device/dram/ddr2.c: Improve error returning and debug output

This patch outputs decoding errors with BIOS_WARNING instead of
depending on CONFIG_DEBUG_RAM_SETUP.

Returns SPD_STATUS_INVALID on invalid settings for tRR, bcd and tCK
and doesn't try to create a valid setting if an invalid setting is
detected.

Change-Id: Iee434d1fa1a9d911cc3683b88b260881ed6434ea
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
Reviewed-on: https://review.coreboot.org/21480
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Nico Huber <nico.h@gmx.de>
This commit is contained in:
Arthur Heymans 2017-09-10 20:57:37 +02:00 committed by Martin Roth
parent 0ab4904481
commit 2785c118a6
1 changed files with 99 additions and 39 deletions

View File

@ -113,7 +113,7 @@ u8 spd_get_msbs(u8 c)
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_tck_time(u8 c)
static int spd_decode_tck_time(u32 *tck, u8 c)
{
u8 high, low;
@ -132,11 +132,17 @@ static u32 spd_decode_tck_time(u8 c)
case 0xd:
low = 75;
break;
case 0xe:
case 0xf:
printk(BIOS_WARNING, "Invalid tck setting. "
"lower nibble is 0x%x\n", c & 0xf);
return CB_ERR;
default:
low = (c & 0xf) * 10;
}
return ((high * 100 + low) << 8) / 100;
*tck = ((high * 100 + low) << 8) / 100;
return CB_SUCCESS;
}
/**
@ -145,14 +151,17 @@ static u32 spd_decode_tck_time(u8 c)
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th ns.
*/
static u32 spd_decode_bcd_time(u8 c)
static int spd_decode_bcd_time(u32 *bcd, u8 c)
{
u8 high, low;
high = c >> 4;
low = c & 0xf;
if (high >= 10 || low >= 10)
return CB_ERR;
return ((high * 10 + low) << 8) / 100;
*bcd = ((high * 10 + low) << 8) / 100;
return CB_SUCCESS;
}
/**
@ -177,26 +186,26 @@ static u32 spd_decode_quarter_time(u8 c)
* Decodes a raw SPD data from a DDR2 DIMM.
* Returns cycle time in 1/256th us.
*/
static u32 spd_decode_tRR_time(u8 c)
static int spd_decode_tRR_time(u32 *tRR, u8 c)
{
switch (c) {
default:
printk(BIOS_WARNING,
"Unknown tRR value, using default of 15.6us.");
/* Fallthrough */
printk(BIOS_WARNING, "Invalid tRR value 0x%x\n", c);
return CB_ERR;
case 0x80:
return 15625 << 8;
*tRR = 15625 << 8;
case 0x81:
return 15625 << 6;
*tRR = 15625 << 6;
case 0x82:
return 15625 << 7;
*tRR = 15625 << 7;
case 0x83:
return 15625 << 9;
*tRR = 15625 << 9;
case 0x84:
return 15625 << 10;
*tRR = 15625 << 10;
case 0x85:
return 15625 << 11;
*tRR = 15625 << 11;
}
return CB_SUCCESS;
}
/**
@ -297,20 +306,21 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
printram("SPD contains 0x%02x bytes\n", spd_size);
if (spd_size < 64 || eeprom_size < 64) {
printram("ERROR: SPD to small\n");
printk(BIOS_WARNING, "ERROR: SPD to small\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
if (spd_ddr2_calc_checksum(spd, spd_size) != spd[63]) {
printram("ERROR: SPD checksum error\n");
printk(BIOS_WARNING, "ERROR: SPD checksum error\n");
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_CRC_ERROR;
}
reg8 = spd[62];
if ((reg8 & 0xf0) != 0x10) {
printram("ERROR: Unsupported SPD revision %01x.%01x\n",
printk(BIOS_WARNING,
"ERROR: Unsupported SPD revision %01x.%01x\n",
reg8 >> 4, reg8 & 0xf);
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
@ -321,7 +331,7 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
reg8 = spd[2];
printram(" Type : 0x%02x\n", reg8);
if (reg8 != 0x08) {
printram("ERROR: Unsupported SPD type %x\n", reg8);
printk(BIOS_WARNING, "ERROR: Unsupported SPD type %x\n", reg8);
dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED;
return SPD_STATUS_INVALID;
}
@ -331,14 +341,16 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
printram(" Rows : %u\n", dimm->row_bits);
if ((dimm->row_bits > 31) ||
((dimm->row_bits > 15) && (dimm->rev < 0x13))) {
printram(" Invalid number of memory rows\n");
printk(BIOS_WARNING,
"SPD decode: invalid number of memory rows\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->col_bits = spd[4];
printram(" Columns : %u\n", dimm->col_bits);
if (dimm->col_bits > 15) {
printram(" Invalid number of memory columns\n");
printk(BIOS_WARNING,
"SPD decode: invalid number of memory columns\n");
ret = SPD_STATUS_INVALID_FIELD;
}
@ -348,21 +360,22 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
dimm->mod_width = spd[6];
printram(" Module data width : x%u\n", dimm->mod_width);
if (!dimm->mod_width) {
printram(" Invalid module data width\n");
printk(BIOS_WARNING, "SPD decode: invalid module data width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->width = spd[13];
printram(" SDRAM width : x%u\n", dimm->width);
if (!dimm->width) {
printram(" Invalid SDRAM width\n");
printk(BIOS_WARNING, "SPD decode: invalid SDRAM width\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->banks = spd[17];
printram(" Banks : %u\n", dimm->banks);
if (!dimm->banks) {
printram(" Invalid module banks count\n");
printk(BIOS_WARNING,
"SPD decode: invalid module banks count\n");
ret = SPD_STATUS_INVALID_FIELD;
}
@ -392,23 +405,26 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
printram(" Voltage : 1.8V\n");
break;
default:
printram(" Unknown voltage level.\n");
printk(BIOS_WARNING, "SPD decode: unknown voltage level.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
dimm->cas_supported = spd[18];
if ((dimm->cas_supported & 0x3) || !dimm->cas_supported) {
printram(" Invalid CAS support advertised.\n");
printk(BIOS_WARNING,
"SPD decode: invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
printram(" Supported CAS mask : 0x%x\n", dimm->cas_supported);
if ((dimm->rev < 0x13) && (dimm->cas_supported & 0x80)) {
printram(" Invalid CAS support advertised.\n");
printk(BIOS_WARNING,
"SPD decode: invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
if ((dimm->rev < 0x12) && (dimm->cas_supported & 0x40)) {
printram(" Invalid CAS support advertised.\n");
printk(BIOS_WARNING,
"SPD decode: invalid CAS support advertised.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
@ -416,26 +432,60 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
cl = spd_get_msbs(dimm->cas_supported);
/* SDRAM Cycle time at Maximum Supported CAS Latency (CL), CL=X */
dimm->cycle_time[cl] = spd_decode_tck_time(spd[9]);
if (spd_decode_tck_time(&dimm->cycle_time[cl], spd[9]) != CB_SUCCESS) {
printk(BIOS_WARNING,
"SPD decode: invalid min tCL for CAS%d\n", cl);
ret = SPD_STATUS_INVALID_FIELD;
}
/* SDRAM Access from Clock */
dimm->access_time[cl] = spd_decode_bcd_time(spd[10]);
if (spd_decode_bcd_time(&dimm->access_time[cl], spd[10])
!= CB_SUCCESS) {
printk(BIOS_WARNING,
"SPD decode: invalid min tAC for CAS%d\n", cl);
ret = SPD_STATUS_INVALID_FIELD;
}
if (dimm->cas_supported & (1 << (cl - 1))) {
/* Minimum Clock Cycle at CLX-1 */
dimm->cycle_time[cl - 1] = spd_decode_tck_time(spd[23]);
if (spd_decode_tck_time(&dimm->cycle_time[cl - 1], spd[23])
!= CB_SUCCESS) {
printk(BIOS_WARNING,
"SPD decode: invalid min tCL for CAS%d\n",
cl - 1);
ret = SPD_STATUS_INVALID_FIELD;
}
/* Maximum Data Access Time (tAC) from Clock at CLX-1 */
dimm->access_time[cl - 1] = spd_decode_bcd_time(spd[24]);
if (spd_decode_bcd_time(&dimm->access_time[cl - 1], spd[24])
!= CB_SUCCESS) {
printk(BIOS_WARNING,
"SPD decode: invalid min tAC for CAS%d\n",
cl - 1);
ret = SPD_STATUS_INVALID_FIELD;
}
}
if (dimm->cas_supported & (1 << (cl - 2))) {
/* Minimum Clock Cycle at CLX-2 */
dimm->cycle_time[cl - 2] = spd_decode_tck_time(spd[25]);
if (spd_decode_tck_time(&dimm->cycle_time[cl - 2], spd[25])
!= CB_SUCCESS) {
printk(BIOS_WARNING,
"SPD decode: invalid min tCL for CAS%d\n",
cl - 2);
ret = SPD_STATUS_INVALID_FIELD;
}
/* Maximum Data Access Time (tAC) from Clock at CLX-2 */
dimm->access_time[cl - 2] = spd_decode_bcd_time(spd[26]);
if (spd_decode_bcd_time(&dimm->access_time[cl - 2], spd[26])
!= CB_SUCCESS) {
printk(BIOS_WARNING,
"SPD decode: invalid min tAC for CAS%d\n",
cl - 2);
ret = SPD_STATUS_INVALID_FIELD;
}
}
reg8 = (spd[31] >> 5) | (spd[31] << 3);
if (!reg8) {
printram(" Invalid rank density.\n");
printk(BIOS_WARNING,
"SPD decode: invalid rank density.\n");
ret = SPD_STATUS_INVALID_FIELD;
}
@ -449,7 +499,10 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
printram(" Capacity : %u GB\n", dimm->size_mb >> 10);
/* SDRAM Maximum Cycle Time (tCKmax) */
dimm->tCK = spd_decode_tck_time(spd[43]);
if (spd_decode_bcd_time(&dimm->tCK, spd[43]) != CB_SUCCESS) {
printk(BIOS_WARNING, "SPD decode: invalid Max tCK\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* Minimum Write Recovery Time (tWRmin) */
dimm->tWR = spd_decode_quarter_time(spd[36]);
/* Minimum RAS# to CAS# Delay Time (tRCDmin) */
@ -468,9 +521,15 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
/* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */
dimm->tRTP = spd_decode_quarter_time(spd[38]);
/* Data Input Setup Time Before Strobe */
dimm->tDS = spd_decode_bcd_time(spd[34]);
if (spd_decode_bcd_time(&dimm->tDS, spd[34]) != CB_SUCCESS) {
printk(BIOS_WARNING, "SPD decode: invalid tDS\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* Data Input Hold Time After Strobe */
dimm->tDH = spd_decode_bcd_time(spd[35]);
if (spd_decode_bcd_time(&dimm->tDH, spd[35]) != CB_SUCCESS) {
printk(BIOS_WARNING, "SPD decode: invalid tDH\n");
ret = SPD_STATUS_INVALID_FIELD;
}
/* SDRAM Device DQS-DQ Skew for DQS and associated DQ signals */
dimm->tDQSQ = (spd[44] << 8) / 100;
/* SDRAM Device Maximum Read Data Hold Skew Factor */
@ -478,7 +537,8 @@ int spd_decode_ddr2(struct dimm_attr_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2])
/* PLL Relock Time in us */
dimm->tPLL = spd[46] << 8;
/* Refresh rate in us */
dimm->tRR = spd_decode_tRR_time(spd[12]);
if (spd_decode_tRR_time(&dimm->tRR, spd[12]) != CB_SUCCESS)
ret = SPD_STATUS_INVALID_FIELD;
/* Number of PLLs on DIMM */
if (dimm->rev >= 0x11)