nb/intel/sandybridge/raminit: Separate Sandybridge and Ivybridge

Add custom files for Sandybridge and IvyBridge functions.
Move only the minimal required functions into separate files.
Both files' functions are going to call raminit_common functions.
No functionality is changed.

Sandybridge code path tested on Lenovo T420.

Change-Id: I1b1dfbd0857b59d3ae4392b73c033ee7a5aed243
Signed-off-by: Patrick Rudolph <siro@das-labor.org>
Reviewed-on: https://review.coreboot.org/17605
Tested-by: build bot (Jenkins)
Reviewed-by: Martin Roth <martinroth@google.com>
This commit is contained in:
Patrick Rudolph 2016-11-11 18:38:50 +01:00 committed by Martin Roth
parent 054c5b5506
commit 305035cf27
5 changed files with 1053 additions and 487 deletions

View File

@ -27,6 +27,8 @@ romstage-y += ram_calc.c
ifeq ($(CONFIG_USE_NATIVE_RAMINIT),y)
romstage-y += raminit.c
romstage-y += raminit_common.c
romstage-y += raminit_sandy.c
romstage-y += raminit_ivy.c
romstage-y += ../../../device/dram/ddr3.c
else
romstage-y += raminit_mrc.c

View File

@ -277,377 +277,6 @@ static void dram_find_spds_ddr3(spd_raw_data *spd, ramctr_timing *ctrl)
die("No DIMMs were found");
}
/* Frequency multiplier. */
static u32 get_FRQ(u32 tCK)
{
u32 FRQ;
FRQ = 256000 / (tCK * BASEFREQ);
if (FRQ > 8)
return 8;
if (FRQ < 3)
return 3;
return FRQ;
}
static u32 get_REFI(u32 tCK)
{
/* Get REFI based on MCU frequency using the following rule:
* _________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
*/
static const u32 frq_refi_map[] =
{ 3120, 4160, 5200, 6240, 7280, 8320 };
return frq_refi_map[get_FRQ(tCK) - 3];
}
static u8 get_XSOffset(u32 tCK)
{
/* Get XSOffset based on MCU frequency using the following rule:
* _________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
*/
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
return frq_xs_map[get_FRQ(tCK) - 3];
}
static u8 get_MOD(u32 tCK)
{
/* Get MOD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
*/
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
return frq_mod_map[get_FRQ(tCK) - 3];
}
static u8 get_WLO(u32 tCK)
{
/* Get WLO based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
*/
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
return frq_wlo_map[get_FRQ(tCK) - 3];
}
static u8 get_CKE(u32 tCK)
{
/* Get CKE based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
*/
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
return frq_cke_map[get_FRQ(tCK) - 3];
}
static u8 get_XPDLL(u32 tCK)
{
/* Get XPDLL based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
*/
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
return frq_xpdll_map[get_FRQ(tCK) - 3];
}
static u8 get_XP(u32 tCK)
{
/* Get XP based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XP : | 3 | 4 | 4 | 5 | 6 | 7 |
*/
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
return frq_xp_map[get_FRQ(tCK) - 3];
}
static u8 get_AONPD(u32 tCK)
{
/* Get AONPD based on MCU frequency using the following rule:
* ________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
*/
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
return frq_aonpd_map[get_FRQ(tCK) - 3];
}
static u32 get_COMP2(u32 tCK)
{
/* Get COMP2 based on MCU frequency using the following rule:
* ___________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
*/
static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
0xC6369CC, 0xC42514C, 0xC21410C
};
return frq_comp2_map[get_FRQ(tCK) - 3];
}
static void dram_timing(ramctr_timing * ctrl)
{
u8 val;
u32 val32;
/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->reg_320c_range_threshold = 13;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->reg_320c_range_threshold = 16;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->reg_320c_range_threshold = 17;
} else {
ctrl->tCK = TCK_400MHZ;
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->reg_320c_range_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;
val32 = (1000 << 8) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS latency */
val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
&& (ctrl->cas_supported >> (val - MIN_CAS))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - MIN_CAS)))) {
printk(BIOS_ERR, "CAS %uT not supported. ", val);
val = MAX_CAS;
/* Find highest supported CAS latency */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1))
val--;
printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
}
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK);
ctrl->tMOD = get_MOD(ctrl->tCK);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
ctrl->tWLO = get_WLO(ctrl->tCK);
ctrl->tCKE = get_CKE(ctrl->tCK);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
ctrl->tXP = get_XP(ctrl->tCK);
ctrl->tAONPD = get_AONPD(ctrl->tCK);
}
static void dram_freq(ramctr_timing * ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else {
die ("No lock frequency found");
}
/* Frequency multiplier. */
u32 FRQ = get_FRQ(ctrl->tCK);
/* The PLL will never lock if the required frequency is
* already set. Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 2 - Select frequency in the MCU */
reg1 = FRQ;
reg1 |= 0x80000000; // set running bit
MCHBAR32(MC_BIOS_REQ) = reg1;
int i=0;
printk(BIOS_DEBUG, "PLL busy... ");
while (reg1 & 0x80000000) {
udelay(10);
i++;
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 3 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing * ctrl)
{
u32 reg, comp2;
int channel;
// IO clock
FOR_ALL_CHANNELS {
MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO command
FOR_ALL_CHANNELS {
MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO control
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
// Rcomp
printram("RCOMP...");
reg = 0;
while (reg == 0) {
reg = MCHBAR32(0x5084) & 0x10000;
}
printram("done\n");
// Set comp2
comp2 = get_COMP2(ctrl->tCK);
MCHBAR32(0x3714) = comp2;
printram("COMP2 done\n");
// Set comp1
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(0x1810 + channel * 0x100); //ch0
reg = (reg & ~0xe00) | (1 << 9); //odt
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
MCHBAR32(0x1810 + channel * 0x100) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(0x5f08) |= 0x100;
udelay(20);
printram("done\n");
}
static void save_timings(ramctr_timing *ctrl)
{
/* Save the MRC S3 restore data to cbmem */
@ -657,121 +286,10 @@ static void save_timings(ramctr_timing *ctrl)
static int try_init_dram_ddr3(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MCU frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(0x5034) = 0xC04EB002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(0x4e80) = 0x5500;
/* Set scheduler parameters */
MCHBAR32(0x4c20) = 0x10100005;
/* Set CPU specific register */
set_4f8c();
/* Clear IO reset bit */
MCHBAR32(0x5030) &= ~0x20;
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do jedec ddr3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_4008c(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
if (ctrl->sandybridge)
return try_init_dram_ddr3_sandy(ctrl, fast_boot, s3_resume, me_uma_size);
else
return try_init_dram_ddr3_ivy(ctrl, fast_boot, s3_resume, me_uma_size);
}
static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
@ -783,7 +301,9 @@ static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
spd_raw_data spds[4];
struct mrc_data_container *mrc_cache;
ramctr_timing *ctrl_cached;
struct cpuid_result cpures;
int err;
u32 cpu;
MCHBAR32(0x5f00) |= 1;
@ -864,6 +384,11 @@ static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
ctrl.mobile = mobile;
ctrl.tCK = min_tck;
/* Get architecture */
cpures = cpuid(1);
cpu = cpures.eax;
ctrl.sandybridge = IS_SANDY_CPU(cpu);
/* Get DDR3 SPD data */
memset(spds, 0, sizeof(spds));
mainboard_get_spd(spds, 0);
@ -882,6 +407,11 @@ static void init_dram_ddr3(int mobile, int min_tck, int s3resume)
ctrl.mobile = mobile;
ctrl.tCK = min_tck;
/* Get architecture */
cpures = cpuid(1);
cpu = cpures.eax;
ctrl.sandybridge = IS_SANDY_CPU(cpu);
/* Reset DDR3 frequency */
dram_find_spds_ddr3(spds, &ctrl);

View File

@ -76,6 +76,7 @@ struct ramctr_timing_st;
typedef struct ramctr_timing_st {
u16 spd_crc[NUM_CHANNELS][NUM_SLOTS];
int mobile;
int sandybridge;
u16 cas_supported;
/* tLatencies are in units of ns, scaled by x256 */
@ -176,5 +177,10 @@ void set_42a0(ramctr_timing * ctrl);
void final_registers(ramctr_timing * ctrl);
void restore_timings(ramctr_timing * ctrl);
#endif
int try_init_dram_ddr3_sandy(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size);
int try_init_dram_ddr3_ivy(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size);
#endif

View File

@ -0,0 +1,514 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
* Copyright (C) 2016 Patrick Rudolph <siro@das-labor.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <console/usb.h>
#include <cpu/x86/msr.h>
#include <delay.h>
#include "raminit_native.h"
#include "raminit_common.h"
/* Frequency multiplier. */
static u32 get_FRQ(u32 tCK)
{
u32 FRQ;
FRQ = 256000 / (tCK * BASEFREQ);
if (FRQ > 8)
return 8;
if (FRQ < 3)
return 3;
return FRQ;
}
static u32 get_REFI(u32 tCK)
{
/* Get REFI based on MCU frequency using the following rule:
* _________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
*/
static const u32 frq_refi_map[] =
{ 3120, 4160, 5200, 6240, 7280, 8320 };
return frq_refi_map[get_FRQ(tCK) - 3];
}
static u8 get_XSOffset(u32 tCK)
{
/* Get XSOffset based on MCU frequency using the following rule:
* _________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
*/
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
return frq_xs_map[get_FRQ(tCK) - 3];
}
static u8 get_MOD(u32 tCK)
{
/* Get MOD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
*/
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
return frq_mod_map[get_FRQ(tCK) - 3];
}
static u8 get_WLO(u32 tCK)
{
/* Get WLO based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
*/
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
return frq_wlo_map[get_FRQ(tCK) - 3];
}
static u8 get_CKE(u32 tCK)
{
/* Get CKE based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
*/
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
return frq_cke_map[get_FRQ(tCK) - 3];
}
static u8 get_XPDLL(u32 tCK)
{
/* Get XPDLL based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
*/
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
return frq_xpdll_map[get_FRQ(tCK) - 3];
}
static u8 get_XP(u32 tCK)
{
/* Get XP based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XP : | 3 | 4 | 4 | 5 | 6 | 7 |
*/
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
return frq_xp_map[get_FRQ(tCK) - 3];
}
static u8 get_AONPD(u32 tCK)
{
/* Get AONPD based on MCU frequency using the following rule:
* ________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
*/
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
return frq_aonpd_map[get_FRQ(tCK) - 3];
}
static u32 get_COMP2(u32 tCK)
{
/* Get COMP2 based on MCU frequency using the following rule:
* ___________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
*/
static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
0xC6369CC, 0xC42514C, 0xC21410C
};
return frq_comp2_map[get_FRQ(tCK) - 3];
}
static void dram_timing(ramctr_timing * ctrl)
{
u8 val;
u32 val32;
/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->reg_320c_range_threshold = 13;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->reg_320c_range_threshold = 16;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->reg_320c_range_threshold = 17;
} else {
ctrl->tCK = TCK_400MHZ;
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->reg_320c_range_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;
val32 = (1000 << 8) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS latency */
val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
&& (ctrl->cas_supported >> (val - MIN_CAS))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - MIN_CAS)))) {
printk(BIOS_ERR, "CAS %uT not supported. ", val);
val = MAX_CAS;
/* Find highest supported CAS latency */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1))
val--;
printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
}
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK);
ctrl->tMOD = get_MOD(ctrl->tCK);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
ctrl->tWLO = get_WLO(ctrl->tCK);
ctrl->tCKE = get_CKE(ctrl->tCK);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
ctrl->tXP = get_XP(ctrl->tCK);
ctrl->tAONPD = get_AONPD(ctrl->tCK);
}
static void dram_freq(ramctr_timing * ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else {
die ("No lock frequency found");
}
/* Frequency multiplier. */
u32 FRQ = get_FRQ(ctrl->tCK);
/* The PLL will never lock if the required frequency is
* already set. Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 2 - Select frequency in the MCU */
reg1 = FRQ;
reg1 |= 0x80000000; // set running bit
MCHBAR32(MC_BIOS_REQ) = reg1;
int i=0;
printk(BIOS_DEBUG, "PLL busy... ");
while (reg1 & 0x80000000) {
udelay(10);
i++;
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 3 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing * ctrl)
{
u32 reg, comp2;
int channel;
// IO clock
FOR_ALL_CHANNELS {
MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO command
FOR_ALL_CHANNELS {
MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO control
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
// Rcomp
printram("RCOMP...");
reg = 0;
while (reg == 0) {
reg = MCHBAR32(0x5084) & 0x10000;
}
printram("done\n");
// Set comp2
comp2 = get_COMP2(ctrl->tCK);
MCHBAR32(0x3714) = comp2;
printram("COMP2 done\n");
// Set comp1
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(0x1810 + channel * 0x100); //ch0
reg = (reg & ~0xe00) | (1 << 9); //odt
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
MCHBAR32(0x1810 + channel * 0x100) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(0x5f08) |= 0x100;
udelay(20);
printram("done\n");
}
int try_init_dram_ddr3_ivy(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MCU frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(0x5034) = 0xC04EB002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(0x4e80) = 0x5500;
/* Set scheduler parameters */
MCHBAR32(0x4c20) = 0x10100005;
/* Set CPU specific register */
set_4f8c();
/* Clear IO reset bit */
MCHBAR32(0x5030) &= ~0x20;
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do jedec ddr3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_4008c(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
}

View File

@ -0,0 +1,514 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2014 Vladimir Serbinenko <phcoder@gmail.com>
* Copyright (C) 2016 Patrick Rudolph <siro@das-labor.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <console/usb.h>
#include <cpu/x86/msr.h>
#include <delay.h>
#include "raminit_native.h"
#include "raminit_common.h"
/* Frequency multiplier. */
static u32 get_FRQ(u32 tCK)
{
u32 FRQ;
FRQ = 256000 / (tCK * BASEFREQ);
if (FRQ > 8)
return 8;
if (FRQ < 3)
return 3;
return FRQ;
}
static u32 get_REFI(u32 tCK)
{
/* Get REFI based on MCU frequency using the following rule:
* _________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* REFI: | 3120 | 4160 | 5200 | 6240 | 7280 | 8320 |
*/
static const u32 frq_refi_map[] =
{ 3120, 4160, 5200, 6240, 7280, 8320 };
return frq_refi_map[get_FRQ(tCK) - 3];
}
static u8 get_XSOffset(u32 tCK)
{
/* Get XSOffset based on MCU frequency using the following rule:
* _________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XSOffset : | 4 | 6 | 7 | 8 | 10 | 11 |
*/
static const u8 frq_xs_map[] = { 4, 6, 7, 8, 10, 11 };
return frq_xs_map[get_FRQ(tCK) - 3];
}
static u8 get_MOD(u32 tCK)
{
/* Get MOD based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* MOD : | 12 | 12 | 12 | 12 | 15 | 16 |
*/
static const u8 frq_mod_map[] = { 12, 12, 12, 12, 15, 16 };
return frq_mod_map[get_FRQ(tCK) - 3];
}
static u8 get_WLO(u32 tCK)
{
/* Get WLO based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* WLO : | 4 | 5 | 6 | 6 | 8 | 8 |
*/
static const u8 frq_wlo_map[] = { 4, 5, 6, 6, 8, 8 };
return frq_wlo_map[get_FRQ(tCK) - 3];
}
static u8 get_CKE(u32 tCK)
{
/* Get CKE based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* CKE : | 3 | 3 | 4 | 4 | 5 | 6 |
*/
static const u8 frq_cke_map[] = { 3, 3, 4, 4, 5, 6 };
return frq_cke_map[get_FRQ(tCK) - 3];
}
static u8 get_XPDLL(u32 tCK)
{
/* Get XPDLL based on MCU frequency using the following rule:
* _____________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XPDLL : | 10 | 13 | 16 | 20 | 23 | 26 |
*/
static const u8 frq_xpdll_map[] = { 10, 13, 16, 20, 23, 26 };
return frq_xpdll_map[get_FRQ(tCK) - 3];
}
static u8 get_XP(u32 tCK)
{
/* Get XP based on MCU frequency using the following rule:
* _______________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* XP : | 3 | 4 | 4 | 5 | 6 | 7 |
*/
static const u8 frq_xp_map[] = { 3, 4, 4, 5, 6, 7 };
return frq_xp_map[get_FRQ(tCK) - 3];
}
static u8 get_AONPD(u32 tCK)
{
/* Get AONPD based on MCU frequency using the following rule:
* ________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* AONPD : | 4 | 5 | 6 | 8 | 8 | 10 |
*/
static const u8 frq_aonpd_map[] = { 4, 5, 6, 8, 8, 10 };
return frq_aonpd_map[get_FRQ(tCK) - 3];
}
static u32 get_COMP2(u32 tCK)
{
/* Get COMP2 based on MCU frequency using the following rule:
* ___________________________________________________________
* FRQ : | 3 | 4 | 5 | 6 | 7 | 8 |
* COMP : | D6BEDCC | CE7C34C | CA57A4C | C6369CC | C42514C | C21410C |
*/
static const u32 frq_comp2_map[] = { 0xD6BEDCC, 0xCE7C34C, 0xCA57A4C,
0xC6369CC, 0xC42514C, 0xC21410C
};
return frq_comp2_map[get_FRQ(tCK) - 3];
}
static void dram_timing(ramctr_timing * ctrl)
{
u8 val;
u32 val32;
/* Maximum supported DDR3 frequency is 1066MHz (DDR3 2133) so make sure
* we cap it if we have faster DIMMs.
* Then, align it to the closest JEDEC standard frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
ctrl->edge_offset[0] = 16;
ctrl->edge_offset[1] = 7;
ctrl->edge_offset[2] = 7;
ctrl->timC_offset[0] = 18;
ctrl->timC_offset[1] = 7;
ctrl->timC_offset[2] = 7;
ctrl->reg_320c_range_threshold = 13;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
ctrl->edge_offset[0] = 14;
ctrl->edge_offset[1] = 6;
ctrl->edge_offset[2] = 6;
ctrl->timC_offset[0] = 15;
ctrl->timC_offset[1] = 6;
ctrl->timC_offset[2] = 6;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
ctrl->edge_offset[0] = 13;
ctrl->edge_offset[1] = 5;
ctrl->edge_offset[2] = 5;
ctrl->timC_offset[0] = 14;
ctrl->timC_offset[1] = 5;
ctrl->timC_offset[2] = 5;
ctrl->reg_320c_range_threshold = 15;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
ctrl->edge_offset[0] = 10;
ctrl->edge_offset[1] = 4;
ctrl->edge_offset[2] = 4;
ctrl->timC_offset[0] = 11;
ctrl->timC_offset[1] = 4;
ctrl->timC_offset[2] = 4;
ctrl->reg_320c_range_threshold = 16;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
ctrl->edge_offset[0] = 8;
ctrl->edge_offset[1] = 3;
ctrl->edge_offset[2] = 3;
ctrl->timC_offset[0] = 9;
ctrl->timC_offset[1] = 3;
ctrl->timC_offset[2] = 3;
ctrl->reg_320c_range_threshold = 17;
} else {
ctrl->tCK = TCK_400MHZ;
ctrl->edge_offset[0] = 6;
ctrl->edge_offset[1] = 2;
ctrl->edge_offset[2] = 2;
ctrl->timC_offset[0] = 6;
ctrl->timC_offset[1] = 2;
ctrl->timC_offset[2] = 2;
ctrl->reg_320c_range_threshold = 17;
}
/* Initial phase between CLK/CMD pins */
ctrl->reg_c14_offset = (256000 / ctrl->tCK) / 66;
/* DLL_CONFIG_MDLL_W_TIMER */
ctrl->reg_5064b0 = (128000 / ctrl->tCK) + 3;
val32 = (1000 << 8) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected DRAM frequency: %u MHz\n", val32);
/* Find CAS latency */
val = (ctrl->tAA + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Minimum CAS latency : %uT\n", val);
/* Find lowest supported CAS latency that satisfies the minimum value */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1)
&& (ctrl->cas_supported >> (val - MIN_CAS))) {
val++;
}
/* Is CAS supported */
if (!(ctrl->cas_supported & (1 << (val - MIN_CAS)))) {
printk(BIOS_ERR, "CAS %uT not supported. ", val);
val = MAX_CAS;
/* Find highest supported CAS latency */
while (!((ctrl->cas_supported >> (val - MIN_CAS)) & 1))
val--;
printk(BIOS_ERR, "Using CAS %uT instead.\n", val);
}
printk(BIOS_DEBUG, "Selected CAS latency : %uT\n", val);
ctrl->CAS = val;
ctrl->CWL = get_CWL(ctrl->tCK);
printk(BIOS_DEBUG, "Selected CWL latency : %uT\n", ctrl->CWL);
/* Find tRCD */
ctrl->tRCD = (ctrl->tRCD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRCD : %uT\n", ctrl->tRCD);
ctrl->tRP = (ctrl->tRP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRP : %uT\n", ctrl->tRP);
/* Find tRAS */
ctrl->tRAS = (ctrl->tRAS + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRAS : %uT\n", ctrl->tRAS);
/* Find tWR */
ctrl->tWR = (ctrl->tWR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWR : %uT\n", ctrl->tWR);
/* Find tFAW */
ctrl->tFAW = (ctrl->tFAW + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tFAW : %uT\n", ctrl->tFAW);
/* Find tRRD */
ctrl->tRRD = (ctrl->tRRD + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRRD : %uT\n", ctrl->tRRD);
/* Find tRTP */
ctrl->tRTP = (ctrl->tRTP + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRTP : %uT\n", ctrl->tRTP);
/* Find tWTR */
ctrl->tWTR = (ctrl->tWTR + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tWTR : %uT\n", ctrl->tWTR);
/* Refresh-to-Active or Refresh-to-Refresh (tRFC) */
ctrl->tRFC = (ctrl->tRFC + ctrl->tCK - 1) / ctrl->tCK;
printk(BIOS_DEBUG, "Selected tRFC : %uT\n", ctrl->tRFC);
ctrl->tREFI = get_REFI(ctrl->tCK);
ctrl->tMOD = get_MOD(ctrl->tCK);
ctrl->tXSOffset = get_XSOffset(ctrl->tCK);
ctrl->tWLO = get_WLO(ctrl->tCK);
ctrl->tCKE = get_CKE(ctrl->tCK);
ctrl->tXPDLL = get_XPDLL(ctrl->tCK);
ctrl->tXP = get_XP(ctrl->tCK);
ctrl->tAONPD = get_AONPD(ctrl->tCK);
}
static void dram_freq(ramctr_timing * ctrl)
{
if (ctrl->tCK > TCK_400MHZ) {
printk (BIOS_ERR, "DRAM frequency is under lowest supported frequency (400 MHz). Increasing to 400 MHz as last resort");
ctrl->tCK = TCK_400MHZ;
}
while (1) {
u8 val2;
u32 reg1 = 0;
/* Step 1 - Set target PCU frequency */
if (ctrl->tCK <= TCK_1066MHZ) {
ctrl->tCK = TCK_1066MHZ;
} else if (ctrl->tCK <= TCK_933MHZ) {
ctrl->tCK = TCK_933MHZ;
} else if (ctrl->tCK <= TCK_800MHZ) {
ctrl->tCK = TCK_800MHZ;
} else if (ctrl->tCK <= TCK_666MHZ) {
ctrl->tCK = TCK_666MHZ;
} else if (ctrl->tCK <= TCK_533MHZ) {
ctrl->tCK = TCK_533MHZ;
} else if (ctrl->tCK <= TCK_400MHZ) {
ctrl->tCK = TCK_400MHZ;
} else {
die ("No lock frequency found");
}
/* Frequency multiplier. */
u32 FRQ = get_FRQ(ctrl->tCK);
/* The PLL will never lock if the required frequency is
* already set. Exit early to prevent a system hang.
*/
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2)
return;
/* Step 2 - Select frequency in the MCU */
reg1 = FRQ;
reg1 |= 0x80000000; // set running bit
MCHBAR32(MC_BIOS_REQ) = reg1;
int i=0;
printk(BIOS_DEBUG, "PLL busy... ");
while (reg1 & 0x80000000) {
udelay(10);
i++;
reg1 = MCHBAR32(MC_BIOS_REQ);
}
printk(BIOS_DEBUG, "done in %d us\n", i * 10);
/* Step 3 - Verify lock frequency */
reg1 = MCHBAR32(MC_BIOS_DATA);
val2 = (u8) reg1;
if (val2 >= FRQ) {
printk(BIOS_DEBUG, "MCU frequency is set at : %d MHz\n",
(1000 << 8) / ctrl->tCK);
return;
}
printk(BIOS_DEBUG, "PLL didn't lock. Retrying at lower frequency\n");
ctrl->tCK++;
}
}
static void dram_ioregs(ramctr_timing * ctrl)
{
u32 reg, comp2;
int channel;
// IO clock
FOR_ALL_CHANNELS {
MCHBAR32(0xc00 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO command
FOR_ALL_CHANNELS {
MCHBAR32(0x3200 + 0x100 * channel) = ctrl->rankmap[channel];
}
// IO control
FOR_ALL_POPULATED_CHANNELS {
program_timings(ctrl, channel);
}
// Rcomp
printram("RCOMP...");
reg = 0;
while (reg == 0) {
reg = MCHBAR32(0x5084) & 0x10000;
}
printram("done\n");
// Set comp2
comp2 = get_COMP2(ctrl->tCK);
MCHBAR32(0x3714) = comp2;
printram("COMP2 done\n");
// Set comp1
FOR_ALL_POPULATED_CHANNELS {
reg = MCHBAR32(0x1810 + channel * 0x100); //ch0
reg = (reg & ~0xe00) | (1 << 9); //odt
reg = (reg & ~0xe00000) | (1 << 21); //clk drive up
reg = (reg & ~0x38000000) | (1 << 27); //ctl drive up
MCHBAR32(0x1810 + channel * 0x100) = reg;
}
printram("COMP1 done\n");
printram("FORCE RCOMP and wait 20us...");
MCHBAR32(0x5f08) |= 0x100;
udelay(20);
printram("done\n");
}
int try_init_dram_ddr3_sandy(ramctr_timing *ctrl, int fast_boot,
int s3_resume, int me_uma_size)
{
int err;
printk(BIOS_DEBUG, "Starting RAM training (%d).\n", fast_boot);
if (!fast_boot) {
/* Find fastest common supported parameters */
dram_find_common_params(ctrl);
dram_dimm_mapping(ctrl);
}
/* Set MCU frequency */
dram_freq(ctrl);
if (!fast_boot) {
/* Calculate timings */
dram_timing(ctrl);
}
/* Set version register */
MCHBAR32(0x5034) = 0xC04EB002;
/* Enable crossover */
dram_xover(ctrl);
/* Set timing and refresh registers */
dram_timing_regs(ctrl);
/* Power mode preset */
MCHBAR32(0x4e80) = 0x5500;
/* Set scheduler parameters */
MCHBAR32(0x4c20) = 0x10100005;
/* Set CPU specific register */
set_4f8c();
/* Clear IO reset bit */
MCHBAR32(0x5030) &= ~0x20;
/* Set MAD-DIMM registers */
dram_dimm_set_mapping(ctrl);
printk(BIOS_DEBUG, "Done dimm mapping\n");
/* Zone config */
dram_zones(ctrl, 1);
/* Set memory map */
dram_memorymap(ctrl, me_uma_size);
printk(BIOS_DEBUG, "Done memory map\n");
/* Set IO registers */
dram_ioregs(ctrl);
printk(BIOS_DEBUG, "Done io registers\n");
udelay(1);
if (fast_boot) {
restore_timings(ctrl);
} else {
/* Do jedec ddr3 reset sequence */
dram_jedecreset(ctrl);
printk(BIOS_DEBUG, "Done jedec reset\n");
/* MRS commands */
dram_mrscommands(ctrl);
printk(BIOS_DEBUG, "Done MRS commands\n");
/* Prepare for memory training */
prepare_training(ctrl);
err = read_training(ctrl);
if (err)
return err;
err = write_training(ctrl);
if (err)
return err;
printram("CP5a\n");
err = discover_edges(ctrl);
if (err)
return err;
printram("CP5b\n");
err = command_training(ctrl);
if (err)
return err;
printram("CP5c\n");
err = discover_edges_write(ctrl);
if (err)
return err;
err = discover_timC_write(ctrl);
if (err)
return err;
normalize_training(ctrl);
}
set_4008c(ctrl);
write_controller_mr(ctrl);
if (!s3_resume) {
err = channel_test(ctrl);
if (err)
return err;
}
return 0;
}