- First pass at s2880 support.

- SMP cleanups (remove SMP only use CONFIG_SMP)
- Minor tweaks to romcc to keep it from taking forever compiling
- failover fixes
- Get a good implementation of k8_cpufixup and sizeram for the opteron


git-svn-id: svn://svn.coreboot.org/coreboot/trunk@998 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Eric Biederman 2003-07-21 20:13:45 +00:00
parent 6d4512cdf9
commit 2c018fba95
33 changed files with 1512 additions and 268 deletions

View file

@ -0,0 +1,69 @@
#ifndef ARCH_SMP_ATOMIC_H
#define ARCH_SMP_ATOMIC_H
/*
* Make sure gcc doesn't try to be clever and move things around
* on us. We need to use _exactly_ the address the user gave us,
* not some alias that contains the same information.
*/
typedef struct { volatile int counter; } atomic_t;
#define ATOMIC_INIT(i) { (i) }
/*
* Atomic operations that C can't guarantee us. Useful for
* resource counting etc..
*/
/**
* atomic_read - read atomic variable
* @v: pointer of type atomic_t
*
* Atomically reads the value of @v. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define atomic_read(v) ((v)->counter)
/**
* atomic_set - set atomic variable
* @v: pointer of type atomic_t
* @i: required value
*
* Atomically sets the value of @v to @i. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define atomic_set(v,i) (((v)->counter) = (i))
/**
* atomic_inc - increment atomic variable
* @v: pointer of type atomic_t
*
* Atomically increments @v by 1. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ void atomic_inc(atomic_t *v)
{
__asm__ __volatile__(
"lock ; incl %0"
:"=m" (v->counter)
:"m" (v->counter));
}
/**
* atomic_dec - decrement atomic variable
* @v: pointer of type atomic_t
*
* Atomically decrements @v by 1. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ void atomic_dec(atomic_t *v)
{
__asm__ __volatile__(
"lock ; decl %0"
:"=m" (v->counter)
:"m" (v->counter));
}
#endif /* ARCH_SMP_ATOMIC_H */

View file

@ -0,0 +1,57 @@
#ifndef ARCH_SMP_SPINLOCK_H
#define ARCH_SMP_SPINLOCK_H
/*
* Your basic SMP spinlocks, allowing only a single CPU anywhere
*/
typedef struct {
volatile unsigned int lock;
} spinlock_t;
#define SPIN_LOCK_UNLOCKED (spinlock_t) { 1 }
/*
* Simple spin lock operations. There are two variants, one clears IRQ's
* on the local processor, one does not.
*
* We make no fairness assumptions. They have a cost.
*/
#define barrier() __asm__ __volatile__("": : :"memory")
#define spin_is_locked(x) (*(volatile char *)(&(x)->lock) <= 0)
#define spin_unlock_wait(x) do { barrier(); } while(spin_is_locked(x))
#define spin_lock_string \
"\n1:\t" \
"lock ; decb %0\n\t" \
"js 2f\n" \
".section .text.lock,\"ax\"\n" \
"2:\t" \
"cmpb $0,%0\n\t" \
"rep;nop\n\t" \
"jle 2b\n\t" \
"jmp 1b\n" \
".previous"
/*
* This works. Despite all the confusion.
*/
#define spin_unlock_string \
"movb $1,%0"
static inline void spin_lock(spinlock_t *lock)
{
__asm__ __volatile__(
spin_lock_string
:"=m" (lock->lock) : : "memory");
}
static inline void spin_unlock(spinlock_t *lock)
{
__asm__ __volatile__(
spin_unlock_string
:"=m" (lock->lock) : : "memory");
}
#endif /* ARCH_SMP_SPINLOCK_H */

View file

@ -1,6 +1,6 @@
#include <arch/asm.h>
#include <arch/intel.h>
#ifdef SMP
#ifdef CONFIG_SMP
#include <cpu/p6/apic.h>
#endif
.section ".text"
@ -39,7 +39,7 @@ _start:
/* set new stack */
movl $_estack, %esp
#ifdef SMP
#ifdef CONFIG_SMP
/* Get the cpu id */
movl $APIC_DEFAULT_BASE, %edi
movl APIC_ID(%edi), %eax

View file

@ -68,8 +68,11 @@ static struct mem_range *get_ramsize(void)
mem = sizeram();
}
if (!mem) {
printk_err("No memory size information!\n");
for(;;);
printk_emerg("No memory size information!\n");
for(;;) {
/* Ensure this loop is not optimized away */
asm volatile("":/* outputs */:/*inputs */ :"memory");
}
}
return mem;
}
@ -120,9 +123,9 @@ static void wait_for_other_cpus(void)
printk_debug("All AP CPUs stopped\n");
}
#else /* SMP */
#else /* CONIFG_SMP */
#define wait_for_other_cpus() do {} while(0)
#endif /* SMP */
#endif /* CONFIG_SMP */
void hardwaremain(int boot_complete)
{

View file

@ -380,11 +380,6 @@ define CONFIG_SMP
export always
comment "Define if we support SMP"
end
define SMP
default none
export always
comment "Define if we support SMP"
end
define MAX_CPUS
default 1
export always

View file

@ -2,60 +2,52 @@
#include <console/console.h>
#include <mem.h>
#include <cpu/p6/msr.h>
#define TOP_MEM 0xc001001A
#define TOP_MEM2 0xc001001D
#define IORR_FIRST 0xC0010016
#define IORR_LAST 0xC0010019
#define SYSCFG 0xC0010010
#define MTRRVARDRAMEN (1 << 20)
#include <cpu/k8/mtrr.h>
#include <device/device.h>
void k8_cpufixup(struct mem_range *mem)
{
msr_t msr;
unsigned long mmio_basek, tomk;
unsigned long i;
unsigned long ram_megabytes;
/* For now no Athlon board has significant holes in it's
* address space so just find the last memory region
* and compute the end of memory from that.
msr_t msr;
/* Except for the PCI MMIO hold just before 4GB there are no
* significant holes in the address space, so just account
* for those two and move on.
*/
for(i = 0; mem[i].sizek; i++)
;
if (i == 0)
return;
ram_megabytes = (mem[i-1].basek + mem[i-1].sizek) *1024;
mmio_basek = tomk = 0;
for(i = 0; mem[i].sizek; i++) {
unsigned long topk;
topk = mem[i].basek + mem[i].sizek;
if (tomk < topk) {
tomk = topk;
}
if ((topk < 4*1024*1024) && (mmio_basek < topk)) {
mmio_basek = topk;
}
}
if (mmio_basek > tomk) {
mmio_basek = tomk;
}
#warning "FIXME handle > 4GB of ram"
// 8 MB alignment please
ram_megabytes += 0x7fffff;
ram_megabytes &= (~0x7fffff);
// set top_mem registers to ram size
printk_spew("Setting top_mem to 0x%x\n", ram_megabytes);
msr = rdmsr(TOP_MEM);
printk_spew("TOPMEM was 0x%02x:0x%02x\n", msr.hi, msr.lo);
msr.hi = 0;
msr.lo = ram_megabytes;
/* Setup TOP_MEM */
msr.hi = mmio_basek >> 22;
msr.lo = mmio_basek << 10;
wrmsr(TOP_MEM, msr);
// I am setting this even though I won't enable it
/* Setup TOP_MEM2 */
msr.hi = tomk >> 22;
msr.lo = tomk << 12;
wrmsr(TOP_MEM2, msr);
/* zero the IORR's before we enable to prevent
* undefined side effects
* undefined side effects.
*/
msr.lo = msr.hi = 0;
for (i = IORR_FIRST; i <= IORR_LAST; i++)
for(i = IORR_FIRST; i <= IORR_LAST; i++) {
wrmsr(i, msr);
}
msr = rdmsr(SYSCFG);
printk_spew("SYSCFG was 0x%x:0x%x\n", msr.hi, msr.lo);
msr.lo |= MTRRVARDRAMEN;
msr.lo |= SYSCFG_MSR_MtrrVarDramEn | SYSCFG_MSR_TOM2En;
wrmsr(SYSCFG, msr);
msr = rdmsr(SYSCFG);
printk_spew("SYSCFG IS NOW 0x%x:0x%x\n", msr.hi, msr.lo);
}

View file

@ -33,9 +33,6 @@ static struct device **last_dev_p = &all_devices;
#define DEVICE_IO_START 0x1000
unsigned long device_memory_base;
/* Append a new device to the global device chain.
* The chain is used to find devices once everything is set up.
*/
@ -379,7 +376,6 @@ void dev_configure(void)
root->resource[1].base =
round_down(DEVICE_MEM_HIGH - root->resource[1].size,
1UL << root->resource[1].align);
device_memory_base = root->resource[1].base;
root->resource[1].flags |= IORESOURCE_SET;
// now just set things into registers ... we hope ...
root->ops->set_resources(root);

View file

@ -1,9 +1,8 @@
#ifndef CPU_K8_MTRR_H
#define CPU_K8_MTRR_H
#include <cpu/k7/mtrr.h>
#include <cpu/p6/mtrr.h>
#if 0
#define IORR_FIRST 0xC0010016
#define IORR_LAST 0xC0010019
#define SYSCFG 0xC0010010
@ -12,17 +11,12 @@
#define MTRR_WRITE_MEM (1 << 3)
#define SYSCFG_MSR 0xC0010010
#define SYSCFG_MSR_EvictEn (1 << 22)
#define SYSCFG_MSR_TOM2En (1 << 21)
#define SYSCFG_MSR_MtrrVarDramEn (1 << 20)
#define SYSCFG_MSR_MtrrFixDramModEn (1 << 19)
#define SYSCFG_MSR_MtrrFixDramEn (1 << 18)
#define SYSCFG_MSR_UcLockEn (1 << 17)
#define SYSCFG_MSR_ChxToDirtyDis (1 << 16)
#define SYSCFG_MSR_SysEccEn (1 << 15)
#define SYSCFG_MSR_RdBlkL2WayEn (1 << 14)
#define SYSCFG_MSR_SysFillValIsD1 (1 << 13)
#define SYSCFG_MSR_IcInclusive (1 << 12)
#define SYSCFG_MSR_ClVicBlkEn (1 << 11)
#define SYSCFG_MSR_SetDirtyEnO (1 << 10)
#define SYSCFG_MSR_SetDirtyEnS (1 << 9)
@ -40,6 +34,4 @@
#define TOP_MEM2 0xC001001D
#define HWCR_MSR 0xC0010015
#endif
#endif /* CPU_K8_MTRR_H */

View file

@ -17,7 +17,7 @@ struct device_operations {
#define MAX_RESOURCES 6
/*
* There is one pci_dev structure for each slot-number/function-number
* There is one device structure for each slot-number/function-number
* combination:
*/
@ -75,8 +75,6 @@ void compute_allocate_resource(device_t bus, struct resource *bridge,
unsigned long type_mask, unsigned long type);
void assign_resources(device_t bus);
void enumerate_static_device(void);
unsigned long device_memory_base;
/* Helper functions */
device_t dev_find_device (unsigned int vendor, unsigned int device, device_t from);

View file

@ -1,7 +1,7 @@
#ifndef SMP_ATOMIC_H
#define SMP_ATOMIC_H
#ifdef SMP
#ifdef CONFIG_SMP
#include <arch/smp/atomic.h>
#else
@ -48,6 +48,6 @@ typedef struct { int counter; } atomic_t;
#define atomic_dec(v) (((v)->counter)--)
#endif /* SMP */
#endif /* CONFIG_SMP */
#endif /* SMP_ATOMIC_H */

View file

@ -1,9 +1,9 @@
#ifndef SMP_SPINLOCK_H
#define SMP_SPINLOCK_H
#ifdef SMP
#ifdef CONFIG_SMP
#include <arch/smp/spinlock.h>
#else /* !SMP */
#else /* !CONFIG_SMP */
/* Most GCC versions have a nasty bug with empty initializers */
#if (__GNUC__ > 2)

View file

@ -16,7 +16,7 @@ void boot_successful(void)
byte = inb(RTC_PORT(1));
byte &= 0xfe;
byte |= (byte & 2) >> 1;
byte |= (byte & (1 << 1)) >> 1;
/* If we are in normal mode set the boot count to 0 */
if(byte & 1)

View file

@ -86,6 +86,11 @@ static unsigned int generate_row(uint8_t node, uint8_t row, uint8_t maxnodes)
return ret;
}
static inline int spd_read_byte(unsigned device, unsigned address)
{
return smbus_read_byte(device, address);
}
#include "northbridge/amd/amdk8/cpu_ldtstop.c"
#include "southbridge/amd/amd8111/amd8111_ldtstop.c"

View file

@ -25,6 +25,12 @@ static unsigned int generate_row(uint8_t node, uint8_t row, uint8_t maxnodes)
return 0x00010101; /* default row entry */
}
static inline int spd_read_byte(unsigned device, unsigned address)
{
return smbus_read_byte(device, address);
}
#include "northbridge/amd/amdk8/raminit.c"
#include "northbridge/amd/amdk8/coherent_ht.c"
#include "sdram/generic_sdram.c"

View file

@ -17,7 +17,7 @@
#include "northbridge/amd/amdk8/reset_test.c"
#include "debug.c"
static void memreset_setup(const struct mem_controller *ctrl)
static void memreset_setup(void)
{
/* Set the memreset low */
outb((0 << 7)|(0 << 6)|(0<<5)|(0<<4)|(1<<2)|(0<<0), SMBUS_IO_BASE + 0xc0 + 28);
@ -25,12 +25,12 @@ static void memreset_setup(const struct mem_controller *ctrl)
outb((0 << 7)|(0 << 6)|(0<<5)|(0<<4)|(1<<2)|(0<<0), SMBUS_IO_BASE + 0xc0 + 29);
}
static void memreset(const struct mem_controller *ctrl)
static void memreset(int controllers, const struct mem_controller *ctrl)
{
udelay(800);
/* Set memreset_high */
outb((0<<7)|(0<<6)|(0<<5)|(0<<4)|(1<<2)|(1<<0), SMBUS_IO_BASE + 0xc0 + 28);
udelay(50);
udelay(90);
}
static unsigned int generate_row(uint8_t node, uint8_t row, uint8_t maxnodes)
@ -77,6 +77,11 @@ static unsigned int generate_row(uint8_t node, uint8_t row, uint8_t maxnodes)
return ret;
}
static inline int spd_read_byte(unsigned device, unsigned address)
{
return smbus_read_byte(device, address);
}
#include "northbridge/amd/amdk8/cpu_ldtstop.c"
#include "southbridge/amd/amd8111/amd8111_ldtstop.c"
@ -137,53 +142,64 @@ static void pc87360_enable_serial(void)
pnp_set_iobase0(SIO_BASE, 0x3f8);
}
#define FIRST_CPU 1
#define SECOND_CPU 0
#define TOTAL_CPUS (FIRST_CPU + SECOND_CPU)
static void main(void)
{
/*
* GPIO28 of 8111 will control H0_MEMRESET_L
* GPIO29 of 8111 will control H1_MEMRESET_L
*/
static const struct mem_controller cpu0 = {
.f0 = PCI_DEV(0, 0x18, 0),
.f1 = PCI_DEV(0, 0x18, 1),
.f2 = PCI_DEV(0, 0x18, 2),
.f3 = PCI_DEV(0, 0x18, 3),
.channel0 = { (0xa<<3)|0, (0xa<<3)|2, 0, 0 },
.channel1 = { (0xa<<3)|1, (0xa<<3)|3, 0, 0 },
};
static const struct mem_controller cpu1 = {
.f0 = PCI_DEV(0, 0x19, 0),
.f1 = PCI_DEV(0, 0x19, 1),
.f2 = PCI_DEV(0, 0x19, 2),
.f3 = PCI_DEV(0, 0x19, 3),
.channel0 = { (0xa<<3)|4, (0xa<<3)|6, 0, 0 },
.channel1 = { (0xa<<3)|5, (0xa<<3)|7, 0, 0 },
static const struct mem_controller cpu[] = {
#if FIRST_CPU
{
.node_id = 0,
.f0 = PCI_DEV(0, 0x18, 0),
.f1 = PCI_DEV(0, 0x18, 1),
.f2 = PCI_DEV(0, 0x18, 2),
.f3 = PCI_DEV(0, 0x18, 3),
.channel0 = { (0xa<<3)|0, (0xa<<3)|2, 0, 0 },
.channel1 = { (0xa<<3)|1, (0xa<<3)|3, 0, 0 },
},
#endif
#if SECOND_CPU
{
.node_id = 1,
.f0 = PCI_DEV(0, 0x19, 0),
.f1 = PCI_DEV(0, 0x19, 1),
.f2 = PCI_DEV(0, 0x19, 2),
.f3 = PCI_DEV(0, 0x19, 3),
.channel0 = { (0xa<<3)|4, (0xa<<3)|6, 0, 0 },
.channel1 = { (0xa<<3)|5, (0xa<<3)|7, 0, 0 },
},
#endif
};
if (cpu_init_detected()) {
asm("jmp __cpu_reset");
}
pc87360_enable_serial();
uart_init();
console_init();
enable_lapic();
init_timer();
if (!boot_cpu()) {
stop_this_cpu();
}
init_timer();
pc87360_enable_serial();
uart_init();
console_init();
setup_default_resource_map();
setup_coherent_ht_domain();
enumerate_ht_chain(0);
distinguish_cpu_resets();
distinguish_cpu_resets(0);
#if 1
#if 0
print_pci_devices();
#endif
enable_smbus();
#if 0
dump_spd_registers(&cpu0);
dump_spd_registers(&cpu[0]);
#endif
sdram_initialize(&cpu0);
memreset_setup();
sdram_initialize(sizeof(cpu)/sizeof(cpu[0]), cpu);
#if 1
dump_pci_devices();
@ -204,7 +220,12 @@ static void main(void)
#if 0
ram_check(0x00000000, msr.lo);
#else
/* Check 16MB of memory */
#if TOTAL_CPUS < 2
/* Check 16MB of memory @ 0*/
ram_check(0x00000000, 0x01000000);
#else
/* Check 16MB of memory @ 2GB */
ram_check(0x80000000, 0x81000000);
#endif
#endif
}

View file

@ -0,0 +1,134 @@
uses HAVE_MP_TABLE
uses HAVE_PIRQ_TABLE
uses USE_FALLBACK_IMAGE
uses USE_NORMAL_IMAGE
uses AMD8111_DEV
#
#
###
### Set all of the defaults for an x86 architecture
###
#
#
###
### Build the objects we have code for in this directory.
###
##object mainboard.o
driver mainboard.o
object static_devices.o
if HAVE_MP_TABLE object mptable.o end
if HAVE_PIRQ_TABLE object irq_tables.o end
#
arch i386 end
cpu k8 end
#
###
### Build our 16 bit and 32 bit linuxBIOS entry code
###
mainboardinit cpu/i386/entry16.inc
mainboardinit cpu/i386/entry32.inc
ldscript /cpu/i386/entry16.lds
ldscript /cpu/i386/entry32.lds
#
###
### Build our reset vector (This is where linuxBIOS is entered)
###
if USE_FALLBACK_IMAGE
print "Use fallback!"
mainboardinit cpu/i386/reset16.inc
ldscript /cpu/i386/reset16.lds
end
if USE_NORMAL_IMAGE
mainboardinit cpu/i386/reset32.inc
ldscript /cpu/i386/reset32.lds
end
#
#### Should this be in the northbridge code?
mainboardinit arch/i386/lib/cpu_reset.inc
#
###
### Include an id string (For safe flashing)
###
mainboardinit arch/i386/lib/id.inc
ldscript /arch/i386/lib/id.lds
#
####
#### This is the early phase of linuxBIOS startup
#### Things are delicate and we test to see if we should
#### failover to another image.
####
#option MAX_REBOOT_CNT=2
##ldscript arch/i386/lib/failover.lds USE_FALLBACK_IMAGE
#
###
### Setup our mtrrs
###
mainboardinit cpu/k8/earlymtrr.inc
#
#
###
### Only the bootstrap cpu makes it here.
### Failover if we need to
###
#
if USE_FALLBACK_IMAGE
mainboardinit southbridge/amd/amd8111/cmos_boot_failover.inc
end
#
####
#### O.k. We aren't just an intermediary anymore!
####
#
###
### When debugging disable the watchdog timer
###
##option MAXIMUM_CONSOLE_LOGLEVEL=7
#default MAXIMUM_CONSOLE_LOGLEVEL=7
#option DISABLE_WATCHDOG= (MAXIMUM_CONSOLE_LOGLEVEL >= 8)
#if DISABLE_WATCHDOG
# mainboardinit southbridgeamd/amd8111/disable_watchdog.inc
#end
#
###
### Setup the serial port
###
#mainboardinit superiowinbond/w83627hf/setup_serial.inc
mainboardinit pc80/serial.inc
mainboardinit arch/i386/lib/console.inc
if USE_FALLBACK_IMAGE mainboardinit arch/i386/lib/noop_failover.inc end
#
###
### Romcc output
###
#makerule ./failover.E dep "$(MAINBOARD)/failover.c" act "$(CPP) -I$(TOP)/src $(CPPFLAGS) $(MAINBOARD)/failover.c > ./failever.E"
#makerule ./failover.inc dep "./romcc ./failover.E" act "./romcc -O ./failover.E > failover.inc"
#mainboardinit .failover.inc
makerule ./auto.E dep "$(MAINBOARD)/auto.c" act "$(CPP) -I$(TOP)/src -$(ROMCCPPFLAGS) $(CPPFLAGS) $(MAINBOARD)/auto.c > ./auto.E"
makerule ./auto.inc dep "./romcc ./auto.E" act "./romcc -O ./auto.E > auto.inc"
mainboardinit ./auto.inc
#
###
### Setup RAM
###
mainboardinit ram/ramtest.inc
mainboardinit southbridge/amd/amd8111/smbus.inc
mainboardinit sdram/generic_dump_spd.inc
#
###
### Include the secondary Configuration files
###
northbridge amd/amdk8
end
southbridge amd/amd8111
end
#mainboardinit archi386/smp/secondary.inc
superio NSC/pc87360
register "com1={1} com2={0} floppy=1 lpt=1 keyboard=1"
end
dir /pc80
##dir /src/superio/winbond/w83627hf
cpu p5 end
cpu p6 end
cpu k7 end
cpu k8 end

View file

@ -0,0 +1 @@
2.0

View file

@ -0,0 +1,437 @@
#define ASSEMBLY 1
#include <stdint.h>
#include <device/pci_def.h>
#include "arch/romcc_io.h"
#include "pc80/serial.c"
#include "arch/i386/lib/console.c"
#include "ram/ramtest.c"
#include "northbridge/amd/amdk8/early_ht.c"
#include "southbridge/amd/amd8111/amd8111_early_smbus.c"
#include "northbridge/amd/amdk8/raminit.h"
/*
#warning "FIXME move these delay functions somewhere more appropriate"
#warning "FIXME use the apic timer instead it needs no calibration on an Opteron it runs at 200Mhz"
static void print_clock_multiplier(void)
{
msr_t msr;
print_debug("clock multipler: 0x");
msr = rdmsr(0xc0010042);
print_debug_hex32(msr.lo & 0x3f);
print_debug(" = 0x");
print_debug_hex32(((msr.lo & 0x3f) + 8) * 100);
print_debug("Mhz\r\n");
}
static unsigned usecs_to_ticks(unsigned usecs)
{
#warning "FIXME make usecs_to_ticks work properly"
#if 1
return usecs *2000;
#else
// This can only be done if cpuid says fid changing is supported
// I need to look up the base frequency another way for other
// cpus. Is it worth dedicating a global register to this?
// Are the PET timers useable for this purpose?
msr_t msr;
msr = rdmsr(0xc0010042);
return ((msr.lo & 0x3f) + 8) * 100 *usecs;
#endif
}
static void init_apic_timer(void)
{
volatile uint32_t *apic_reg = (volatile uint32_t *)0xfee00000;
uint32_t start, end;
// Set the apic timer to no interrupts and periodic mode
apic_reg[0x320 >> 2] = (1 << 17)|(1<< 16)|(0 << 12)|(0 << 0);
// Set the divider to 1, no divider
apic_reg[0x3e0 >> 2] = (1 << 3) | 3;
// Set the initial counter to 0xffffffff
apic_reg[0x380 >> 2] = 0xffffffff;
}
static void udelay(unsigned usecs)
{
#if 1
uint32_t start, ticks;
tsc_t tsc;
// Calculate the number of ticks to run for
ticks = usecs_to_ticks(usecs);
// Find the current time
tsc = rdtsc();
start = tsc.lo;
do {
tsc = rdtsc();
} while((tsc.lo - start) < ticks);
#else
volatile uint32_t *apic_reg = (volatile uint32_t *)0xfee00000;
uint32_t start, value, ticks;
// Calculate the number of ticks to run for
ticks = usecs * 200;
start = apic_reg[0x390 >> 2];
do {
value = apic_reg[0x390 >> 2];
} while((start - value) < ticks);
#endif
}
static void mdelay(unsigned msecs)
{
int i;
for(i = 0; i < msecs; i++) {
udelay(1000);
}
}
static void delay(unsigned secs)
{
int i;
for(i = 0; i < secs; i++) {
mdelay(1000);
}
}
static void memreset_setup(const struct mem_controller *ctrl)
{
// Set the memreset low
outb((0 << 7)|(0 << 6)|(0<<5)|(0<<4)|(1<<2)|(0<<0), SMBUS_IO_BASE + 0xc0 + 28);
// Ensure the BIOS has control of the memory lines
outb((0 << 7)|(0 << 6)|(0<<5)|(0<<4)|(1<<2)|(0<<0), SMBUS_IO_BASE + 0xc0 + 29);
print_debug("memreset lo\r\n");
}
static void memreset(const struct mem_controller *ctrl)
{
udelay(800);
// Set memreset_high
outb((0<<7)|(0<<6)|(0<<5)|(0<<4)|(1<<2)|(1<<0), SMBUS_IO_BASE + 0xc0 + 28);
print_debug("memreset hi\r\n");
udelay(50);
}
*/
#include "northbridge/amd/amdk8/raminit.c"
#include "northbridge/amd/amdk8/coherent_ht.c"
#include "sdram/generic_sdram.c"
#define NODE_ID 0x60
#define HT_INIT_CONTROL 0x6c
#define HTIC_ColdR_Detect (1<<4)
#define HTIC_BIOSR_Detect (1<<5)
#define HTIC_INIT_Detect (1<<6)
#define APIC_DEFAULT_BASE 0xfee00000
#define APIC_ID 0x020
static int boot_cpu(void)
{
volatile unsigned long *local_apic;
unsigned long apic_id;
int bsp;
int apicEn;
msr_t msr;
msr = rdmsr(0x1b);
bsp = !!(msr.lo & (1 << 8));
apicEn = !!(msr.lo & (1<<11));
if(apicEn) {
print_debug("apic enabled\r\n");
} else {
msr.lo |= (1<<11);
wrmsr(0x1b,msr);
}
apic_id = *((volatile unsigned long *)(APIC_DEFAULT_BASE+APIC_ID));
print_debug("apic_id: ");
print_debug_hex32(apic_id>>24);
print_debug("\r\n");
if (bsp) {
print_debug("Bootstrap cpu\r\n");
} else {
print_debug("Application processor\r\n");
// asm("hlt"); // move to end before halt should notify BSP
// if you start AP in coherent.c you can just stop it here
}
return bsp;
}
static int cpu_init_detected(void)
{
unsigned long dcl;
int cpu_init;
unsigned long htic;
htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL);
#if 0
print_debug("htic: ");
print_debug_hex32(htic);
print_debug("\r\n");
if (!(htic & HTIC_ColdR_Detect)) {
print_debug("Cold Reset.\r\n");
}
if ((htic & HTIC_ColdR_Detect) && !(htic & HTIC_BIOSR_Detect)) {
print_debug("BIOS generated Reset.\r\n");
}
if (htic & HTIC_INIT_Detect) {
print_debug("Init event.\r\n");
}
#endif
cpu_init = (htic & HTIC_INIT_Detect);
if (cpu_init) {
print_debug("CPU INIT Detected.\r\n");
}
return cpu_init;
}
/*
static void print_debug_pci_dev(unsigned dev)
{
print_debug("PCI: ");
print_debug_hex8((dev >> 16) & 0xff);
print_debug_char(':');
print_debug_hex8((dev >> 11) & 0x1f);
print_debug_char('.');
print_debug_hex8((dev >> 8) & 7);
}
static void print_pci_devices(void)
{
device_t dev;
for(dev = PCI_DEV(0, 0, 0);
dev <= PCI_DEV(0, 0x1f, 0x7);
dev += PCI_DEV(0,0,1)) {
uint32_t id;
id = pci_read_config32(dev, PCI_VENDOR_ID);
if (((id & 0xffff) == 0x0000) || ((id & 0xffff) == 0xffff) ||
(((id >> 16) & 0xffff) == 0xffff) ||
(((id >> 16) & 0xffff) == 0x0000)) {
continue;
}
print_debug_pci_dev(dev);
print_debug("\r\n");
}
}
*/
/*
static void dump_pci_device(unsigned dev)
{
int i;
print_debug_pci_dev(dev);
print_debug("\r\n");
for(i = 0; i <= 255; i++) {
unsigned char val;
if ((i & 0x0f) == 0) {
print_debug_hex8(i);
print_debug_char(':');
}
val = pci_read_config8(dev, i);
print_debug_char(' ');
print_debug_hex8(val);
if ((i & 0x0f) == 0x0f) {
print_debug("\r\n");
}
}
}
static void dump_pci_devices(void)
{
device_t dev;
for(dev = PCI_DEV(0, 0, 0);
dev <= PCI_DEV(0, 0x1f, 0x7);
dev += PCI_DEV(0,0,1)) {
uint32_t id;
id = pci_read_config32(dev, PCI_VENDOR_ID);
if (((id & 0xffff) == 0x0000) || ((id & 0xffff) == 0xffff) ||
(((id >> 16) & 0xffff) == 0xffff) ||
(((id >> 16) & 0xffff) == 0x0000)) {
continue;
}
dump_pci_device(dev);
}
}
static void dump_spd_registers(const struct mem_controller *ctrl)
{
int i;
print_debug("\r\n");
for(i = 0; i < 4; i++) {
unsigned device;
device = ctrl->channel0[i];
if (device) {
int j;
print_debug("dimm: ");
print_debug_hex8(i);
print_debug(".0: ");
print_debug_hex8(device);
for(j = 0; j < 256; j++) {
int status;
unsigned char byte;
if ((j & 0xf) == 0) {
print_debug("\r\n");
print_debug_hex8(j);
print_debug(": ");
}
status = smbus_read_byte(device, j);
if (status < 0) {
print_debug("bad device\r\n");
break;
}
byte = status & 0xff;
print_debug_hex8(byte);
print_debug_char(' ');
}
print_debug("\r\n");
}
device = ctrl->channel1[i];
if (device) {
int j;
print_debug("dimm: ");
print_debug_hex8(i);
print_debug(".1: ");
print_debug_hex8(device);
for(j = 0; j < 256; j++) {
int status;
unsigned char byte;
if ((j & 0xf) == 0) {
print_debug("\r\n");
print_debug_hex8(j);
print_debug(": ");
}
status = smbus_read_byte(device, j);
if (status < 0) {
print_debug("bad device\r\n");
break;
}
byte = status & 0xff;
print_debug_hex8(byte);
print_debug_char(' ');
}
print_debug("\r\n");
}
}
}
*/
static void main(void)
{
static const struct mem_controller cpu0 = {
.f0 = PCI_DEV(0, 0x18, 0),
.f1 = PCI_DEV(0, 0x18, 1),
.f2 = PCI_DEV(0, 0x18, 2),
.f3 = PCI_DEV(0, 0x18, 3),
.channel0 = { (0xa<<3)|0, (0xa<<3)|2, 0, 0 },
.channel1 = { (0xa<<3)|1, (0xa<<3)|3, 0, 0 },
};
static const struct mem_controller cpu1 = {
.f0 = PCI_DEV(0, 0x19, 0),
.f1 = PCI_DEV(0, 0x19, 1),
.f2 = PCI_DEV(0, 0x19, 2),
.f3 = PCI_DEV(0, 0x19, 3),
.channel0 = { (0xa<<3)|4, (0xa<<3)|6, 0, 0 },
.channel1 = { (0xa<<3)|5, (0xa<<3)|7, 0, 0 },
};
// device_t dev;
// unsigned where;
unsigned long reg;
// dev = PCI_ADDR(0, 0x19, 0, 0x6C) & ~0xff;
// where = PCI_ADDR(0, 0x19, 0, 0x6C) & 0xff;
#if 0
init_apic_timer();
#endif
uart_init();
console_init();
if (boot_cpu() && !cpu_init_detected()) {
setup_default_resource_map();
setup_coherent_ht_domain();
enumerate_ht_chain();
// print_pci_devices();
enable_smbus();
// sdram_initialize();
// dump_spd_registers(&cpu0);
sdram_initialize(&cpu0);
// dump_spd_registers(&cpu1);
// sdram_initialize(&cpu1);
// dump_pci_device(PCI_DEV(0, 0x18, 2));
#if 0
ram_fill( 0x00100000, 0x00180000);
ram_verify(0x00100000, 0x00180000);
#endif
//#ifdef MEMORY_1024MB
// ram_fill( 0x00000000, 0x00001000);
// ram_verify(0x00000000, 0x00001000);
//#endif
//#ifdef MEMROY_512MB
// ram_fill( 0x00000000, 0x01ffffff);
// ram_verify(0x00000000, 0x01ffffff);
//#endif
/* Check the first 512M */
/* msr_t msr;
msr = rdmsr(TOP_MEM);
print_debug("TOP_MEM: ");
print_debug_hex32(msr.hi);
print_debug_hex32(msr.lo);
print_debug("\r\n");
ram_check(0x00000000, msr.lo);
*/
/*
reg = *((volatile unsigned long *)(APIC_DEFAULT_BASE+APIC_ID));
print_debug("bootstrap cpu apic_id: ");
print_debug_hex32(reg>>24);
print_debug("\r\n");
*/
// Start AP now
reg = pci_read_config32(PCI_DEV(0, 0x19, 0), 0x6C);
reg &= 0xffffff8c;
reg |= 0x00000070;
pci_write_config32(PCI_DEV(0, 0x19, 0), 0x6C, reg); //start AP
for(;;) {
reg = pci_read_config32(PCI_DEV(0, 0x19, 0), 0x6C);
if((reg & (1<<4))==0) break; // wait until AP stop
}
reg |= 1<<4;
pci_write_config32(PCI_DEV(0, 0x19, 0), 0x6C, reg);
}
else {
// Need to init second cpu's APIC id
// It's AP
// apic_write(APIC_ID,(1<<24));
reg = *((volatile unsigned long *)(APIC_DEFAULT_BASE+APIC_ID));
/* print_debug("applicaton cpu apic_id: ");
print_debug_hex32(reg>>24);
print_debug("\r\n");
if((reg>>24)==7){ // FIXME: Need to read NodeID at first.
*((volatile unsigned long *)(APIC_DEFAULT_BASE+APIC_ID))=1<<24;
}*/
if((reg>>24)!=0) {
// before hlt clear the ColdResetbit
//notify BSP that AP is stopped
reg = pci_read_config32(PCI_DEV(0, 0x19, 0), 0x6C);
reg &= ~(1<<4);
pci_write_config32(PCI_DEV(0, 0x19, 0), 0x6C, reg);
asm("hlt");
}
}
}

View file

@ -0,0 +1,74 @@
entries
#start-bit length config config-ID name
#0 8 r 0 seconds
#8 8 r 0 alarm_seconds
#16 8 r 0 minutes
#24 8 r 0 alarm_minutes
#32 8 r 0 hours
#40 8 r 0 alarm_hours
#48 8 r 0 day_of_week
#56 8 r 0 day_of_month
#64 8 r 0 month
#72 8 r 0 year
#80 4 r 0 rate_select
#84 3 r 0 REF_Clock
#87 1 r 0 UIP
#88 1 r 0 auto_switch_DST
#89 1 r 0 24_hour_mode
#90 1 r 0 binary_values_enable
#91 1 r 0 square-wave_out_enable
#92 1 r 0 update_finished_enable
#93 1 r 0 alarm_interrupt_enable
#94 1 r 0 periodic_interrupt_enable
#95 1 r 0 disable_clock_updates
#96 288 r 0 temporary_filler
0 384 r 0 reserved_memory
384 1 e 4 boot_option
385 1 e 4 last_boot
386 1 e 1 ECC_memory
388 4 r 0 reboot_bits
392 3 e 5 baud_rate
400 1 e 1 power_on_after_fail
412 4 e 6 debug_level
416 4 e 7 boot_first
420 4 e 7 boot_second
424 4 e 7 boot_third
428 4 h 0 boot_index
432 8 h 0 boot_countdown
1008 16 h 0 check_sum
enumerations
#ID value text
1 0 Disable
1 1 Enable
2 0 Enable
2 1 Disable
4 0 Fallback
4 1 Normal
5 0 115200
5 1 57600
5 2 38400
5 3 19200
5 4 9600
5 5 4800
5 6 2400
5 7 1200
6 6 Notice
6 7 Info
6 8 Debug
6 9 Spew
7 0 Network
7 1 HDD
7 2 Floppy
7 8 Fallback_Network
7 9 Fallback_HDD
7 10 Fallback_Floppy
#7 3 ROM
checksums
checksum 392 1007 1008

View file

@ -0,0 +1,26 @@
#define ASSEMBLY 1
#include <stdint.h>
#include <device/pci_def.h>
#include <device/pci_ids.h>
#include "arch/romcc_io.h"
#include "pc80/mc146818rtc_early.c"
#include "southbridge/amd/amd8111/amd8111_enable_rom.c"
#include "northbridge/amd/amdk8/early_ht.c"
static void main(void)
{
if (do_normal_boot()) {
/* Nothing special needs to be done to find bus 0 */
/* Allow the HT devices to be found */
enumerate_ht_chain();
/* Setup the 8111 */
amd8111_enable_rom();
/* Jump to the normal image */
asm("jmp __normal_image");
}
}

View file

@ -0,0 +1,37 @@
/* This file was generated by getpir.c, do not modify!
(but if you do, please run checkpir on it to verify)
Contains the IRQ Routing Table dumped directly from your memory , wich BIOS sets up
Documentation at : http://www.microsoft.com/hwdev/busbios/PCIIRQ.HTM
*/
#include <arch/pirq_routing.h>
const struct irq_routing_table intel_irq_routing_table = {
PIRQ_SIGNATURE, /* u32 signature */
PIRQ_VERSION, /* u16 version */
32+16*13, /* there can be total 13 devices on the bus */
0, /* Where the interrupt router lies (bus) */
0x3b, /* Where the interrupt router lies (dev) */
0, /* IRQs devoted exclusively to PCI usage */
0x1022, /* Vendor */
0x746b, /* Device */
0, /* Crap (miniport) */
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* u8 rfu[11] */
0xe8, /* u8 checksum , this hase to set to some value that would give 0 after the sum of all bytes for this structure (including checksum) */
{
{0,0x38, {{0x1, 0xdef8}, {0x2, 0xdef8}, {0x3, 0xdef8}, {0x4, 0xdef8}}, 0, 0},
{0x3,0, {{0, 0}, {0, 0}, {0, 0}, {0x4, 0xdef8}}, 0, 0},
{0x2,0x18, {{0x1, 0xdef8}, {0x2, 0xdef8}, {0x3, 0xdef8}, {0x4, 0xdef8}}, 0x1, 0},
{0x2,0x30, {{0x2, 0xdef8}, {0x3, 0xdef8}, {0x4, 0xdef8}, {0x1, 0xdef8}}, 0x2, 0},
{0x2,0x20, {{0x2, 0xdef8}, {0x3, 0xdef8}, {0x4, 0xdef8}, {0x1, 0xdef8}}, 0x6, 0},
{0x1,0x40, {{0x4, 0xdef8}, {0x1, 0xdef8}, {0x2, 0xdef8}, {0x3, 0xdef8}}, 0x3, 0},
{0x1,0x38, {{0x3, 0xdef8}, {0x4, 0xdef8}, {0x1, 0xdef8}, {0x2, 0xdef8}}, 0x4, 0},
{0x3,0x8, {{0x1, 0xdef8}, {0, 0}, {0, 0}, {0, 0}}, 0, 0},
{0x3,0x30, {{0x3, 0xdef8}, {0, 0}, {0, 0}, {0, 0}}, 0, 0},
{0x3,0x20, {{0x1, 0xdef8}, {0x2, 0xdef8}, {0x3, 0xdef8}, {0x4, 0xdef8}}, 0x5, 0},
{0x1,0x48, {{0x1, 0xdef8}, {0x2, 0xdef8}, {0, 0}, {0, 0}}, 0, 0},
{0x3,0x28, {{0x2, 0xdef8}, {0, 0}, {0, 0}, {0, 0}}, 0, 0},
{0x1,0x50, {{0x1, 0xdef8}, {0x2, 0xdef8}, {0, 0}, {0, 0}}, 0, 0},
}
};

View file

@ -0,0 +1,120 @@
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
#include <part/mainboard.h>
//#include "lsi_scsi.c"
unsigned long initial_apicid[MAX_CPUS] =
{
0,1
};
/*
static void fixup_lsi_53c1030(struct device *pdev)
{
// uint8_t byte;
uint16_t word;
byte = 1;
pci_write_config8(pdev, 0xff, byte);
// Set the device id
// pci_write_config_word(pdev, PCI_DEVICE_ID, PCI_DEVICE_ID_LSILOGIC_53C1030);
// Set the subsytem vendor id
// pci_write_config16(pdev, PCI_SUBSYSTEM_VENDOR_ID, PCI_VENDOR_ID_TYAN);
word = 0x10f1;
pci_write_config16(pdev, PCI_SUBSYSTEM_VENDOR_ID, word);
// Set the subsytem id
word = 0x2880;
pci_write_config16(pdev, PCI_SUBSYSTEM_ID, word);
// Disable writes to the device id
byte = 0;
pci_write_config8(pdev, 0xff, byte);
// lsi_scsi_init(pdev);
}
//extern static void lsi_scsi_init(struct device *dev);
static void print_pci_regs(struct device *dev)
{
uint8_t byte;
int i;
for(i=0;i<256;i++) {
byte = pci_read_config8(dev, i);
if((i%16)==0) printk_info("\n %02x:",i);
printk_debug(" %02x ",byte);
}
printk_debug("\r\n");
// pci_write_config8(dev, 0x4, byte);
}
*/
static void onboard_scsi_fixup(void)
{
struct device *dev;
/*
// Set the scsi device id's
printk_debug("%2d:%2d:%2d\n",0,1,0);
dev = dev_find_slot(0, PCI_DEVFN(0x1, 0));
if (dev) {
}
// Set the scsi device id's
printk_debug("%2d:%2d:%2d\n",0,2,0);
dev = dev_find_slot(0, PCI_DEVFN(0x2, 0));
if (dev) {
print_pci_regs(dev);
}
// Set the scsi device id's
printk_debug("%2d:%2d:%2d\n",1,0xa,0);
dev = dev_find_slot(1, PCI_DEVFN(0xa, 0));
if (dev) {
print_pci_regs(dev);
}
// Set the scsi device id's
printk_debug("%2d:%2d:%2d\n",1,0xa,1);
dev = dev_find_slot(1, PCI_DEVFN(0xa, 1));
if (dev) {
print_pci_regs(dev);
}
printk_debug("%2d:%2d:%2d\n",1,9,0);
dev = dev_find_slot(1, PCI_DEVFN(0x9, 0));
if (dev) {
print_pci_regs(dev);
}
// Set the scsi device id's
printk_debug("%2d:%2d:%2d\n",1,9,1);
dev = dev_find_slot(1, PCI_DEVFN(0x9, 1));
if (dev) {
print_pci_regs(dev);
}
*/
/*
dev = dev_find_device(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1030,0);
if(!dev) {
printk_info("LSI_SCSI_FW_FIXUP: No Device Found!");
return;
}
lsi_scsi_init(dev);
*/
}
void mainboard_fixup(void)
{
printk_debug("Enter mainboard_fixup\r\n");
// onboard_device_fixup
onboard_scsi_fixup();
printk_debug("mainboard fixup done\r\n");
}
void final_mainboard_fixup(void)
{
#if 0
enable_ide_devices();
#endif
}

View file

@ -0,0 +1,99 @@
#include <console/console.h>
#include <arch/smp/mpspec.h>
#include <device/pci.h>
#include <string.h>
#include <stdint.h>
void *smp_write_config_table(void *v, unsigned long * processor_map)
{
static const char sig[4] = "PCMP";
static const char oem[8] = "TYAN ";
static const char productid[12] = "S2880 ";
struct mp_config_table *mc;
mc = (void *)(((char *)v) + SMP_FLOATING_TABLE_LEN);
memset(mc, 0, sizeof(*mc));
memcpy(mc->mpc_signature, sig, sizeof(sig));
mc->mpc_length = sizeof(*mc); /* initially just the header */
mc->mpc_spec = 0x04;
mc->mpc_checksum = 0; /* not yet computed */
memcpy(mc->mpc_oem, oem, sizeof(oem));
memcpy(mc->mpc_productid, productid, sizeof(productid));
mc->mpc_oemptr = 0;
mc->mpc_oemsize = 0;
mc->mpc_entry_count = 0; /* No entries yet... */
mc->mpc_lapic = LAPIC_ADDR;
mc->mpe_length = 0;
mc->mpe_checksum = 0;
mc->reserved = 0;
smp_write_processors(mc, processor_map);
/*Bus: Bus ID Type*/
smp_write_bus(mc, 0, "PCI ");
smp_write_bus(mc, 1, "PCI ");
smp_write_bus(mc, 2, "PCI ");
smp_write_bus(mc, 3, "PCI ");
smp_write_bus(mc, 4, "ISA ");
/*I/O APICs: APIC ID Version State Address*/
smp_write_ioapic(mc, 2, 0x11, 0xfec00000);
{
struct pci_dev *dev;
uint32_t base;
dev = dev_find_slot(0, PCI_DEVFN(0x1,1));
if (dev) {
base = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
base &= PCI_BASE_ADDRESS_MEM_MASK;
smp_write_ioapic(mc, 3, 0x11, base);
}
dev = dev_find_slot(0, PCI_DEVFN(0x2,1));
if (dev) {
base = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
base &= PCI_BASE_ADDRESS_MEM_MASK;
smp_write_ioapic(mc, 4, 0x11, base);
}
}
/*I/O Ints: Type Polarity Trigger Bus ID IRQ APIC ID PIN#
*/ smp_write_intsrc(mc, mp_ExtINT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x0, 0x2, 0x0);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x1, 0x2, 0x1);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x0, 0x2, 0x2);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x3, 0x2, 0x3);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x4, 0x2, 0x4);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x6, 0x2, 0x6);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x7, 0x2, 0x7);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0x8, 0x2, 0x8);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0xc, 0x2, 0xc);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0xd, 0x2, 0xd);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0xe, 0x2, 0xe);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x4, 0xf, 0x2, 0xf);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x3, 0x3, 0x2, 0x13);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x3, 0x18, 0x2, 0x12);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x3, 0x14, 0x2, 0x11);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x1, 0x24, 0x3, 0x0);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x1, 0x25, 0x3, 0x1);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x1, 0x28, 0x3, 0x0);
smp_write_intsrc(mc, mp_INT, MP_IRQ_TRIGGER_LEVEL|MP_IRQ_POLARITY_LOW, 0x1, 0x29, 0x3, 0x1);
/*Local Ints: Type Polarity Trigger Bus ID IRQ APIC ID PIN#*/
smp_write_intsrc(mc, mp_ExtINT, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x0, 0x0, MP_APIC_ALL, 0x0);
smp_write_intsrc(mc, mp_NMI, MP_IRQ_TRIGGER_EDGE|MP_IRQ_POLARITY_HIGH, 0x0, 0x0, MP_APIC_ALL, 0x1);
/* There is no extension information... */
/* Compute the checksums */
mc->mpe_checksum = smp_compute_checksum(smp_next_mpc_entry(mc), mc->mpe_length);
mc->mpc_checksum = smp_compute_checksum(mc, mc->mpc_length);
printk_debug("Wrote the mp table end at: %p - %p\n",
mc, smp_next_mpe_entry(mc));
return smp_next_mpe_entry(mc);
}
unsigned long write_smp_table(unsigned long addr, unsigned long *processor_map)
{
void *v;
v = smp_write_floating_table(addr);
return (unsigned long)smp_write_config_table(v, processor_map);
}

View file

@ -104,12 +104,12 @@ static void enable_routing(u8 node)
*
*/
/* Enable routing table for BSP */
/* Enable routing table */
print_debug("Enabling routing table for node ");
print_debug_hex32(node);
val=pci_read_config32(NODE_HT(node), 0x6c);
val &= ~((1<<1)|(1<<0));
val &= ~((1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0));
pci_write_config32(NODE_HT(node), 0x6c, val);
print_debug(" done.\r\n");

View file

@ -2,22 +2,91 @@
#include <stdint.h>
#include <mem.h>
#include <part/sizeram.h>
#include <device/device.h>
#include <device/pci.h>
#include <console/console.h>
struct mem_range *sizeram(void)
{
static struct mem_range mem[3];
uint32_t size;
/* Convert size in bytes to size in K */
#warning "FINISH sizeram"
/* FIXME hardcoded for now */
size = 512*1024;
unsigned long mmio_basek;
static struct mem_range mem[10];
device_t dev;
int i, idx;
mem[0].basek = 0;
mem[0].sizek = 640;
mem[1].basek = 960;
mem[1].sizek = size - mem[1].basek;
mem[2].basek = 0;
mem[2].sizek = 0;
#warning "FIXME handle interleaved nodes"
dev = dev_find_slot(0, PCI_DEVFN(0x18, 1));
if (!dev) {
return 0;
}
mmio_basek = (dev_root.resource[1].base >> 10);
/* Round mmio_basek to something the processor can support */
mmio_basek &= ~((1 << 6) -1);
#if 1
#warning "FIXME improve mtrr.c so we don't use up all of the mtrrs with a 64M MMIO hole"
/* Round the mmio hold to 256M */
mmio_basek &= ~((256*1024) - 1);
#endif
/* Temporary hack to get mmio handling working */
for(i = 0; i < 8; i++) {
#warning "FIXME handle multiple Hypertransport chains in device.c"
device_t node;
node = dev_find_slot(0, PCI_DEVFN(0x18 + i, 1));
pci_write_config32(node, 0xB8, ((mmio_basek >> 6) << 8) | (1<<1) | (1 << 0));
pci_write_config32(node, 0xBC, 0x00ffff00);
}
for(idx = i = 0; i < 8; i++) {
uint32_t base, limit;
unsigned basek, limitk, sizek;
base = pci_read_config32(dev, 0x40 + (i<<3));
limit = pci_read_config32(dev, 0x44 + (i<<3));
if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
continue;
}
basek = (base & 0xffff0000) >> 2;
limitk = ((limit + 0x00010000) & 0xffff0000) >> 2;
sizek = limitk - basek;
if ((idx > 0) &&
((mem[idx -1].basek + mem[idx - 1].sizek) == basek)) {
mem[idx -1].sizek += sizek;
}
else {
mem[idx].basek = basek;
mem[idx].sizek = sizek;
idx++;
}
/* See if I need to split the region to accomodate pci memory space */
if ((mem[idx - 1].basek <= mmio_basek) &&
((mem[idx - 1].basek + mem[idx - 1].sizek) > mmio_basek)) {
if (mem[idx - 1].basek < mmio_basek) {
unsigned pre_sizek;
pre_sizek = mmio_basek - mem[idx - 1].basek;
mem[idx].basek = mmio_basek;
mem[idx].sizek = mem[idx - 1].sizek - pre_sizek;
mem[idx - 1].sizek = pre_sizek;
idx++;
}
if ((mem[idx - 1].basek + mem[idx - 1].sizek) <= 4*1024*1024) {
idx -= 1;
}
else {
mem[idx - 1].basek = 4*1024*1024;
mem[idx - 1].sizek -= (4*1024*1024 - mmio_basek);
}
}
}
#if 0
for(i = 0; i < idx; i++) {
printk_debug("mem[%d].basek = %08x mem[%d].sizek = %08x\n",
i, mem[i].basek, i, mem[i].sizek);
}
#endif
while(idx < sizeof(mem)/sizeof(mem[0])) {
mem[idx].basek = 0;
mem[idx].sizek = 0;
idx++;
}
return mem;
}

View file

@ -922,10 +922,9 @@ static void sdram_set_registers(const struct mem_controller *ctrl)
};
int i;
int max;
#if 1
memreset_setup(ctrl);
#endif
print_debug("setting up CPU0 northbridge registers\r\n");
print_debug("setting up CPU");
print_debug_hex8(ctrl->node_id);
print_debug(" northbridge registers\r\n");
max = sizeof(register_values)/sizeof(register_values[0]);
for(i = 0; i < max; i += 3) {
device_t dev;
@ -1001,43 +1000,43 @@ static struct dimm_size spd_get_dimm_size(unsigned device)
* a multiple of 4MB. The way we do it now we can size both
* sides of an assymetric dimm.
*/
value = smbus_read_byte(device, 3); /* rows */
value = spd_read_byte(device, 3); /* rows */
if (value < 0) goto out;
sz.side1 += value & 0xf;
value = smbus_read_byte(device, 4); /* columns */
value = spd_read_byte(device, 4); /* columns */
if (value < 0) goto out;
sz.side1 += value & 0xf;
value = smbus_read_byte(device, 17); /* banks */
value = spd_read_byte(device, 17); /* banks */
if (value < 0) goto out;
sz.side1 += log2(value & 0xff);
/* Get the module data width and convert it to a power of two */
value = smbus_read_byte(device, 7); /* (high byte) */
value = spd_read_byte(device, 7); /* (high byte) */
if (value < 0) goto out;
value &= 0xff;
value <<= 8;
low = smbus_read_byte(device, 6); /* (low byte) */
low = spd_read_byte(device, 6); /* (low byte) */
if (low < 0) goto out;
value = value | (low & 0xff);
sz.side1 += log2(value);
/* side 2 */
value = smbus_read_byte(device, 5); /* number of physical banks */
value = spd_read_byte(device, 5); /* number of physical banks */
if (value <= 1) goto out;
/* Start with the symmetrical case */
sz.side2 = sz.side1;
value = smbus_read_byte(device, 3); /* rows */
value = spd_read_byte(device, 3); /* rows */
if (value < 0) goto out;
if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
value = smbus_read_byte(device, 4); /* columns */
value = spd_read_byte(device, 4); /* columns */
if (value < 0) goto out;
sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in columsn on side 2 */
@ -1121,24 +1120,29 @@ static void spd_set_ram_size(const struct mem_controller *ctrl)
static void route_dram_accesses(const struct mem_controller *ctrl,
unsigned long base_k, unsigned long limit_k)
{
#warning "FIXME this is hardcoded for one cpu"
/* Route the addresses to the controller node */
unsigned node_id;
unsigned limit;
unsigned base;
node_id = 0;
/* Route the addresses to node 0 */
unsigned index;
unsigned limit_reg, base_reg;
device_t device;
node_id = ctrl->node_id;
index = (node_id << 3);
limit = (limit_k << 2);
limit &= 0xffff0000;
limit -= 0x00010000;
limit |= ( 0 << 8) | (node_id << 0);
base = (base_k << 2);
base &= 0xffff0000;
pci_write_config32(ctrl->f1, 0x44, limit | (0 << 8) | (node_id << 0));
pci_write_config32(ctrl->f1, 0x40, base | (0 << 8) | (1<<1) | (1<<0));
base |= (0 << 8) | (1<<1) | (1<<0);
#if 1
pci_write_config32(PCI_DEV(0, 0x19, 1), 0x44, limit | (0 << 8) | (1 << 4) | (node_id << 0));
pci_write_config32(PCI_DEV(0, 0x19, 1), 0x40, base | (0 << 8) | (1<<1) | (1<<0));
#endif
limit_reg = 0x44 + index;
base_reg = 0x40 + index;
for(device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); device += PCI_DEV(0, 1, 0)) {
pci_write_config32(device, limit_reg, limit);
pci_write_config32(device, base_reg, base);
}
}
static void set_top_mem(unsigned tom_k)
@ -1148,6 +1152,13 @@ static void set_top_mem(unsigned tom_k)
die("No memory");
}
#if 1
/* Report the amount of memory. */
print_debug("RAM: 0x");
print_debug_hex32(tom_k);
print_debug(" KB\r\n");
#endif
/* Now set top of memory */
msr_t msr;
msr.lo = (tom_k & 0x003fffff) << 10;
@ -1163,21 +1174,28 @@ static void set_top_mem(unsigned tom_k)
msr.lo = (tom_k & 0x003fffff) << 10;
msr.hi = (tom_k & 0xffc00000) >> 22;
wrmsr(TOP_MEM, msr);
#if 1
/* And report the amount of memory. */
print_debug("RAM: 0x");
print_debug_hex32(tom_k);
print_debug(" KB\r\n");
#endif
}
static void order_dimms(const struct mem_controller *ctrl)
{
unsigned long tom, tom_k;
unsigned long tom, tom_k, base_k;
unsigned node_id;
/* Compute the memory base address address */
base_k = 0;
for(node_id = 0; node_id < ctrl->node_id; node_id++) {
uint32_t limit, base;
unsigned index;
index = node_id << 3;
base = pci_read_config32(ctrl->f1, 0x40 + index);
/* Only look at the limit if the base is enabled */
if ((base & 3) == 3) {
limit = pci_read_config32(ctrl->f1, 0x44 + index);
base_k = ((limit + 0x00010000) & 0xffff0000) >> 2;
}
}
/* Remember which registers we have used in the high 8 bits of tom */
tom = 0;
tom = base_k >> 15;
for(;;) {
/* Find the largest remaining canidate */
unsigned index, canidate;
@ -1212,12 +1230,24 @@ static void order_dimms(const struct mem_controller *ctrl)
break;
}
/* Remember I have used this register */
tom |= (1 << (canidate + 24));
/* Remember the dimm size */
size = csbase >> 21;
/* If this is the first chip select, round base_k to
* be a multiple of it's size. Then set tom to equal
* base_k.
* I assume that size is a power of two.
*/
if ((tom & 0xff000000) == 0) {
unsigned size_k;
size_k = size << 15;
base_k = (base_k + size_k -1) & ~(size_k -1);
tom = base_k >> 15;
}
/* Remember I have used this register */
tom |= (1 << (canidate + 24));
/* Recompute the cs base register value */
csbase = (tom << 21) | 1;
@ -1239,11 +1269,13 @@ static void order_dimms(const struct mem_controller *ctrl)
#if 0
print_debug("tom: ");
print_debug_hex32(tom);
print_debug(" base_k: ");
print_debug_hex32(base_k);
print_debug(" tom_k: ");
print_debug_hex32(tom_k);
print_debug("\r\n");
#endif
route_dram_accesses(ctrl, 0, tom_k);
route_dram_accesses(ctrl, base_k, tom_k);
set_top_mem(tom_k);
}
@ -1267,7 +1299,7 @@ static void spd_handle_unbuffered_dimms(const struct mem_controller *ctrl)
registered = 0;
for(i = 0; (i < 4) && (ctrl->channel0[i]); i++) {
int value;
value = smbus_read_byte(ctrl->channel0[i], 21);
value = spd_read_byte(ctrl->channel0[i], 21);
if (value < 0) {
disable_dimm(ctrl, i);
continue;
@ -1307,31 +1339,30 @@ static void spd_enable_2channels(const struct mem_controller *ctrl)
{
int i;
uint32_t nbcap;
/* SMBUS addresses to verify are identical */
/* SPD addresses to verify are identical */
#warning "FINISHME review and see if these are the bytes I need"
/* FINISHME review and see if these are the bytes I need */
static const unsigned addresses[] = {
2, /* Type should be DDR SDRAM */
3, /* Row addresses */
4, /* Column addresses */
5, /* Physical Banks */
6, /* Module Data Width low */
7, /* Module Data Width high */
9, /* Cycle time at highest CAS Latency CL=X */
11, /* SDRAM Type */
12, /* Refresh Interval */
13, /* SDRAM Width */
15, /* Back-to-Back Random Column Access */
16, /* Burst Lengths */
17, /* Logical Banks */
18, /* Supported CAS Latencies */
23, /* Cycle time at CAS Latnecy (CLX - 0.5) */
26, /* Cycle time at CAS Latnecy (CLX - 1.0) */
27, /* tRP Row precharge time */
29, /* tRCD RAS to CAS */
30, /* tRAS Activate to Precharge */
31, /* Module Bank Density */
33, /* Address and Command Hold Time After Clock */
3, /* *Row addresses */
4, /* *Column addresses */
5, /* *Physical Banks */
6, /* *Module Data Width low */
7, /* *Module Data Width high */
9, /* *Cycle time at highest CAS Latency CL=X */
11, /* *SDRAM Type */
13, /* *SDRAM Width */
17, /* *Logical Banks */
18, /* *Supported CAS Latencies */
21, /* *SDRAM Module Attributes */
23, /* *Cycle time at CAS Latnecy (CLX - 0.5) */
26, /* *Cycle time at CAS Latnecy (CLX - 1.0) */
27, /* *tRP Row precharge time */
28, /* *Minimum Row Active to Row Active Delay (tRRD) */
29, /* *tRCD RAS to CAS */
30, /* *tRAS Activate to Precharge */
41, /* *Minimum Active to Active/Auto Refresh Time(Trc) */
42, /* *Minimum Auto Refresh Command Time(Trfc) */
};
nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
if (!(nbcap & NBCAP_128Bit)) {
@ -1348,11 +1379,11 @@ static void spd_enable_2channels(const struct mem_controller *ctrl)
for(j = 0; j < sizeof(addresses)/sizeof(addresses[0]); j++) {
unsigned addr;
addr = addresses[j];
value0 = smbus_read_byte(device0, addr);
value0 = spd_read_byte(device0, addr);
if (value0 < 0) {
break;
}
value1 = smbus_read_byte(device1, addr);
value1 = spd_read_byte(device1, addr);
if (value1 < 0) {
return;
}
@ -1498,7 +1529,7 @@ static const struct mem_param *spd_set_memclk(const struct mem_controller *ctrl)
new_cycle_time = 0xa0;
new_latency = 5;
latencies = smbus_read_byte(ctrl->channel0[i], 18);
latencies = spd_read_byte(ctrl->channel0[i], 18);
if (latencies <= 0) continue;
/* Compute the lowest cas latency supported */
@ -1511,7 +1542,7 @@ static const struct mem_param *spd_set_memclk(const struct mem_controller *ctrl)
(!(latencies & (1 << latency)))) {
continue;
}
value = smbus_read_byte(ctrl->channel0[i], latency_indicies[index]);
value = spd_read_byte(ctrl->channel0[i], latency_indicies[index]);
if (value < 0) {
continue;
}
@ -1553,7 +1584,7 @@ static const struct mem_param *spd_set_memclk(const struct mem_controller *ctrl)
int index;
int value;
int dimm;
latencies = smbus_read_byte(ctrl->channel0[i], 18);
latencies = spd_read_byte(ctrl->channel0[i], 18);
if (latencies <= 0) {
goto dimm_err;
}
@ -1575,7 +1606,7 @@ static const struct mem_param *spd_set_memclk(const struct mem_controller *ctrl)
}
/* Read the min_cycle_time for this latency */
value = smbus_read_byte(ctrl->channel0[i], latency_indicies[index]);
value = spd_read_byte(ctrl->channel0[i], latency_indicies[index]);
/* All is good if the selected clock speed
* is what I need or slower.
@ -1619,7 +1650,7 @@ static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_p
unsigned clocks, old_clocks;
uint32_t dtl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 41);
value = spd_read_byte(ctrl->channel0[i], 41);
if (value < 0) return -1;
if ((value == 0) || (value == 0xff)) {
value = param->tRC;
@ -1648,7 +1679,7 @@ static int update_dimm_Trfc(const struct mem_controller *ctrl, const struct mem_
unsigned clocks, old_clocks;
uint32_t dtl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 42);
value = spd_read_byte(ctrl->channel0[i], 42);
if (value < 0) return -1;
if ((value == 0) || (value == 0xff)) {
value = param->tRFC;
@ -1677,7 +1708,7 @@ static int update_dimm_Trcd(const struct mem_controller *ctrl, const struct mem_
unsigned clocks, old_clocks;
uint32_t dtl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 29);
value = spd_read_byte(ctrl->channel0[i], 29);
if (value < 0) return -1;
#if 0
clocks = (value + (param->divisor << 1) -1)/(param->divisor << 1);
@ -1706,7 +1737,7 @@ static int update_dimm_Trrd(const struct mem_controller *ctrl, const struct mem_
unsigned clocks, old_clocks;
uint32_t dtl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 28);
value = spd_read_byte(ctrl->channel0[i], 28);
if (value < 0) return -1;
clocks = (value + ((param->divisor & 0xff) << 1) -1)/((param->divisor & 0xff) << 1);
if (clocks < DTL_TRRD_MIN) {
@ -1731,7 +1762,7 @@ static int update_dimm_Tras(const struct mem_controller *ctrl, const struct mem_
unsigned clocks, old_clocks;
uint32_t dtl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 30);
value = spd_read_byte(ctrl->channel0[i], 30);
if (value < 0) return -1;
clocks = ((value << 1) + param->divisor - 1)/param->divisor;
if (clocks < DTL_TRAS_MIN) {
@ -1756,7 +1787,7 @@ static int update_dimm_Trp(const struct mem_controller *ctrl, const struct mem_p
unsigned clocks, old_clocks;
uint32_t dtl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 27);
value = spd_read_byte(ctrl->channel0[i], 27);
if (value < 0) return -1;
#if 0
clocks = (value + (param->divisor << 1) - 1)/(param->divisor << 1);
@ -1813,7 +1844,7 @@ static int update_dimm_Tref(const struct mem_controller *ctrl, const struct mem_
uint32_t dth;
int value;
unsigned tref, old_tref;
value = smbus_read_byte(ctrl->channel0[i], 3);
value = spd_read_byte(ctrl->channel0[i], 3);
if (value < 0) return -1;
value &= 0xf;
@ -1841,7 +1872,7 @@ static int update_dimm_x4(const struct mem_controller *ctrl, const struct mem_pa
uint32_t dcl;
int value;
int dimm;
value = smbus_read_byte(ctrl->channel0[i], 13);
value = spd_read_byte(ctrl->channel0[i], 13);
if (value < 0) {
return -1;
}
@ -1860,7 +1891,7 @@ static int update_dimm_ecc(const struct mem_controller *ctrl, const struct mem_p
{
uint32_t dcl;
int value;
value = smbus_read_byte(ctrl->channel0[i], 11);
value = spd_read_byte(ctrl->channel0[i], 11);
if (value < 0) {
return -1;
}
@ -2169,78 +2200,89 @@ static void sdram_set_spd_registers(const struct mem_controller *ctrl)
}
#define TIMEOUT_LOOPS 300000
static void sdram_enable(const struct mem_controller *ctrl)
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
uint32_t dcl, dch;
int i;
/* Before enabling memory start the memory clocks */
dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
dch |= DCH_MEMCLK_VALID;
pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
for(i = 0; i < controllers; i++) {
uint32_t dch;
dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
dch |= DCH_MEMCLK_VALID;
pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch);
}
/* And if necessary toggle the the reset on the dimms by hand */
memreset(ctrl);
/* Toggle DisDqsHys to get it working */
dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
print_debug("dcl: ");
print_debug_hex32(dcl);
print_debug("\r\n");
memreset(controllers, ctrl);
for(i = 0; i < controllers; i++) {
uint32_t dcl;
/* Toggle DisDqsHys to get it working */
dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
#if 0
print_debug("dcl: ");
print_debug_hex32(dcl);
print_debug("\r\n");
#endif
#if 1
dcl &= ~DCL_DimmEccEn;
#endif
#warning "FIXME set the ECC type to perform"
#warning "FIXME initialize the scrub registers"
#if 0
if (dcl & DCL_DimmEccEn) {
print_debug("ECC enabled\r\n");
}
#endif
dcl |= DCL_DisDqsHys;
pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
dcl &= ~DCL_DisDqsHys;
dcl &= ~DCL_DLL_Disable;
dcl &= ~DCL_D_DRV;
dcl &= ~DCL_QFC_EN;
dcl |= DCL_DramInit;
pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
print_debug("Initializing memory: ");
int loops = 0;
do {
dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
loops += 1;
if ((loops & 1023) == 0) {
print_debug(".");
if (dcl & DCL_DimmEccEn) {
print_debug("ECC enabled\r\n");
}
} while(((dcl & DCL_DramInit) != 0) && (loops < TIMEOUT_LOOPS));
if (loops >= TIMEOUT_LOOPS) {
print_debug(" failed\r\n");
} else {
print_debug(" done\r\n");
#endif
dcl |= DCL_DisDqsHys;
pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
dcl &= ~DCL_DisDqsHys;
dcl &= ~DCL_DLL_Disable;
dcl &= ~DCL_D_DRV;
dcl &= ~DCL_QFC_EN;
dcl |= DCL_DramInit;
pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
}
#if 0
if (dcl & DCL_DimmEccEn) {
print_debug("Clearing memory: ");
loops = 0;
dcl &= ~DCL_MemClrStatus;
pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
for(i = 0; i < controllers; i++) {
uint32_t dcl;
print_debug("Initializing memory: ");
int loops = 0;
do {
dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
loops += 1;
if ((loops & 1023) == 0) {
print_debug(" ");
print_debug_hex32(loops);
print_debug(".");
}
} while(((dcl & DCL_MemClrStatus) == 0) && (loops < TIMEOUT_LOOPS));
} while(((dcl & DCL_DramInit) != 0) && (loops < TIMEOUT_LOOPS));
if (loops >= TIMEOUT_LOOPS) {
print_debug("failed\r\n");
print_debug(" failed\r\n");
} else {
print_debug("done\r\n");
print_debug(" done\r\n");
}
#if 0
if (dcl & DCL_DimmEccEn) {
print_debug("Clearing memory: ");
loops = 0;
dcl &= ~DCL_MemClrStatus;
pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
do {
dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
loops += 1;
if ((loops & 1023) == 0) {
print_debug(" ");
print_debug_hex32(loops);
}
} while(((dcl & DCL_MemClrStatus) == 0) && (loops < TIMEOUT_LOOPS));
if (loops >= TIMEOUT_LOOPS) {
print_debug("failed\r\n");
} else {
print_debug("done\r\n");
}
pci_write_config32(ctrl[i].f3, SCRUB_ADDR_LOW, 0);
pci_write_config32(ctrl[i].f3, SCRUB_ADDR_HIGH, 0);
}
pci_write_config32(ctrl->f3, SCRUB_ADDR_LOW, 0);
pci_write_config32(ctrl->f3, SCRUB_ADDR_HIGH, 0);
}
#endif
}
}

View file

@ -2,6 +2,7 @@
#define RAMINIT_H
struct mem_controller {
unsigned node_id;
device_t f0, f1, f2, f3;
uint8_t channel0[4];
uint8_t channel1[4];

View file

@ -34,10 +34,12 @@ static int cpu_init_detected(void)
return cpu_init;
}
static void distinguish_cpu_resets(void)
static void distinguish_cpu_resets(unsigned node_id)
{
uint32_t htic;
htic = pci_read_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL);
device_t device;
device = PCI_DEV(0, 0x18 + node_id, 0);
htic = pci_read_config32(device, HT_INIT_CONTROL);
htic |= HTIC_ColdR_Detect | HTIC_BIOSR_Detect | HTIC_INIT_Detect;
pci_write_config32(PCI_DEV(0, 0x18, 0), HT_INIT_CONTROL, htic);
pci_write_config32(device, HT_INIT_CONTROL, htic);
}

View file

@ -4,7 +4,7 @@
#ifndef MAX_REBOOT_CNT
#error "MAX_REBOOT_CNT not defined"
#endif
#if MAX_REBOOT_CNT > 14
#if MAX_REBOOT_CNT > 15
#error "MAX_REBOOT_CNT too high"
#endif
@ -78,6 +78,12 @@ static int do_normal_boot(void)
byte &= 0x0f; /* yes, clear the boot count */
}
/* Properly set the last boot flag */
byte &= 0xfc;
if ((byte >> 4) < MAX_REBOOT_CNT) {
byte |= (1<<1);
}
/* Are we already at the max count? */
if ((byte >> 4) < MAX_REBOOT_CNT) {
byte += 1 << 4; /* No, add 1 to the count */
@ -86,13 +92,8 @@ static int do_normal_boot(void)
byte &= 0xfc; /* Yes, put in fallback mode */
}
/* Is this the first boot? */
if ((byte >> 4) <= 1) {
byte = (byte & 0xfc) | ((byte & 1) << 1); /* yes, shift the boot bits */
}
/* Save the boot byte */
cmos_write(byte, RTC_BOOT_BYTE);
return ((byte >> 4) < MAX_REBOOT_CNT);
return (byte & (1<<1));
}

View file

@ -7,22 +7,31 @@ void sdram_no_memory(void)
}
/* Setup SDRAM */
void sdram_initialize(const struct mem_controller *ctrl)
void sdram_initialize(int controllers, const struct mem_controller *ctrl)
{
print_debug("Ram1\r\n");
int i;
/* Set the registers we can set once to reasonable values */
sdram_set_registers(ctrl);
for(i = 0; i < controllers; i++) {
print_debug("Ram1.");
print_debug_hex8(i);
print_debug("\r\n");
sdram_set_registers(ctrl + i);
}
print_debug("Ram2\r\n");
/* Now setup those things we can auto detect */
sdram_set_spd_registers(ctrl);
for(i = 0; i < controllers; i++) {
print_debug("Ram2.");
print_debug_hex8(i);
print_debug("\r\n");
sdram_set_spd_registers(ctrl + i);
}
print_debug("Ram3\r\n");
/* Now that everything is setup enable the SDRAM.
* Some chipsets do the work for use while on others
* we need to it by hand.
*/
sdram_enable(ctrl);
print_debug("Ram3\r\n");
sdram_enable(controllers, ctrl);
print_debug("Ram4\r\n");
}

View file

@ -87,6 +87,7 @@ static void setup_ioapic(void)
static void lpc_init(struct device *dev)
{
uint8_t byte;
uint16_t word;
int pwr_on=-1;
printk_debug("lpc_init\n");
@ -101,6 +102,13 @@ static void lpc_init(struct device *dev)
byte = pci_read_config8(dev, 0x46);
pci_write_config8(dev, 0x46, byte | (1<<0));
//BY LYH
/* Disable AC97 and Ethernet */
word = pci_read_config16(dev, 0x48);
pci_write_config16(dev, 0x48, word & ~((1<<5)|(1<<6)|(1<<9)));
//BY LYH END
/* power after power fail */
byte = pci_read_config8(dev, 0x43);
if (pwr_on) {

View file

@ -0,0 +1,38 @@
//2003 Copywright Tyan
//BY LYH
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_ops.h>
static void usb2_init(struct device *dev)
{
uint32_t cmd;
printk_debug("USB: Setting up controller.. ");
cmd = pci_read_config32(dev, PCI_COMMAND);
pci_write_config32(dev, PCI_COMMAND,
cmd | PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER | PCI_COMMAND_INVALIDATE);
printk_debug("done.\n");
}
static struct device_operations usb_ops = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.init = usb2_init,
.scan_bus = 0,
};
static struct pci_driver usb2_driver __pci_driver = {
.ops = &usb_ops,
.vendor = PCI_VENDOR_ID_AMD,
.device = PCI_DEVICE_ID_AMD_8111_USB2,
};

View file

@ -14,7 +14,7 @@
#define DEBUG_ERROR_MESSAGES 0
#define DEBUG_COLOR_GRAPH 0
#define DEBUG_SCC 0
#define DEBUG_CONSISTENCY 2
#define DEBUG_CONSISTENCY 1
#define DEBUG_RANGE_CONFLICTS 0
#define DEBUG_COALESCING 0
#define DEBUG_SDP_BLOCKS 0
@ -12952,6 +12952,23 @@ static void verify_graph_ins(
return;
}
#if DEBUG_CONSISTENCY > 1
static void verify_interference_graph(
struct compile_state *state, struct reg_state *rstate)
{
#if 0
fprintf(stderr, "verify_interference_graph...\n");
#endif
walk_variable_lifetimes(state, rstate->blocks, verify_graph_ins, rstate);
#if 0
fprintf(stderr, "verify_interference_graph done\n");
#endif
}
#else
static inline void verify_interference_graph(
struct compile_state *state, struct reg_state *rstate) {}
#endif
static void print_interference_ins(
struct compile_state *state,
@ -13765,6 +13782,7 @@ static int color_graph(struct compile_state *state, struct reg_state *rstate)
return colored;
}
#if DEBUG_CONSISTENCY
static void verify_colors(struct compile_state *state, struct reg_state *rstate)
{
struct live_range *lr;
@ -13801,6 +13819,9 @@ static void verify_colors(struct compile_state *state, struct reg_state *rstate)
ins = ins->next;
} while(ins != first);
}
#else
static inline void verify_colors(struct compile_state *state, struct reg_state *rstate) {}
#endif
static void color_triples(struct compile_state *state, struct reg_state *rstate)
{
@ -14005,17 +14026,8 @@ static void allocate_registers(struct compile_state *state)
#endif
} while(coalesced);
#if DEBUG_CONSISTENCY > 1
# if 0
fprintf(stderr, "verify_graph_ins...\n");
# endif
/* Verify the interference graph */
walk_variable_lifetimes(
state, rstate.blocks, verify_graph_ins, &rstate);
# if 0
fprintf(stderr, "verify_graph_ins done\n");
#endif
#endif
verify_interference_graph(state, &rstate);
/* Build the groups low and high. But with the nodes
* first sorted by degree order.