soc/intel/common: remove mrc cache assumptions

Update the mrc cache implementation to use region_file. Instead
of relying on memory-mapped access and pointer arithmetic
use the region_devices and region_file to obtain the latest
data associated with the region. This removes the need for the
nvm wrapper as the region_devices can be used directly. Thus,
the library is more generic and can be extended to work on
different boot mediums.

BUG=chrome-os-partner:56151

Change-Id: Ic14e2d2f7339e50256b4a3a297fc33991861ca44
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/17717
Tested-by: build bot (Jenkins)
Reviewed-by: Duncan Laurie <dlaurie@chromium.org>
This commit is contained in:
Aaron Durbin 2016-12-03 22:08:20 -06:00
parent f1f322b1a8
commit 31be2c969e
10 changed files with 468 additions and 554 deletions

View File

@ -19,6 +19,7 @@
#include <arch/io.h>
#include <arch/cbfs.h>
#include <arch/early_variables.h>
#include <assert.h>
#include <boardid.h>
#include <console/console.h>
#include <cbmem.h>
@ -99,7 +100,7 @@ void *cache_as_ram_stage_main(FSP_INFO_HEADER *fih)
/* Entry from the mainboard. */
void romstage_common(struct romstage_params *params)
{
const struct mrc_saved_data *cache;
struct region_device rdev;
struct pei_data *pei_data;
post_code(0x32);
@ -127,11 +128,15 @@ void romstage_common(struct romstage_params *params)
printk(BIOS_DEBUG,
"Recovery mode: not using MRC cache.\n");
} else if (IS_ENABLED(CONFIG_CACHE_MRC_SETTINGS)
&& (!mrc_cache_get_current_with_version(&cache,
params->fsp_version))) {
&& (!mrc_cache_get_current(MRC_TRAINING_DATA,
params->fsp_version,
&rdev))) {
/* MRC cache found */
params->pei_data->saved_data_size = cache->size;
params->pei_data->saved_data = &cache->data[0];
params->pei_data->saved_data_size =
region_device_sz(&rdev);
params->pei_data->saved_data = rdev_mmap_full(&rdev);
/* Assum boot device is memory mapped. */
assert(IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED));
} else if (params->pei_data->boot_mode == ACPI_S3) {
/* Waking from S3 and no cache. */
printk(BIOS_DEBUG,
@ -155,10 +160,10 @@ void romstage_common(struct romstage_params *params)
if ((params->pei_data->boot_mode != ACPI_S3)
&& (params->pei_data->data_to_save_size != 0)
&& (params->pei_data->data_to_save != NULL))
mrc_cache_stash_data_with_version(
mrc_cache_stash_data(MRC_TRAINING_DATA,
params->fsp_version,
params->pei_data->data_to_save,
params->pei_data->data_to_save_size,
params->fsp_version);
params->pei_data->data_to_save_size);
}
/* Save DIMM information */
@ -355,15 +360,15 @@ __attribute__((weak)) void mainboard_add_dimm_info(
}
/* Get the memory configuration data */
__attribute__((weak)) int mrc_cache_get_current_with_version(
const struct mrc_saved_data **cache, uint32_t version)
__attribute__((weak)) int mrc_cache_get_current(int type, uint32_t version,
struct region_device *rdev)
{
return -1;
}
/* Save the memory configuration data */
__attribute__((weak)) int mrc_cache_stash_data_with_version(const void *data,
size_t size, uint32_t version)
__attribute__((weak)) int mrc_cache_stash_data(int type, uint32_t version,
const void *data, size_t size)
{
return -1;
}

View File

@ -15,6 +15,7 @@
#include <arch/io.h>
#include <arch/cpu.h>
#include <arch/symbols.h>
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <console/console.h>
@ -107,9 +108,9 @@ static void save_memory_training_data(bool s3wake, uint32_t fsp_version)
* code which saves the data to flash doesn't write if the latest
* training data matches this one.
*/
if (mrc_cache_stash_data_with_version(mrc_data, mrc_data_size,
fsp_version) < 0)
printk(BIOS_ERR, "Failed to stash MRC data\n");
if (mrc_cache_stash_data(MRC_TRAINING_DATA, fsp_version, mrc_data,
mrc_data_size) < 0)
printk(BIOS_ERR, "Failed to stash MRC data\n");
mrc_cache_update_tpm_hash(mrc_data, mrc_data_size);
}
@ -146,24 +147,6 @@ static void do_fsp_post_memory_init(bool s3wake, uint32_t fsp_version)
romstage_handoff_init(s3wake);
}
static const char *mrc_cache_get_region_name(void)
{
/* In normal mode, always use DEFAULT_MRC_CACHE */
if (!vboot_recovery_mode_enabled())
return DEFAULT_MRC_CACHE;
/*
* In recovery mode, force retraining by returning NULL if:
* 1. Recovery cache is not supported, or
* 2. Memory retrain switch is set.
*/
if (!IS_ENABLED(CONFIG_HAS_RECOVERY_MRC_CACHE) ||
vboot_recovery_mode_memory_retrain())
return NULL;
return RECOVERY_MRC_CACHE;
}
static int mrc_cache_verify_tpm_hash(const uint8_t *data, size_t size)
{
uint8_t data_hash[VB2_SHA256_DIGEST_SIZE];
@ -209,29 +192,46 @@ static int mrc_cache_verify_tpm_hash(const uint8_t *data, size_t size)
static void fsp_fill_mrc_cache(FSPM_ARCH_UPD *arch_upd, bool s3wake,
uint32_t fsp_version)
{
const struct mrc_saved_data *mrc_cache;
const char *name;
struct region_device rdev;
void *data;
arch_upd->NvsBufferPtr = NULL;
if (!IS_ENABLED(CONFIG_CACHE_MRC_SETTINGS))
return;
name = mrc_cache_get_region_name();
/*
* In recovery mode, force retraining:
* 1. Recovery cache is not supported, or
* 2. Memory retrain switch is set.
*/
if (vboot_recovery_mode_enabled()) {
if (!IS_ENABLED(CONFIG_HAS_RECOVERY_MRC_CACHE))
return;
if (vboot_recovery_mode_memory_retrain())
return;
}
if (mrc_cache_get_current_from_region(&mrc_cache, fsp_version, name))
if (mrc_cache_get_current(MRC_TRAINING_DATA, fsp_version, &rdev) < 0)
return;
if (!mrc_cache_verify_tpm_hash(mrc_cache->data, mrc_cache->size))
/* Assume boot device is memory mapped. */
assert(IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED));
data = rdev_mmap_full(&rdev);
if (data == NULL)
return;
if (!mrc_cache_verify_tpm_hash(data, region_device_sz(&rdev)))
return;
/* MRC cache found */
arch_upd->NvsBufferPtr = (void *)mrc_cache->data;
arch_upd->NvsBufferPtr = data;
arch_upd->BootMode = s3wake ?
FSP_BOOT_ON_S3_RESUME:
FSP_BOOT_ASSUMING_NO_CONFIGURATION_CHANGES;
printk(BIOS_SPEW, "MRC cache found, size %x bootmode:%d\n",
mrc_cache->size, arch_upd->BootMode);
printk(BIOS_SPEW, "MRC cache found, size %zx bootmode:%d\n",
region_device_sz(&rdev), arch_upd->BootMode);
}
static enum cb_err check_region_overlap(const struct memranges *ranges,

View File

@ -23,7 +23,6 @@
#include <console/console.h>
#include <fmap.h>
#include <soc/flash_ctrlr.h>
#include <soc/intel/common/nvm.h>
#include <soc/mmap_boot.h>
/*
@ -148,22 +147,6 @@ const struct cbfs_locator cbfs_master_header_locator = {
.locate = iafw_boot_region_properties,
};
uint32_t nvm_mmio_to_flash_offset(void *p)
{
bios_mmap_init();
size_t start, size;
start = car_get_var(bios_start);
size = car_get_var(bios_size);
/*
* Returns :
* addr - base of mmaped region in addr space + offset of mmaped region
* start on flash
*/
return (uintptr_t)p - (4ULL * GiB - size) + start;
}
size_t get_bios_size(void)
{
bios_mmap_init();

View File

@ -202,8 +202,9 @@ asmlinkage void car_stage_entry(void)
new_var_data = fsp_find_extension_hob_by_guid(hob_variable_guid,
&var_size);
if (new_var_data)
mrc_cache_stash_vardata(new_var_data, var_size,
car_get_var(fsp_version));
mrc_cache_stash_data(MRC_VARIABLE_DATA,
car_get_var(fsp_version), new_var_data,
var_size);
else
printk(BIOS_ERR, "Failed to determine variable data\n");
@ -258,7 +259,7 @@ static void fill_console_params(FSPM_UPD *mupd)
void platform_fsp_memory_init_params_cb(FSPM_UPD *mupd, uint32_t version)
{
const struct mrc_saved_data *msd;
struct region_device rdev;
fill_console_params(mupd);
mainboard_memory_init_params(mupd);
@ -293,10 +294,10 @@ void platform_fsp_memory_init_params_cb(FSPM_UPD *mupd, uint32_t version)
* wrong/missing key renders DRAM contents useless.
*/
if (mrc_cache_get_vardata(&msd, version) < 0) {
printk(BIOS_DEBUG, "MRC variable data missing/invalid\n");
} else {
mupd->FspmConfig.VariableNvsBufferPtr = (void*) msd->data;
if (mrc_cache_get_current(MRC_VARIABLE_DATA, version, &rdev) == 0) {
/* Assume leaking is ok. */
assert(IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED));
mupd->FspmConfig.VariableNvsBufferPtr = rdev_mmap_full(&rdev);
}
car_set_var(fsp_version, version);

View File

@ -15,7 +15,7 @@
#include <stddef.h>
#include <arch/acpi.h>
#include <arch/io.h>
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <console/console.h>
@ -111,7 +111,7 @@ void raminit(struct mrc_params *mp, int prev_sleep_state)
{
int ret;
mrc_wrapper_entry_t mrc_entry;
const struct mrc_saved_data *cache;
struct region_device rdev;
/* Fill in default entries. */
mp->version = MRC_PARAMS_VER;
@ -125,9 +125,11 @@ void raminit(struct mrc_params *mp, int prev_sleep_state)
if (vboot_recovery_mode_enabled()) {
printk(BIOS_DEBUG, "Recovery mode: not using MRC cache.\n");
} else if (!mrc_cache_get_current(&cache)) {
mp->saved_data_size = cache->size;
mp->saved_data = &cache->data[0];
} else if (!mrc_cache_get_current(MRC_TRAINING_DATA, 0, &rdev)) {
mp->saved_data_size = region_device_sz(&rdev);
mp->saved_data = rdev_mmap_full(&rdev);
/* Assume boot device is memory mapped. */
assert(IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED));
} else if (prev_sleep_state == ACPI_S3) {
/* If waking from S3 and no cache then. */
printk(BIOS_DEBUG, "No MRC cache found in S3 resume path.\n");
@ -178,5 +180,6 @@ void raminit(struct mrc_params *mp, int prev_sleep_state)
mp->data_to_save_size);
if (mp->data_to_save != NULL && mp->data_to_save_size > 0)
mrc_cache_stash_data(mp->data_to_save, mp->data_to_save_size);
mrc_cache_stash_data(MRC_TRAINING_DATA, 0, mp->data_to_save,
mp->data_to_save_size);
}

View File

@ -15,6 +15,7 @@
#include <arch/cbfs.h>
#include <arch/io.h>
#include <assert.h>
#include <cbfs.h>
#include <cbmem.h>
#include <console/console.h>
@ -41,7 +42,7 @@
*/
void raminit(struct pei_data *pei_data)
{
const struct mrc_saved_data *cache;
struct region_device rdev;
struct memory_info* mem_info;
pei_wrapper_entry_t entry;
int ret;
@ -51,10 +52,12 @@ void raminit(struct pei_data *pei_data)
if (vboot_recovery_mode_enabled()) {
/* Recovery mode does not use MRC cache */
printk(BIOS_DEBUG, "Recovery mode: not using MRC cache.\n");
} else if (!mrc_cache_get_current(&cache)) {
} else if (!mrc_cache_get_current(MRC_TRAINING_DATA, 0, &rdev)) {
/* MRC cache found */
pei_data->saved_data_size = cache->size;
pei_data->saved_data = &cache->data[0];
pei_data->saved_data_size = region_device_sz(&rdev);
pei_data->saved_data = rdev_mmap_full(&rdev);
/* Assume boot device is memory mapped. */
assert(IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED));
} else if (pei_data->boot_mode == ACPI_S3) {
/* Waking from S3 and no cache. */
printk(BIOS_DEBUG, "No MRC cache found in S3 resume path.\n");
@ -118,8 +121,9 @@ void raminit(struct pei_data *pei_data)
pei_data->data_to_save_size);
if (pei_data->data_to_save != NULL && pei_data->data_to_save_size > 0)
mrc_cache_stash_data(pei_data->data_to_save,
pei_data->data_to_save_size);
mrc_cache_stash_data(MRC_TRAINING_DATA, 0,
pei_data->data_to_save,
pei_data->data_to_save_size);
printk(BIOS_DEBUG, "create cbmem for dimm information\n");
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(struct memory_info));

View File

@ -14,344 +14,343 @@
*/
#include <string.h>
#include <boot_device.h>
#include <bootstate.h>
#include <console/console.h>
#include <cbmem.h>
#include <elog.h>
#include <fmap.h>
#include <ip_checksum.h>
#include <region_file.h>
#include <vboot/vboot_common.h>
#include "mrc_cache.h"
#include "nvm.h"
#define MRC_DATA_ALIGN 0x1000
#define DEFAULT_MRC_CACHE "RW_MRC_CACHE"
#define VARIABLE_MRC_CACHE "RW_VAR_MRC_CACHE"
#define RECOVERY_MRC_CACHE "RECOVERY_MRC_CACHE"
#define UNIFIED_MRC_CACHE "UNIFIED_MRC_CACHE"
#define MRC_DATA_SIGNATURE (('M'<<0)|('R'<<8)|('C'<<16)|('D'<<24))
/* The mrc_data_region describes the larger non-volatile area to store
* mrc_saved_data objects.*/
struct mrc_data_region {
void *base;
uint32_t size;
};
struct mrc_metadata {
uint32_t signature;
uint32_t data_size;
uint16_t data_checksum;
uint16_t header_checksum;
uint32_t version;
} __attribute__((packed));
enum result {
WRITE_FAILURE = -1,
ERASE_FAILURE = -2,
OTHER_FAILURE = -3,
UPDATE_FAILURE = -1,
UPDATE_SUCCESS = 0,
ALREADY_UPTODATE = 1
};
/* common code */
static int mrc_cache_get_region(const char *name,
struct mrc_data_region *region)
#define NORMAL_FLAG (1 << 0)
#define RECOVERY_FLAG (1 << 1)
struct cache_region {
const char *name;
uint32_t cbmem_id;
int type;
int elog_slot;
int flags;
};
static const struct cache_region recovery_training = {
.name = RECOVERY_MRC_CACHE,
.cbmem_id = CBMEM_ID_MRCDATA,
.type = MRC_TRAINING_DATA,
.elog_slot = ELOG_MEM_CACHE_UPDATE_SLOT_RECOVERY,
#if IS_ENABLED(CONFIG_HAS_RECOVERY_MRC_CACHE)
.flags = RECOVERY_FLAG,
#else
.flags = 0,
#endif
};
static const struct cache_region normal_training = {
.name = DEFAULT_MRC_CACHE,
.cbmem_id = CBMEM_ID_MRCDATA,
.type = MRC_TRAINING_DATA,
.elog_slot = ELOG_MEM_CACHE_UPDATE_SLOT_NORMAL,
.flags = NORMAL_FLAG | RECOVERY_FLAG,
};
static const struct cache_region variable_data = {
.name = VARIABLE_MRC_CACHE,
.cbmem_id = CBMEM_ID_VAR_MRCDATA,
.type = MRC_VARIABLE_DATA,
.elog_slot = ELOG_MEM_CACHE_UPDATE_SLOT_VARIABLE,
.flags = NORMAL_FLAG | RECOVERY_FLAG,
};
/* Order matters here for priority in matching. */
static const struct cache_region *cache_regions[] = {
&recovery_training,
&normal_training,
&variable_data,
};
static int lookup_region_by_name(const char *name, struct region *r)
{
bool located_by_fmap = true;
struct region_device rdev;
/* This assumes memory mapped boot media just under 4GiB. */
const uint32_t pointer_base_32bit = -CONFIG_ROM_SIZE;
region->base = NULL;
region->size = 0;
if (fmap_locate_area_as_rdev(name, &rdev))
located_by_fmap = false;
if (fmap_locate_area(name, r) == 0)
return 0;
/* CHROMEOS builds must get their MRC cache from FMAP. */
if (IS_ENABLED(CONFIG_CHROMEOS) && !located_by_fmap)
if (IS_ENABLED(CONFIG_CHROMEOS)) {
printk(BIOS_ERR, "MRC: Chrome OS lookup failure.\n");
return -1;
}
if (!IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED))
return -1;
if (located_by_fmap) {
region->size = region_device_sz(&rdev);
region->base = rdev_mmap_full(&rdev);
if (region->base == NULL)
return -1;
} else {
region->base = (void *)CONFIG_MRC_SETTINGS_CACHE_BASE;
region->size = CONFIG_MRC_SETTINGS_CACHE_SIZE;
}
/* Base is in the form of a pointer. Make it an offset. */
r->offset = CONFIG_MRC_SETTINGS_CACHE_BASE - pointer_base_32bit;
r->size = CONFIG_MRC_SETTINGS_CACHE_SIZE;
return 0;
}
/* Protect mrc region with a Protected Range Register */
static int __protect_mrc_cache(const struct mrc_data_region *region,
const char *name)
static const struct cache_region *lookup_region_type(int type)
{
if (!IS_ENABLED(CONFIG_MRC_SETTINGS_PROTECT))
return 0;
int i;
int flags;
if (nvm_is_write_protected() <= 0) {
printk(BIOS_INFO, "MRC: NOT enabling PRR for %s.\n", name);
return 1;
if (vboot_recovery_mode_enabled())
flags = RECOVERY_FLAG;
else
flags = NORMAL_FLAG;
for (i = 0; i < ARRAY_SIZE(cache_regions); i++) {
if (cache_regions[i]->type != type)
continue;
if ((cache_regions[i]->flags & flags) == flags)
return cache_regions[i];
}
if (nvm_protect(region->base, region->size) < 0) {
printk(BIOS_ERR, "MRC: ERROR setting PRR for %s.\n", name);
return NULL;
}
int mrc_cache_stash_data(int type, uint32_t version, const void *data,
size_t size)
{
const struct cache_region *cr;
size_t cbmem_size;
struct mrc_metadata *md;
cr = lookup_region_type(type);
if (cr == NULL) {
printk(BIOS_ERR, "MRC: failed to add to cbmem for type %d.\n",
type);
return -1;
}
printk(BIOS_INFO, "MRC: Enabled Protected Range on %s.\n", name);
return 0;
}
cbmem_size = sizeof(*md) + size;
static int protect_mrc_cache(const char *name)
{
struct mrc_data_region region;
if (mrc_cache_get_region(name, &region) < 0) {
printk(BIOS_ERR, "MRC: Could not find region %s\n", name);
md = cbmem_add(cr->cbmem_id, cbmem_size);
if (md == NULL) {
printk(BIOS_ERR, "MRC: failed to add '%s' to cbmem.\n",
cr->name);
return -1;
}
return __protect_mrc_cache(&region, name);
}
static int mrc_cache_in_region(const struct mrc_data_region *region,
const struct mrc_saved_data *cache)
{
uintptr_t region_end;
uintptr_t cache_end;
if ((uintptr_t)cache < (uintptr_t)region->base)
return 0;
region_end = (uintptr_t)region->base;
region_end += region->size;
if ((uintptr_t)cache >= region_end)
return 0;
if ((sizeof(*cache) + (uintptr_t)cache) >= region_end)
return 0;
cache_end = (uintptr_t)cache;
cache_end += cache->size + sizeof(*cache);
if (cache_end > region_end)
return 0;
return 1;
}
static int mrc_cache_valid(const struct mrc_data_region *region,
const struct mrc_saved_data *cache)
{
uint32_t checksum;
if (cache->signature != MRC_DATA_SIGNATURE)
return 0;
if (cache->size > region->size)
return 0;
checksum = compute_ip_checksum((void *)&cache->data[0], cache->size);
if (cache->checksum != checksum)
return 0;
return 1;
}
static const struct mrc_saved_data *
next_cache_block(const struct mrc_saved_data *cache)
{
uintptr_t next = (uintptr_t)cache;
next += ALIGN(cache->size + sizeof(*cache), MRC_DATA_ALIGN);
return (const struct mrc_saved_data *)next;
}
/* Locate the most recently saved MRC data. */
static int __mrc_cache_get_current(const struct mrc_data_region *region,
const struct mrc_saved_data **cache,
uint32_t version)
{
const struct mrc_saved_data *msd;
const struct mrc_saved_data *verified_cache;
int slot = 0;
msd = region->base;
verified_cache = NULL;
while (mrc_cache_in_region(region, msd) &&
mrc_cache_valid(region, msd)) {
verified_cache = msd;
msd = next_cache_block(msd);
slot++;
}
/*
* Update pointer to the most recently saved MRC data before returning
* any error. This ensures that the caller can use next available slot
* if required.
*/
*cache = verified_cache;
if (verified_cache == NULL)
return -1;
if (verified_cache->version != version) {
printk(BIOS_DEBUG, "MRC: cache version mismatch: %x vs %x\n",
verified_cache->version, version);
return -1;
}
printk(BIOS_DEBUG, "MRC: cache slot %d @ %p\n", slot-1, verified_cache);
memset(md, 0, sizeof(*md));
md->signature = MRC_DATA_SIGNATURE;
md->data_size = size;
md->version = version;
md->data_checksum = compute_ip_checksum(data, size);
md->header_checksum = compute_ip_checksum(md, sizeof(*md));
memcpy(&md[1], data, size);
return 0;
}
int mrc_cache_get_current_from_region(const struct mrc_saved_data **cache,
uint32_t version,
const char *region_name)
static const struct cache_region *lookup_region(struct region *r, int type)
{
struct mrc_data_region region;
const struct cache_region *cr;
if (!region_name) {
printk(BIOS_ERR, "MRC: Requires memory retraining.\n");
cr = lookup_region_type(type);
if (cr == NULL) {
printk(BIOS_ERR, "MRC: failed to locate region type %d.\n",
type);
return NULL;
}
if (lookup_region_by_name(cr->name, r) < 0)
return NULL;
return cr;
}
static int mrc_header_valid(struct region_device *rdev, struct mrc_metadata *md)
{
uint16_t checksum;
uint16_t checksum_result;
size_t size;
if (rdev_readat(rdev, md, 0, sizeof(*md)) < 0) {
printk(BIOS_ERR, "MRC: couldn't read metadata\n");
return -1;
}
printk(BIOS_ERR, "MRC: Using data from %s\n", region_name);
if (mrc_cache_get_region(region_name, &region) < 0) {
printk(BIOS_ERR, "MRC: Region %s not found. "
"Requires memory retraining.\n", region_name);
if (md->signature != MRC_DATA_SIGNATURE) {
printk(BIOS_ERR, "MRC: invalid header signature\n");
return -1;
}
if (__mrc_cache_get_current(&region, cache, version) < 0) {
printk(BIOS_ERR, "MRC: Valid slot not found in %s."
"Requires memory retraining.\n", region_name);
/* Compute checksum over header with 0 as the value. */
checksum = md->header_checksum;
md->header_checksum = 0;
checksum_result = compute_ip_checksum(md, sizeof(*md));
if (checksum != checksum_result) {
printk(BIOS_ERR, "MRC: header checksum mismatch: %x vs %x\n",
checksum, checksum_result);
return -1;
}
/* Put back original. */
md->header_checksum = checksum;
/* Re-size the region device according to the metadata as a region_file
* does block allocation. */
size = sizeof(*md) + md->data_size;
if (rdev_chain(rdev, rdev, 0, size) < 0) {
printk(BIOS_ERR, "MRC: size exceeds rdev size: %zx vs %zx\n",
size, region_device_sz(rdev));
return -1;
}
return 0;
}
int mrc_cache_get_current_with_version(const struct mrc_saved_data **cache,
uint32_t version)
static int mrc_data_valid(const struct region_device *rdev,
const struct mrc_metadata *md)
{
return mrc_cache_get_current_from_region(cache, version,
DEFAULT_MRC_CACHE);
}
void *data;
uint16_t checksum;
const size_t md_size = sizeof(*md);
const size_t data_size = md->data_size;
int mrc_cache_get_current(const struct mrc_saved_data **cache)
{
return mrc_cache_get_current_with_version(cache, 0);
}
int mrc_cache_get_vardata(const struct mrc_saved_data **cache, uint32_t version)
{
struct mrc_data_region region;
if (mrc_cache_get_region(VARIABLE_MRC_CACHE, &region) < 0)
return -1;
return __mrc_cache_get_current(&region, cache, version);
}
/* Fill in mrc_saved_data structure with payload. */
static void mrc_cache_fill(struct mrc_saved_data *cache, const void *data,
size_t size, uint32_t version)
{
cache->signature = MRC_DATA_SIGNATURE;
cache->size = size;
cache->version = version;
memcpy(&cache->data[0], data, size);
cache->checksum = compute_ip_checksum((void *)&cache->data[0],
cache->size);
}
static int _mrc_stash_data(const void *data, size_t size, uint32_t version,
uint32_t cbmem_id)
{
int cbmem_size;
struct mrc_saved_data *cache;
cbmem_size = sizeof(*cache) + ALIGN(size, 16);
cache = cbmem_add(cbmem_id, cbmem_size);
if (cache == NULL) {
printk(BIOS_ERR, "MRC: No space in cbmem for training data.\n");
data = rdev_mmap(rdev, md_size, data_size);
if (data == NULL) {
printk(BIOS_ERR, "MRC: mmap failure on data verification.\n");
return -1;
}
/* Clear alignment padding bytes at end of data. */
memset(&cache->data[size], 0, cbmem_size - size - sizeof(*cache));
checksum = compute_ip_checksum(data, data_size);
printk(BIOS_DEBUG, "MRC: Relocate data from %p to %p (%zu bytes)\n",
data, cache, size);
mrc_cache_fill(cache, data, size, version);
rdev_munmap(rdev, data);
if (md->data_checksum != checksum) {
printk(BIOS_ERR, "MRC: data checksum mismatch: %x vs %x\n",
md->data_checksum, checksum);
return -1;
}
return 0;
}
int mrc_cache_stash_data_with_version(const void *data, size_t size,
uint32_t version)
static int mrc_cache_latest(const char *name,
const struct region_device *backing_rdev,
struct mrc_metadata *md,
struct region_file *cache_file,
struct region_device *rdev,
bool fail_bad_data)
{
return _mrc_stash_data(data, size, version, CBMEM_ID_MRCDATA);
}
int mrc_cache_stash_vardata(const void *data, size_t size, uint32_t version)
{
return _mrc_stash_data(data, size, version, CBMEM_ID_VAR_MRCDATA);
}
int mrc_cache_stash_data(const void *data, size_t size)
{
return mrc_cache_stash_data_with_version(data, size, 0);
}
static int mrc_slot_valid(const struct mrc_data_region *region,
const struct mrc_saved_data *slot,
const struct mrc_saved_data *to_save)
{
uintptr_t region_begin;
uintptr_t region_end;
uintptr_t slot_end;
uintptr_t slot_begin;
uint32_t size;
region_begin = (uintptr_t)region->base;
region_end = region_begin + region->size;
slot_begin = (uintptr_t)slot;
size = to_save->size + sizeof(*to_save);
slot_end = slot_begin + size;
if (slot_begin < region_begin || slot_begin >= region_end)
return 0;
if (size > region->size)
return 0;
if (slot_end > region_end || slot_end < region_begin)
return 0;
if (!nvm_is_erased(slot, size))
return 0;
return 1;
}
static const struct mrc_saved_data *
mrc_cache_next_slot(const struct mrc_data_region *region,
const struct mrc_saved_data *current_slot)
{
const struct mrc_saved_data *next_slot;
if (current_slot == NULL) {
next_slot = region->base;
} else {
next_slot = next_cache_block(current_slot);
/* Init and obtain a handle to the file data. */
if (region_file_init(cache_file, backing_rdev) < 0) {
printk(BIOS_ERR, "MRC: region file invalid in '%s'\n", name);
return -1;
}
return next_slot;
/* Provide a 0 sized region_device from here on out so the caller
* has a valid yet unusable region_device. */
rdev_chain(rdev, backing_rdev, 0, 0);
/* No data to return. */
if (region_file_data(cache_file, rdev) < 0) {
printk(BIOS_ERR, "MRC: no data in '%s'\n", name);
return fail_bad_data ? -1 : 0;
}
/* Validate header and resize region to reflect actual usage on the
* saved medium (including metadata and data). */
if (mrc_header_valid(rdev, md) < 0) {
printk(BIOS_ERR, "MRC: invalid header in '%s'\n", name);
return fail_bad_data ? -1 : 0;
}
/* Validate Data */
if (mrc_data_valid(rdev, md) < 0) {
printk(BIOS_ERR, "MRC: invalid data in '%s'\n", name);
return fail_bad_data ? -1 : 0;
}
return 0;
}
int mrc_cache_get_current(int type, uint32_t version,
struct region_device *rdev)
{
const struct cache_region *cr;
struct region region;
struct region_device read_rdev;
struct region_file cache_file;
struct mrc_metadata md;
size_t data_size;
const size_t md_size = sizeof(md);
const bool fail_bad_data = true;
cr = lookup_region(&region, type);
if (cr == NULL)
return -1;
if (boot_device_ro_subregion(&region, &read_rdev) < 0)
return -1;
if (mrc_cache_latest(cr->name, &read_rdev, &md, &cache_file, rdev,
fail_bad_data) < 0)
return -1;
if (version != md.version) {
printk(BIOS_INFO, "MRC: version mismatch: %x vs %x\n",
md.version, version);
return -1;
}
/* Re-size rdev to only contain the data. i.e. remove metadata. */
data_size = md.data_size;
return rdev_chain(rdev, rdev, md_size, data_size);
}
static bool mrc_cache_needs_update(const struct region_device *rdev,
const struct cbmem_entry *to_be_updated)
{
void *mapping;
size_t size = region_device_sz(rdev);
bool need_update = false;
if (cbmem_entry_size(to_be_updated) != size)
return true;
mapping = rdev_mmap_full(rdev);
if (memcmp(cbmem_entry_start(to_be_updated), mapping, size))
need_update = true;
rdev_munmap(rdev, mapping);
return need_update;
}
static void log_event_cache_update(uint8_t slot, enum result res)
@ -363,9 +362,7 @@ static void log_event_cache_update(uint8_t slot, enum result res)
/* Filter through interesting events only */
switch (res) {
case WRITE_FAILURE: /* fall-through */
case ERASE_FAILURE: /* fall-through */
case OTHER_FAILURE: /* fall-through */
case UPDATE_FAILURE:
event.status = ELOG_MEM_CACHE_UPDATE_STATUS_FAIL;
break;
case UPDATE_SUCCESS:
@ -379,63 +376,95 @@ static void log_event_cache_update(uint8_t slot, enum result res)
printk(BIOS_ERR, "Failed to log mem cache update event.\n");
}
static int update_mrc_cache_type(uint32_t cbmem_id, const char *region_name)
/* During ramstage this code purposefully uses incoherent transactions between
* read and write. The read assumes a memory-mapped boot device that can be used
* to quickly locate and compare the up-to-date data. However, when an update
* is required it uses the writeable region access to perform the update. */
static void update_mrc_cache_by_type(int type)
{
const struct mrc_saved_data *current_boot;
const struct mrc_saved_data *current_saved;
const struct mrc_saved_data *next_slot;
struct mrc_data_region region;
int res;
const struct cache_region *cr;
struct region region;
struct region_device read_rdev;
struct region_device write_rdev;
struct region_file cache_file;
struct mrc_metadata md;
const struct cbmem_entry *to_be_updated;
struct incoherent_rdev backing_irdev;
const struct region_device *backing_rdev;
struct region_device latest_rdev;
const bool fail_bad_data = false;
printk(BIOS_DEBUG, "MRC: Updating cache data.\n");
cr = lookup_region(&region, type);
printk(BIOS_ERR, "MRC: Cache region selected - %s\n", region_name);
if (cr == NULL)
return;
if (mrc_cache_get_region(region_name, &region)) {
printk(BIOS_ERR, "MRC: Could not obtain cache region.\n");
return OTHER_FAILURE;
to_be_updated = cbmem_entry_find(cr->cbmem_id);
if (to_be_updated == NULL) {
printk(BIOS_ERR, "MRC: No data in cbmem for '%s'.\n",
cr->name);
return;
}
current_boot = cbmem_find(cbmem_id);
if (!current_boot) {
printk(BIOS_ERR, "MRC: No cache in cbmem.\n");
return OTHER_FAILURE;
printk(BIOS_DEBUG, "MRC: Checking cached data update for '%s'.\n",
cr->name);
if (boot_device_ro_subregion(&region, &read_rdev) < 0)
return;
if (boot_device_rw_subregion(&region, &write_rdev) < 0)
return;
backing_rdev = incoherent_rdev_init(&backing_irdev, &region, &read_rdev,
&write_rdev);
if (backing_rdev == NULL)
return;
if (mrc_cache_latest(cr->name, backing_rdev, &md, &cache_file,
&latest_rdev, fail_bad_data) < 0)
return;
if (!mrc_cache_needs_update(&latest_rdev, to_be_updated)) {
log_event_cache_update(cr->elog_slot, ALREADY_UPTODATE);
return;
}
if (!mrc_cache_valid(&region, current_boot)) {
printk(BIOS_ERR, "MRC: Cache data in cbmem invalid.\n");
return OTHER_FAILURE;
printk(BIOS_DEBUG, "MRC: cache data '%s' needs update.\n", cr->name);
if (region_file_update_data(&cache_file,
cbmem_entry_start(to_be_updated),
cbmem_entry_size(to_be_updated)) < 0)
log_event_cache_update(cr->elog_slot, UPDATE_FAILURE);
else
log_event_cache_update(cr->elog_slot, UPDATE_SUCCESS);
}
/* Protect mrc region with a Protected Range Register */
static int protect_mrc_cache(const char *name)
{
struct region region;
if (!IS_ENABLED(CONFIG_MRC_SETTINGS_PROTECT))
return 0;
if (lookup_region_by_name(name, &region) < 0) {
printk(BIOS_ERR, "MRC: Could not find region '%s'\n", name);
return -1;
}
current_saved = NULL;
if (!__mrc_cache_get_current(&region, &current_saved,
current_boot->version)) {
if (current_saved->size == current_boot->size &&
!memcmp(&current_saved->data[0], &current_boot->data[0],
current_saved->size)) {
printk(BIOS_DEBUG, "MRC: Cache up to date.\n");
return ALREADY_UPTODATE;
}
if (nvm_is_write_protected() <= 0) {
printk(BIOS_INFO, "MRC: NOT enabling PRR for '%s'.\n", name);
return 0;
}
next_slot = mrc_cache_next_slot(&region, current_saved);
if (!mrc_slot_valid(&region, next_slot, current_boot)) {
printk(BIOS_DEBUG, "MRC: Slot @ %p is invalid.\n", next_slot);
if (!nvm_is_erased(region.base, region.size)) {
if (nvm_erase(region.base, region.size) < 0) {
printk(BIOS_DEBUG, "MRC: Failure erasing "
"region %s.\n", region_name);
return ERASE_FAILURE;
}
}
next_slot = region.base;
if (nvm_protect(&region) < 0) {
printk(BIOS_ERR, "MRC: ERROR setting PRR for '%s'.\n", name);
return -1;
}
res = nvm_write((void *)next_slot, current_boot, current_boot->size
+ sizeof(*current_boot));
return res < 0 ? WRITE_FAILURE : UPDATE_SUCCESS;
printk(BIOS_INFO, "MRC: Enabled Protected Range on '%s'.\n", name);
return 0;
}
static void protect_mrc_region(void)
@ -459,30 +488,10 @@ static void protect_mrc_region(void)
static void update_mrc_cache(void *unused)
{
uint8_t slot;
const char *region_name;
enum result res;
update_mrc_cache_by_type(MRC_TRAINING_DATA);
/* First update either recovery or default cache */
if (vboot_recovery_mode_enabled() &&
IS_ENABLED(CONFIG_HAS_RECOVERY_MRC_CACHE)) {
region_name = RECOVERY_MRC_CACHE;
slot = ELOG_MEM_CACHE_UPDATE_SLOT_RECOVERY;
} else {
region_name = DEFAULT_MRC_CACHE;
slot = ELOG_MEM_CACHE_UPDATE_SLOT_NORMAL;
}
res = update_mrc_cache_type(CBMEM_ID_MRCDATA, region_name);
log_event_cache_update(slot, res);
/* Next update variable cache if in use */
if (IS_ENABLED(CONFIG_MRC_SETTINGS_VARIABLE_DATA)) {
res = update_mrc_cache_type(CBMEM_ID_VAR_MRCDATA,
VARIABLE_MRC_CACHE);
log_event_cache_update(ELOG_MEM_CACHE_UPDATE_SLOT_VARIABLE,
res);
}
if (IS_ENABLED(CONFIG_MRC_SETTINGS_VARIABLE_DATA))
update_mrc_cache_by_type(MRC_VARIABLE_DATA);
protect_mrc_region();
}

View File

@ -19,34 +19,25 @@
#include <stddef.h>
#include <stdint.h>
#define DEFAULT_MRC_CACHE "RW_MRC_CACHE"
#define VARIABLE_MRC_CACHE "RW_VAR_MRC_CACHE"
#define RECOVERY_MRC_CACHE "RECOVERY_MRC_CACHE"
#define UNIFIED_MRC_CACHE "UNIFIED_MRC_CACHE"
enum {
MRC_TRAINING_DATA,
MRC_VARIABLE_DATA,
};
/* Wrapper object to save MRC information. */
struct mrc_saved_data {
uint32_t signature;
uint32_t size;
uint32_t checksum;
uint32_t version;
uint8_t data[0];
} __attribute__((packed));
/*
* It's up to the caller to decide when to retrieve and stash data. There is
* differentiation on recovery mode CONFIG_HAS_RECOVERY_MRC_CACHE, but that's
* only for locating where to retrieve and save the data. If a platform doesn't
* want to update the data then it shouldn't stash the data for saving.
* Similarly, if the platform doesn't need the data for booting because of a
* policy don't request the data.
*/
/* Locate the most recently saved MRC data. */
int mrc_cache_get_current(const struct mrc_saved_data **cache);
int mrc_cache_get_current_with_version(const struct mrc_saved_data **cache,
uint32_t version);
int mrc_cache_get_vardata(const struct mrc_saved_data **cache,
uint32_t version);
int mrc_cache_get_current_from_region(const struct mrc_saved_data **cache,
uint32_t version,
const char *region_name);
/* Stash the resulting MRC data to be saved in non-volatile storage later. */
int mrc_cache_stash_data(const void *data, size_t size);
int mrc_cache_stash_data_with_version(const void *data, size_t size,
uint32_t version);
int mrc_cache_stash_vardata(const void *data, size_t size, uint32_t version);
/* Get and stash data for saving provided the type passed in. The functions
* return < 0 on error, 0 on success. */
int mrc_cache_get_current(int type, uint32_t version,
struct region_device *rdev);
int mrc_cache_stash_data(int type, uint32_t version, const void *data,
size_t size);
#endif /* _COMMON_MRC_CACHE_H_ */

View File

@ -24,113 +24,43 @@
#include "nvm.h"
#include "spi_flash.h"
/* This module assumes the flash is memory mapped just below 4GiB in the
* address space for reading. Also this module assumes an area it erased
* when all bytes read as all 0xff's. */
static struct spi_flash *flash;
static int nvm_init(void)
{
if (flash != NULL)
return 0;
spi_init();
flash = spi_flash_probe(0, 0);
if (!flash) {
printk(BIOS_DEBUG, "Could not find SPI device\n");
return -1;
}
return 0;
}
/*
* Convert memory mapped pointer to flash offset.
*
* This is weak because not every platforms memory-maps the NVM media in the
* same manner. This is a stop-gap solution.
*
* The root of the problem is that users of this API work in memory space for
* both reads and writes, but erase and write must be done in flash space. This
* also only works when the media is memory-mapped, which is no longer
* universally true. The long-term approach should be to rewrite this and its
* users to work in flash space, while using rdev_read() instead of rdev_mmap().
*/
__attribute__((weak))
uint32_t nvm_mmio_to_flash_offset(void *p)
{
return CONFIG_ROM_SIZE + (uintptr_t)p;
}
int nvm_is_erased(const void *start, size_t size)
{
const uint8_t *cur = start;
const uint8_t erased_value = 0xff;
while (size > 0) {
if (*cur != erased_value)
return 0;
cur++;
size--;
}
return 1;
}
int nvm_erase(void *start, size_t size)
{
if (nvm_init() < 0)
return -1;
return spi_flash_erase(flash, nvm_mmio_to_flash_offset(start), size);
}
/* Write data to NVM. Returns 0 on success < 0 on error. */
int nvm_write(void *start, const void *data, size_t size)
{
if (nvm_init() < 0)
return -1;
return spi_flash_write(flash, nvm_mmio_to_flash_offset(start), size,
data);
}
/* Read flash status register to determine if write protect is active */
int nvm_is_write_protected(void)
{
if (nvm_init() < 0)
u8 sr1;
u8 wp_gpio;
u8 wp_spi;
if (!IS_ENABLED(CONFIG_CHROMEOS))
return 0;
if (!IS_ENABLED(CONFIG_BOOT_DEVICE_SPI_FLASH))
return 0;
/* Read Write Protect GPIO if available */
wp_gpio = get_write_protect_state();
/* Read Status Register 1 */
if (spi_flash_status(boot_device_spi_flash(), &sr1) < 0) {
printk(BIOS_ERR, "Failed to read SPI status register 1\n");
return -1;
if (IS_ENABLED(CONFIG_CHROMEOS)) {
u8 sr1;
u8 wp_gpio;
u8 wp_spi;
/* Read Write Protect GPIO if available */
wp_gpio = get_write_protect_state();
/* Read Status Register 1 */
if (spi_flash_status(flash, &sr1) < 0) {
printk(BIOS_ERR,
"Failed to read SPI status register 1\n");
return -1;
}
wp_spi = !!(sr1 & 0x80);
printk(BIOS_DEBUG, "SPI flash protection: WPSW=%d SRP0=%d\n",
wp_gpio, wp_spi);
return wp_gpio && wp_spi;
}
return 0;
wp_spi = !!(sr1 & 0x80);
printk(BIOS_DEBUG, "SPI flash protection: WPSW=%d SRP0=%d\n",
wp_gpio, wp_spi);
return wp_gpio && wp_spi;
}
/* Apply protection to a range of flash */
int nvm_protect(void *start, size_t size)
int nvm_protect(const struct region *r)
{
#if IS_ENABLED(CONFIG_MRC_SETTINGS_PROTECT)
if (nvm_init() < 0)
return -1;
return spi_flash_protect(nvm_mmio_to_flash_offset(start), size);
#else
return -1;
#endif
if (!IS_ENABLED(CONFIG_MRC_SETTINGS_PROTECT))
return 0;
if (!IS_ENABLED(CONFIG_BOOT_DEVICE_SPI_FLASH))
return 0;
return spi_flash_protect(region_offset(r), region_sz(r));
}

View File

@ -16,24 +16,12 @@
#ifndef _COMMON_NVM_H_
#define _COMMON_NVM_H_
#include <stddef.h>
/* Determine if area is erased. returns 1 if erased. 0 otherwise. */
int nvm_is_erased(const void *start, size_t size);
/* Erase region according to start and size. Returns < 0 on error else 0. */
int nvm_erase(void *start, size_t size);
/* Write data to NVM. Returns 0 on success < 0 on error. */
int nvm_write(void *start, const void *data, size_t size);
#include <commonlib/region.h>
/* Determine if flash device is write protected */
int nvm_is_write_protected(void);
/* Apply protection to a range of flash */
int nvm_protect(void *start, size_t size);
/* Map MMIO address to actual address in flash */
uint32_t nvm_mmio_to_flash_offset(void *p);
int nvm_protect(const struct region *region);
#endif /* _COMMON_NVM_H_ */