) {
// okay to destroy fixup property value, won't be needed again /* okay to destroy fixup property value, won't need it again */
char *node_path = entry; char *node_path = entry;
entry = strchr(node_path, ':'); entry = strchr(node_path, ':');
if (!entry) if (!entry)
@ -1303,18 +1305,18 @@ static int dt_fixup_external(struct device_tree *overlay,
break; break;
} }
// Move entry to first char after number, must be a '\0'. /* Move entry to first char after number, must be a '\0'. */
uint32_t offset = skip_atoi(&entry); uint32_t offset = skip_atoi(&entry);
if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0]) if (!ovl_prop || offset + 4 > ovl_prop->prop.size || entry[0])
return -1; return -1;
entry++; // jump over '\0' to potential next fixup entry++; /* jump over '\0' to potential next fixup */
be32enc(ovl_prop->prop.data + offset, phandle); be32enc(ovl_prop->prop.data + offset, phandle);
// If this is a /fragment@X:target property, update /* If this is a /fragment@X:target property, update references
// references to this fragment in the overlay __symbols__ now. to this fragment in the overlay __symbols__ now. */
if (offset == 0 && !strcmp(prop_name, "target") && if (offset == 0 && !strcmp(prop_name, "target") &&
!strchr(node_path + 1, '/')) // only toplevel nodes !strchr(node_path + 1, '/')) /* only toplevel nodes */
dt_fix_symbols(overlay_symbols, ovl_node, base_path); dt_fix_symbols(overlay_symbols, ovl_node, base_path);
} }
@ -1341,27 +1343,29 @@ static int dt_fixup_all_externals(struct device_tree *tree,
{ {
struct device_tree_property *fix; struct device_tree_property *fix;
// If we have any external fixups, the base tree must have /__symbols__. /* If we have any external fixups, base tree must have /__symbols__. */
if (!symbols) if (!symbols)
return -1; return -1;
// Unlike /__local_fixups__, /__fixups__ is not a whole subtree that /*
// mirrors the node hierarchy. It's just a directory of fixup properties * Unlike /__local_fixups__, /__fixups__ is not a whole subtree that
// that each directly contain all information necessary to apply them. * mirrors the node hierarchy. It's just a directory of fixup properties
* that each directly contain all information necessary to apply them.
*/
list_for_each(fix, fixups->properties, list_node) { list_for_each(fix, fixups->properties, list_node) {
// The name of a fixup property is the label of the node we want /* The name of a fixup property is the label of the node we want
// a property to phandle-reference. Look it up in /__symbols__. a property to phandle-reference. Look up in /__symbols__. */
const char *path = dt_find_string_prop(symbols, fix->prop.name); const char *path = dt_find_string_prop(symbols, fix->prop.name);
if (!path) if (!path)
return -1; return -1;
// Find the node the label pointed to to figure out its phandle. /* Find node the label pointed to to figure out its phandle. */
struct device_tree_node *node = dt_find_node_by_path(tree, path, struct device_tree_node *node = dt_find_node_by_path(tree, path,
NULL, NULL, 0); NULL, NULL, 0);
if (!node) if (!node)
return -1; return -1;
// Write it into the overlay property(s) pointing to that node. /* Write into the overlay property(s) pointing to that node. */
if (dt_fixup_external(overlay, fix, node->phandle, if (dt_fixup_external(overlay, fix, node->phandle,
path, overlay_symbols) < 0) path, overlay_symbols) < 0)
return -1; return -1;
@ -1448,23 +1452,23 @@ static int dt_import_fragment(struct device_tree *tree,
struct device_tree_node *fragment, struct device_tree_node *fragment,
struct device_tree_node *overlay_symbols) struct device_tree_node *overlay_symbols)
{ {
// The actually overlaid nodes/props are in an __overlay__ child node. /* The actual overlaid nodes/props are in an __overlay__ child node. */
static const char *overlay_path[] = { "__overlay__", NULL }; static const char *overlay_path[] = { "__overlay__", NULL };
struct device_tree_node *overlay = dt_find_node(fragment, overlay_path, struct device_tree_node *overlay = dt_find_node(fragment, overlay_path,
NULL, NULL, 0); NULL, NULL, 0);
// If it doesn't have an __overlay__ child, it's not a fragment. /* If it doesn't have an __overlay__ child, it's not a fragment. */
if (!overlay) if (!overlay)
return 0; return 0;
// The target node of the fragment can be given by path or by phandle. /* Target node of the fragment can be given by path or by phandle. */
struct device_tree_property *prop; struct device_tree_property *prop;
struct device_tree_property *phandle = NULL; struct device_tree_property *phandle = NULL;
struct device_tree_property *path = NULL; struct device_tree_property *path = NULL;
list_for_each(prop, fragment->properties, list_node) { list_for_each(prop, fragment->properties, list_node) {
if (!strcmp(prop->prop.name, "target")) { if (!strcmp(prop->prop.name, "target")) {
phandle = prop; phandle = prop;
break; // phandle target has priority, stop looking here break; /* phandle target has priority, stop looking */
} }
if (!strcmp(prop->prop.name, "target-path")) if (!strcmp(prop->prop.name, "target-path"))
path = prop; path = prop;
@ -1476,7 +1480,7 @@ static int dt_import_fragment(struct device_tree *tree,
return -1; return -1;
target = dt_find_node_by_phandle(tree->root, target = dt_find_node_by_phandle(tree->root,
be32dec(phandle->prop.data)); be32dec(phandle->prop.data));
// Symbols already updated as part of dt_fixup_external(target). /* Symbols already updated as part of dt_fixup_external(). */
} else if (path) { } else if (path) {
target = dt_find_node_by_path(tree, path->prop.data, target = dt_find_node_by_path(tree, path->prop.data,
NULL, NULL, 0); NULL, NULL, 0);
@ -1501,10 +1505,12 @@ static int dt_import_fragment(struct device_tree *tree,
*/ */
int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay) int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
{ {
// First, we need to make sure phandles inside the overlay don't clash /*
// with those in the base tree. We just define the highest phandle value * First, we need to make sure phandles inside the overlay don't clash
// in the base tree as the "phandle offset" for this overlay and * with those in the base tree. We just define the highest phandle value
// increment all phandles in it by that value. * in the base tree as the "phandle offset" for this overlay and
* increment all phandles in it by that value.
*/
uint32_t phandle_base = tree->max_phandle; uint32_t phandle_base = tree->max_phandle;
uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base); uint32_t new_max = dt_adjust_all_phandles(overlay->root, phandle_base);
if (!new_max) { if (!new_max) {
@ -1513,8 +1519,8 @@ int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
} }
tree->max_phandle = new_max; tree->max_phandle = new_max;
// Now that we changed phandles in the overlay, we need to update any /* Now that we changed phandles in the overlay, we need to update any
// nodes referring to them. Those are listed in /__local_fixups__. nodes referring to them. Those are listed in /__local_fixups__. */
struct device_tree_node *local_fixups = dt_find_node_by_path(overlay, struct device_tree_node *local_fixups = dt_find_node_by_path(overlay,
"/__local_fixups__", NULL, NULL, 0); "/__local_fixups__", NULL, NULL, 0);
if (local_fixups && dt_fixup_locals(overlay->root, local_fixups, if (local_fixups && dt_fixup_locals(overlay->root, local_fixups,
@ -1523,16 +1529,18 @@ int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
return -1; return -1;
} }
// Besides local phandle references (from nodes within the overlay to /*
// other nodes within the overlay), the overlay may also contain phandle * Besides local phandle references (from nodes within the overlay to
// references to the base tree. These are stored with invalid values and * other nodes within the overlay), the overlay may also contain phandle
// must be updated now. /__symbols__ contains a list of all labels in * references to the base tree. These are stored with invalid values and
// the base tree, and /__fixups__ describes all nodes in the overlay * must be updated now. /__symbols__ contains a list of all labels in
// that contain external phandle references. * the base tree, and /__fixups__ describes all nodes in the overlay
// We also take this opportunity to update all /fragment@X/__overlay__/ * that contain external phandle references.
// prefixes in the overlay's /__symbols__ node to the correct path that * We also take this opportunity to update all /fragment@X/__overlay__/
// the fragment will be placed in later, since this is the only step * prefixes in the overlay's /__symbols__ node to the correct path that
// where we have all necessary information for that easily available. * the fragment will be placed in later, since this is the only step
* where we have all necessary information for that easily available.
*/
struct device_tree_node *symbols = dt_find_node_by_path(tree, struct device_tree_node *symbols = dt_find_node_by_path(tree,
"/__symbols__", NULL, NULL, 0); "/__symbols__", NULL, NULL, 0);
struct device_tree_node *fixups = dt_find_node_by_path(overlay, struct device_tree_node *fixups = dt_find_node_by_path(overlay,
@ -1546,8 +1554,8 @@ int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
return -1; return -1;
} }
// After all this fixing up, we can finally merge the overlay into the /* After all this fixing up, we can finally merge overlay into the tree
// tree (one fragment at a time, because for some reason it's split up). (one fragment at a time, because for some reason it's split up). */
struct device_tree_node *fragment; struct device_tree_node *fragment;
list_for_each(fragment, overlay->root->children, list_node) list_for_each(fragment, overlay->root->children, list_node)
if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) { if (dt_import_fragment(tree, fragment, overlay_symbols) < 0) {
@ -1556,11 +1564,13 @@ int dt_apply_overlay(struct device_tree *tree, struct device_tree *overlay)
return -1; return -1;
} }
// We need to also update /__symbols__ to include labels from this /*
// overlay, in case we want to load further overlays with external * We need to also update /__symbols__ to include labels from this
// phandle references to it. If the base tree already has a /__symbols__ * overlay, in case we want to load further overlays with external
// we merge them together, otherwise we just insert the overlay's * phandle references to it. If the base tree already has a /__symbols__
// /__symbols__ node into the base tree root. * we merge them together, otherwise we just insert the overlay's
* /__symbols__ node into the base tree root.
*/
if (overlay_symbols) { if (overlay_symbols) {
if (symbols) if (symbols)
dt_copy_subtree(symbols, overlay_symbols, 0); dt_copy_subtree(symbols, overlay_symbols, 0);

View File

@ -419,8 +419,8 @@ void fit_update_memory(struct device_tree *tree)
*/ */
static int fit_update_compat(struct fit_config_node *config) static int fit_update_compat(struct fit_config_node *config)
{ {
// If there was no "compatible" property in config node, this is a /* If there was no "compatible" property in config node, this is a
// legacy FIT image. Must extract compat prop from FDT itself. legacy FIT image. Must extract compat prop from FDT itself. */
if (!config->compat.name) { if (!config->compat.name) {
void *fdt_blob = config->fdt->data; void *fdt_blob = config->fdt->data;
const struct fdt_header *fdt_header = fdt_blob; const struct fdt_header *fdt_header = fdt_blob;
@ -434,7 +434,7 @@ static int fit_update_compat(struct fit_config_node *config)
return -1; return -1;
} }
// FDT overlays are not supported in legacy FIT images. /* FDT overlays are not supported in legacy FIT images. */
if (config->overlays.next) { if (config->overlays.next) {
printk(BIOS_ERR, printk(BIOS_ERR,
"ERROR: config %s has overlay but no compat!\n", "ERROR: config %s has overlay but no compat!\n",