mediatek: Refactor I2C code among similar SOCs

Refactor I2C code which will be reused among similar SOCs.

BUG=b:80501386
BRANCH=none
TEST=emerge-elm coreboot

Change-Id: I407d5e2a9eb29562b40bb300e39f206a94afe76c
Signed-off-by: qii wang <qii.wang@mediatek.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/30975
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Yu-Ping Wu <yupingso@google.com>
Reviewed-by: Julius Werner <jwerner@chromium.org>
This commit is contained in:
Qii Wang 2019-01-18 09:53:01 +08:00 committed by Patrick Georgi
parent e5269a8fd9
commit 30e9bc56d6
5 changed files with 375 additions and 335 deletions

View File

@ -0,0 +1,261 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2018 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <string.h>
#include <assert.h>
#include <delay.h>
#include <timer.h>
#include <symbols.h>
#include <device/mmio.h>
#include <soc/i2c.h>
#include <device/i2c_simple.h>
static inline void i2c_dma_reset(struct mt_i2c_dma_regs *dma_regs)
{
write32(&dma_regs->dma_rst, 0x1);
udelay(50);
write32(&dma_regs->dma_rst, 0x2);
udelay(50);
write32(&dma_regs->dma_rst, 0x0);
udelay(50);
}
static inline void mtk_i2c_dump_info(struct mt_i2c_regs *regs)
{
printk(BIOS_ERR, "I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\n"
"INTR_STAT %x\nCONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\n"
"DELAY_LEN %x\nTIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\n"
"HS %x\nDEBUGSTAT %x\nEXT_CONF %x\n",
read32(&regs->slave_addr),
read32(&regs->intr_mask),
read32(&regs->intr_stat),
read32(&regs->control),
read32(&regs->transfer_len),
read32(&regs->transac_len),
read32(&regs->delay_len),
read32(&regs->timing),
read32(&regs->start),
read32(&regs->fifo_stat),
read32(&regs->io_config),
read32(&regs->hs),
read32(&regs->debug_stat),
read32(&regs->ext_conf));
}
static uint32_t mtk_i2c_transfer(uint8_t bus, struct i2c_msg *seg,
enum i2c_modes mode)
{
uint32_t ret_code = I2C_OK;
uint16_t status;
uint32_t time_out_val = 0;
uint8_t addr;
uint32_t write_len = 0;
uint32_t read_len = 0;
uint8_t *write_buffer = NULL;
uint8_t *read_buffer = NULL;
struct mt_i2c_regs *regs;
struct mt_i2c_dma_regs *dma_regs;
struct stopwatch sw;
regs = mtk_i2c_bus_controller[bus].i2c_regs;
dma_regs = mtk_i2c_bus_controller[bus].i2c_dma_regs;
addr = seg[0].slave;
switch (mode) {
case I2C_WRITE_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
write_len = seg[0].len;
write_buffer = seg[0].buf;
break;
case I2C_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
read_len = seg[0].len;
read_buffer = seg[0].buf;
break;
/* Must use special write-then-read mode for repeated starts. */
case I2C_WRITE_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
assert(seg[1].len > 0 && seg[1].len <= 255);
write_len = seg[0].len;
read_len = seg[1].len;
write_buffer = seg[0].buf;
read_buffer = seg[1].buf;
break;
}
/* Clear interrupt status */
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
write32(&regs->fifo_addr_clr, 0x1);
/* Enable interrupt */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
switch (mode) {
case I2C_WRITE_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, ASYNC_MODE | DMAACK_EN |
ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, write_len);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_TX);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
break;
case I2C_READ_MODE:
/* control registers */
write32(&regs->control, ASYNC_MODE | DMAACK_EN |
ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, read_len);
/* set i2c read slave address*/
write32(&regs->slave_addr, (addr << 1 | 0x1));
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_RX);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
case I2C_WRITE_READ_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, ASYNC_MODE | DMAACK_EN |
DIR_CHG | ACK_ERR_DET_EN | DMA_EN |
CLK_EXT | REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transfer_len, write_len);
write32(&regs->transfer_aux_len, read_len);
write32(&regs->transac_len, 2);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
}
write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_en, I2C_DMA_START_EN);
/* start transfer transaction */
write32(&regs->start, 0x1);
stopwatch_init_msecs_expire(&sw, 100);
/* polling mode : see if transaction complete */
while (1) {
status = read32(&regs->intr_stat);
if (status & I2C_HS_NACKERR) {
ret_code = I2C_TRANSFER_FAIL_HS_NACKERR;
printk(BIOS_ERR, "[i2c%d] transfer NACK error\n", bus);
mtk_i2c_dump_info(regs);
break;
} else if (status & I2C_ACKERR) {
ret_code = I2C_TRANSFER_FAIL_ACKERR;
printk(BIOS_ERR, "[i2c%d] transfer ACK error\n", bus);
mtk_i2c_dump_info(regs);
break;
} else if (status & I2C_TRANSAC_COMP) {
ret_code = I2C_OK;
memcpy(read_buffer, _dma_coherent, read_len);
break;
}
if (stopwatch_expired(&sw)) {
ret_code = I2C_TRANSFER_FAIL_TIMEOUT;
printk(BIOS_ERR, "[i2c%d] transfer timeout:%d\n", bus,
time_out_val);
mtk_i2c_dump_info(regs);
break;
}
}
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
/* clear bit mask */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
/* reset the i2c controller for next i2c transfer. */
write32(&regs->softreset, 0x1);
i2c_dma_reset(dma_regs);
return ret_code;
}
static bool mtk_i2c_should_combine(struct i2c_msg *seg, int left_count)
{
return (left_count >= 2 &&
!(seg[0].flags & I2C_M_RD) &&
(seg[1].flags & I2C_M_RD) &&
seg[0].slave == seg[1].slave);
}
int platform_i2c_transfer(unsigned int bus, struct i2c_msg *segments,
int seg_count)
{
int ret = 0;
int i;
int mode;
for (i = 0; i < seg_count; i++) {
if (mtk_i2c_should_combine(&segments[i], seg_count - i)) {
mode = I2C_WRITE_READ_MODE;
} else {
mode = (segments[i].flags & I2C_M_RD) ?
I2C_READ_MODE : I2C_WRITE_MODE;
}
ret = mtk_i2c_transfer(bus, &segments[i], mode);
if (ret)
break;
if (mode == I2C_WRITE_READ_MODE)
i++;
}
return ret;
}

View File

@ -0,0 +1,99 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2018 MediaTek Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef MTK_COMMON_I2C_H
#define MTK_COMMON_I2C_H
/* I2C DMA Registers */
struct mt_i2c_dma_regs {
uint32_t dma_int_flag;
uint32_t dma_int_en;
uint32_t dma_en;
uint32_t dma_rst;
uint32_t reserved1;
uint32_t dma_flush;
uint32_t dma_con;
uint32_t dma_tx_mem_addr;
uint32_t dma_rx_mem_addr;
uint32_t dma_tx_len;
uint32_t dma_rx_len;
};
check_member(mt_i2c_dma_regs, dma_tx_len, 0x24);
/* I2C Configuration */
enum {
I2C_HS_DEFAULT_VALUE = 0x0102,
};
enum i2c_modes {
I2C_WRITE_MODE = 0,
I2C_READ_MODE = 1,
I2C_WRITE_READ_MODE = 2,
};
enum {
I2C_DMA_CON_TX = 0x0,
I2C_DMA_CON_RX = 0x1,
I2C_DMA_START_EN = 0x1,
I2C_DMA_INT_FLAG_NONE = 0x0,
I2C_DMA_CLR_FLAG = 0x0,
I2C_DMA_FLUSH_FLAG = 0x1,
};
enum {
I2C_TRANS_LEN_MASK = (0xff),
I2C_TRANS_AUX_LEN_MASK = (0x1f << 8),
I2C_CONTROL_MASK = (0x3f << 1)
};
/* Register mask */
enum {
I2C_HS_NACKERR = (1 << 2),
I2C_ACKERR = (1 << 1),
I2C_TRANSAC_COMP = (1 << 0),
};
/* i2c control bits */
enum {
ASYNC_MODE = (1 << 9),
DMAACK_EN = (1 << 8),
ACK_ERR_DET_EN = (1 << 5),
DIR_CHG = (1 << 4),
CLK_EXT = (1 << 3),
DMA_EN = (1 << 2),
REPEATED_START_FLAG = (1 << 1),
STOP_FLAG = (0 << 1)
};
/* I2C Status Code */
enum {
I2C_OK = 0x0000,
I2C_SET_SPEED_FAIL_OVER_SPEED = 0xA001,
I2C_TRANSFER_INVALID_LENGTH = 0xA002,
I2C_TRANSFER_FAIL_HS_NACKERR = 0xA003,
I2C_TRANSFER_FAIL_ACKERR = 0xA004,
I2C_TRANSFER_FAIL_TIMEOUT = 0xA005,
I2C_TRANSFER_INVALID_ARGUMENT = 0xA006
};
struct mtk_i2c {
struct mt_i2c_regs *i2c_regs;
struct mt_i2c_dma_regs *i2c_dma_regs;
};
extern struct mtk_i2c mtk_i2c_bus_controller[];
#endif

View File

@ -17,7 +17,7 @@ ifeq ($(CONFIG_SOC_MEDIATEK_MT8173),y)
bootblock-y += bootblock.c
bootblock-$(CONFIG_SPI_FLASH) += flash_controller.c
bootblock-y += i2c.c
bootblock-y += ../common/i2c.c i2c.c
bootblock-y += ../common/pll.c pll.c
bootblock-y += ../common/spi.c spi.c
bootblock-y += ../common/timer.c
@ -32,7 +32,7 @@ bootblock-y += ../common/mmu_operations.c mmu_operations.c
################################################################################
verstage-y += i2c.c
verstage-y += ../common/i2c.c i2c.c
verstage-y += ../common/spi.c spi.c
verstage-y += ../common/uart.c
@ -49,7 +49,7 @@ romstage-$(CONFIG_SPI_FLASH) += flash_controller.c
romstage-y += ../common/pll.c pll.c
romstage-y += ../common/timer.c
romstage-y += timer.c
romstage-y += i2c.c
romstage-y += ../common/i2c.c i2c.c
romstage-y += ../common/uart.c
romstage-y += ../common/cbmem.c
@ -71,7 +71,8 @@ ramstage-y += soc.c ../common/mtcmos.c
ramstage-y += ../common/timer.c
ramstage-y += timer.c
ramstage-y += ../common/uart.c
ramstage-y += ../common/pmic_wrap.c pmic_wrap.c mt6391.c i2c.c
ramstage-y += ../common/i2c.c i2c.c
ramstage-y += ../common/pmic_wrap.c pmic_wrap.c mt6391.c
ramstage-y += mt6311.c
ramstage-y += da9212.c
ramstage-y += ../common/gpio.c gpio.c

View File

@ -23,11 +23,13 @@
#include <device/mmio.h>
#include <soc/addressmap.h>
#include <soc/i2c.h>
#include <device/mmio.h>
#include <soc/pll.h>
#include <soc/i2c.h>
#define I2C_CLK_HZ (AXI_HZ / 16)
static struct mtk_i2c i2c[7] = {
struct mtk_i2c mtk_i2c_bus_controller[7] = {
/* i2c0 setting */
{
.i2c_regs = (void *)I2C_BASE,
@ -79,267 +81,21 @@ static struct mtk_i2c i2c[7] = {
#define I2CERR(fmt, arg...) printk(BIOS_ERR, I2CTAG fmt, ##arg)
static inline void i2c_dma_reset(struct mt8173_i2c_dma_regs *dma_regs)
{
write32(&dma_regs->dma_rst, 0x1);
udelay(50);
write32(&dma_regs->dma_rst, 0x2);
udelay(50);
write32(&dma_regs->dma_rst, 0x0);
udelay(50);
}
void mtk_i2c_bus_init(uint8_t bus)
{
uint8_t sample_div;
uint8_t step_div;
uint32_t i2c_freq;
const uint8_t sample_div = 1;
assert(bus < ARRAY_SIZE(i2c));
assert(bus < ARRAY_SIZE(mtk_i2c_bus_controller));
/* Calculate i2c frequency */
sample_div = 1;
step_div = DIV_ROUND_UP(I2C_CLK_HZ, (400 * KHz * sample_div * 2));
i2c_freq = I2C_CLK_HZ / (step_div * sample_div * 2);
assert(sample_div < 8 && step_div < 64 && i2c_freq < 400 * KHz &&
i2c_freq >= 380 * KHz);
/* Init i2c bus Timing register */
write32(&i2c[bus].i2c_regs->timing, (sample_div - 1) << 8 |
(step_div - 1));
}
static inline void mtk_i2c_dump_info(uint8_t bus)
{
struct mt8173_i2c_regs *regs;
regs = i2c[bus].i2c_regs;
I2CLOG("I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\nINTR_STAT %x\n"
"CONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\nDELAY_LEN %x\n"
"TIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\nHS %x\n"
"DEBUGSTAT %x\nEXT_CONF %x\n",
(read32(&regs->salve_addr)),
(read32(&regs->intr_mask)),
(read32(&regs->intr_stat)),
(read32(&regs->control)),
(read32(&regs->transfer_len)),
(read32(&regs->transac_len)),
(read32(&regs->delay_len)),
(read32(&regs->timing)),
(read32(&regs->start)),
(read32(&regs->fifo_stat)),
(read32(&regs->io_config)),
(read32(&regs->hs)),
(read32(&regs->debug_stat)),
(read32(&regs->ext_conf)));
I2CLOG("addr address %x\n", (uint32_t)regs);
}
static uint32_t mtk_i2c_transfer(uint8_t bus, struct i2c_msg *seg,
enum i2c_modes read)
{
uint32_t ret_code = I2C_OK;
uint16_t status;
uint32_t time_out_val = 0;
uint8_t addr;
uint32_t write_len = 0;
uint32_t read_len = 0;
uint8_t *write_buffer = NULL;
uint8_t *read_buffer = NULL;
struct mt8173_i2c_regs *regs;
struct mt8173_i2c_dma_regs *dma_regs;
struct stopwatch sw;
regs = i2c[bus].i2c_regs;
dma_regs = i2c[bus].i2c_dma_regs;
addr = seg[0].slave;
switch (read) {
case I2C_WRITE_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
write_len = seg[0].len;
write_buffer = seg[0].buf;
break;
case I2C_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
read_len = seg[0].len;
read_buffer = seg[0].buf;
break;
/* Must use special write-then-read mode for repeated starts. */
case I2C_WRITE_READ_MODE:
assert(seg[0].len > 0 && seg[0].len <= 255);
assert(seg[1].len > 0 && seg[1].len <= 255);
write_len = seg[0].len;
read_len = seg[1].len;
write_buffer = seg[0].buf;
read_buffer = seg[1].buf;
break;
}
/* Clear interrupt status */
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
write32(&regs->fifo_addr_clr, 0x1);
/* Enable interrupt */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
switch (read) {
case I2C_WRITE_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, write_len);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_TX);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
break;
case I2C_READ_MODE:
/* control registers */
write32(&regs->control, ACK_ERR_DET_EN | DMA_EN | CLK_EXT |
REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transac_len, 1);
write32(&regs->transfer_len, read_len);
/* set i2c read slave address*/
write32(&regs->slave_addr, (addr << 1 | 0x1));
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CON_RX);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
case I2C_WRITE_READ_MODE:
memcpy(_dma_coherent, write_buffer, write_len);
/* control registers */
write32(&regs->control, DIR_CHG | ACK_ERR_DET_EN | DMA_EN |
CLK_EXT | REPEATED_START_FLAG);
/* Set transfer and transaction len */
write32(&regs->transfer_len, write_len);
write32(&regs->transfer_aux_len, read_len);
write32(&regs->transac_len, 2);
/* set i2c write slave address*/
write32(&regs->slave_addr, addr << 1);
/* Prepare buffer data to start transfer */
write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_tx_len, write_len);
write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent);
write32(&dma_regs->dma_rx_len, read_len);
break;
}
write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG);
write32(&dma_regs->dma_en, I2C_DMA_START_EN);
/* start transfer transaction */
write32(&regs->start, 0x1);
stopwatch_init_msecs_expire(&sw, 100);
/* polling mode : see if transaction complete */
while (1) {
status = read32(&regs->intr_stat);
if (status & I2C_HS_NACKERR) {
ret_code = I2C_TRANSFER_FAIL_HS_NACKERR;
I2CERR("[i2c%d transfer] transaction NACK error\n",
bus);
mtk_i2c_dump_info(bus);
break;
} else if (status & I2C_ACKERR) {
ret_code = I2C_TRANSFER_FAIL_ACKERR;
I2CERR("[i2c%d transfer] transaction ACK error\n", bus);
mtk_i2c_dump_info(bus);
break;
} else if (status & I2C_TRANSAC_COMP) {
ret_code = I2C_OK;
memcpy(read_buffer, _dma_coherent, read_len);
break;
}
if (stopwatch_expired(&sw)) {
ret_code = I2C_TRANSFER_FAIL_TIMEOUT;
I2CERR("[i2c%d transfer] transaction timeout:%d\n", bus,
time_out_val);
mtk_i2c_dump_info(bus);
break;
}
}
write32(&regs->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR |
I2C_HS_NACKERR);
/* clear bit mask */
write32(&regs->intr_mask, I2C_HS_NACKERR | I2C_ACKERR |
I2C_TRANSAC_COMP);
/* reset the i2c controller for next i2c transfer. */
write32(&regs->softreset, 0x1);
i2c_dma_reset(dma_regs);
return ret_code;
}
static uint8_t mtk_i2c_should_combine(struct i2c_msg *seg, int left_count)
{
if (left_count >= 2 &&
!(seg[0].flags & I2C_M_RD) &&
(seg[1].flags & I2C_M_RD) &&
seg[0].slave == seg[1].slave)
return 1;
else
return 0;
}
int platform_i2c_transfer(unsigned bus, struct i2c_msg *segments,
int seg_count)
{
int ret = 0;
int i;
int read;
for (i = 0; i < seg_count; i++) {
if (mtk_i2c_should_combine(&segments[i], seg_count - i)) {
read = I2C_WRITE_READ_MODE;
} else {
read = (segments[i].flags & I2C_M_RD) ?
I2C_READ_MODE : I2C_WRITE_MODE;
}
ret = mtk_i2c_transfer(bus, &segments[i], read);
if (ret)
break;
if (read == I2C_WRITE_READ_MODE)
i++;
}
return ret;
write32(&mtk_i2c_bus_controller[bus].i2c_regs->timing,
(sample_div - 1) << 8 | (step_div - 1));
}

View File

@ -16,47 +16,10 @@
#ifndef SOC_MEDIATEK_MT8173_I2C_H
#define SOC_MEDIATEK_MT8173_I2C_H
#include <stddef.h>
/* I2C Configuration */
enum {
I2C_HS_DEFAULT_VALUE = 0x0102,
};
enum i2c_modes {
I2C_WRITE_MODE = 0,
I2C_READ_MODE = 1,
I2C_WRITE_READ_MODE = 2,
};
enum {
I2C_DMA_CON_TX = 0x0,
I2C_DMA_CON_RX = 0x1,
I2C_DMA_START_EN = 0x1,
I2C_DMA_INT_FLAG_NONE = 0x0,
I2C_DMA_CLR_FLAG = 0x0,
I2C_DMA_FLUSH_FLAG = 0x1,
};
/* I2C DMA Registers */
struct mt8173_i2c_dma_regs {
uint32_t dma_int_flag;
uint32_t dma_int_en;
uint32_t dma_en;
uint32_t dma_rst;
uint32_t reserved1;
uint32_t dma_flush;
uint32_t dma_con;
uint32_t dma_tx_mem_addr;
uint32_t dma_rx_mem_addr;
uint32_t dma_tx_len;
uint32_t dma_rx_len;
};
check_member(mt8173_i2c_dma_regs, dma_tx_len, 0x24);
#include <soc/i2c_common.h>
/* I2C Register */
struct mt8173_i2c_regs {
struct mt_i2c_regs {
uint32_t data_port;
uint32_t slave_addr;
uint32_t intr_mask;
@ -85,47 +48,7 @@ struct mt8173_i2c_regs {
uint32_t transfer_aux_len;
};
check_member(mt8173_i2c_regs, debug_stat, 0x64);
struct mtk_i2c {
struct mt8173_i2c_regs *i2c_regs;
struct mt8173_i2c_dma_regs *i2c_dma_regs;
};
enum {
I2C_TRANS_LEN_MASK = (0xff),
I2C_TRANS_AUX_LEN_MASK = (0x1f << 8),
I2C_CONTROL_MASK = (0x3f << 1)
};
/* Register mask */
enum {
I2C_HS_NACKERR = (1 << 2),
I2C_ACKERR = (1 << 1),
I2C_TRANSAC_COMP = (1 << 0),
};
/* i2c control bits */
enum {
ACK_ERR_DET_EN = (1 << 5),
DIR_CHG = (1 << 4),
CLK_EXT = (1 << 3),
DMA_EN = (1 << 2),
REPEATED_START_FLAG = (1 << 1),
STOP_FLAG = (0 << 1)
};
/* I2C Status Code */
enum {
I2C_OK = 0x0000,
I2C_SET_SPEED_FAIL_OVER_SPEED = 0xA001,
I2C_TRANSFER_INVALID_LENGTH = 0xA002,
I2C_TRANSFER_FAIL_HS_NACKERR = 0xA003,
I2C_TRANSFER_FAIL_ACKERR = 0xA004,
I2C_TRANSFER_FAIL_TIMEOUT = 0xA005,
I2C_TRANSFER_INVALID_ARGUMENT = 0xA006
};
check_member(mt_i2c_regs, debug_stat, 0x64);
void mtk_i2c_bus_init(uint8_t bus);