device/resource_allocator_v3: Drop code

No platform uses this anymore.

Change-Id: Ifccb59ae45daa8fec41a9a2d46c628ff24a0c998
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/69140
Reviewed-by: Elyes Haouas <ehaouas@noos.fr>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-by: Eric Lai <eric_lai@quanta.corp-partner.google.com>
This commit is contained in:
Arthur Heymans 2022-11-02 10:37:51 +01:00
parent f4c11dcb53
commit 36695f278f
3 changed files with 1 additions and 564 deletions

View File

@ -699,7 +699,6 @@ config PCIEXP_HOTPLUG_PREFETCH_MEM
config PCIEXP_HOTPLUG_PREFETCH_MEM_ABOVE_4G
bool
depends on RESOURCE_ALLOCATOR_V4
default y if !PCIEXP_HOTPLUG_PREFETCH_MEM_BELOW_4G
default n
help
@ -922,28 +921,9 @@ config I2C_TRANSFER_TIMEOUT_US
maximum time a device could stretch clock bits before the transfer
is aborted and an error returned.
config RESOURCE_ALLOCATOR_V3
bool
default n
help
This config option enables resource allocator v3 which performs
top down allocation of resources in a single MMIO window. This is the
old resource allocator meant to be used only until the broken AMD
chipsets are fixed. DO NOT USE THIS FOR ANY NEW CHIPSETS!
config RESOURCE_ALLOCATOR_V4
bool
default n if RESOURCE_ALLOCATOR_V3
default y if !RESOURCE_ALLOCATOR_V3
help
This config option enables resource allocator v4 which uses multiple
ranges for allocating resources. This allows allocation of resources
above 4G boundary as well.
config RESOURCE_ALLOCATION_TOP_DOWN
bool "Allocate resources from top down"
default n
depends on RESOURCE_ALLOCATOR_V4
help
Should be the default, but many platforms don't report resources
correctly. Hence, the allocator might cause conflicts.

View File

@ -59,8 +59,7 @@ romstage-y += mmio.c
ramstage-y += mmio.c
ramstage-y += resource_allocator_common.c
ramstage-$(CONFIG_RESOURCE_ALLOCATOR_V3) += resource_allocator_v3.c
ramstage-$(CONFIG_RESOURCE_ALLOCATOR_V4) += resource_allocator_v4.c
ramstage-y += resource_allocator_v4.c
ramstage-$(CONFIG_XHCI_UTILS) += xhci.c

View File

@ -1,542 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#include <console/console.h>
#include <device/device.h>
#include <post.h>
/**
* Round a number up to an alignment.
*
* @param val The starting value.
* @param pow Alignment as a power of two.
* @return Rounded up number.
*/
static resource_t round(resource_t val, unsigned long pow)
{
resource_t mask;
mask = (1ULL << pow) - 1ULL;
val += mask;
val &= ~mask;
return val;
}
static const char *resource2str(struct resource *res)
{
if (res->flags & IORESOURCE_IO)
return "io";
if (res->flags & IORESOURCE_PREFETCH)
return "prefmem";
if (res->flags & IORESOURCE_MEM)
return "mem";
return "undefined";
}
/**
* This function is the guts of the resource allocator.
*
* The problem.
* - Allocate resource locations for every device.
* - Don't overlap, and follow the rules of bridges.
* - Don't overlap with resources in fixed locations.
* - Be efficient so we don't have ugly strategies.
*
* The strategy.
* - Devices that have fixed addresses are the minority so don't
* worry about them too much. Instead only use part of the address
* space for devices with programmable addresses. This easily handles
* everything except bridges.
*
* - PCI devices are required to have their sizes and their alignments
* equal. In this case an optimal solution to the packing problem
* exists. Allocate all devices from highest alignment to least
* alignment or vice versa. Use this.
*
* - So we can handle more than PCI run two allocation passes on bridges. The
* first to see how large the resources are behind the bridge, and what
* their alignment requirements are. The second to assign a safe address to
* the devices behind the bridge. This allows us to treat a bridge as just
* a device with a couple of resources, and not need to special case it in
* the allocator. Also this allows handling of other types of bridges.
*
* @param bus The bus we are traversing.
* @param bridge The bridge resource which must contain the bus' resources.
* @param type_mask This value gets ANDed with the resource type.
* @param type This value must match the result of the AND.
* @return TODO
*/
static void compute_resources(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
const struct device *dev;
struct resource *resource;
resource_t base;
base = round(bridge->base, bridge->align);
if (!bus)
return;
printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
" limit: %llx\n", dev_path(bus->dev), resource2str(bridge),
base, bridge->size, bridge->align,
bridge->gran, bridge->limit);
/* For each child which is a bridge, compute the resource needs. */
for (dev = bus->children; dev; dev = dev->sibling) {
struct resource *child_bridge;
if (!dev->link_list)
continue;
/* Find the resources with matching type flags. */
for (child_bridge = dev->resource_list; child_bridge;
child_bridge = child_bridge->next) {
struct bus* link;
if (!(child_bridge->flags & IORESOURCE_BRIDGE)
|| (child_bridge->flags & type_mask) != type)
continue;
/*
* Split prefetchable memory if combined. Many domains
* use the same address space for prefetchable memory
* and non-prefetchable memory. Bridges below them need
* it separated. Add the PREFETCH flag to the type_mask
* and type.
*/
link = dev->link_list;
while (link && link->link_num !=
IOINDEX_LINK(child_bridge->index))
link = link->next;
if (link == NULL) {
printk(BIOS_ERR, "link %ld not found on %s\n",
IOINDEX_LINK(child_bridge->index),
dev_path(dev));
}
compute_resources(link, child_bridge,
type_mask | IORESOURCE_PREFETCH,
type | (child_bridge->flags &
IORESOURCE_PREFETCH));
}
}
/* Remember we haven't found anything yet. */
resource = NULL;
/*
* Walk through all the resources on the current bus and compute the
* amount of address space taken by them. Take granularity and
* alignment into account.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
/* Size 0 resources can be skipped. */
if (!resource->size)
continue;
/* Propagate the resource alignment to the bridge resource. */
if (resource->align > bridge->align)
bridge->align = resource->align;
/* Propagate the resource limit to the bridge register. */
if (bridge->limit > resource->limit)
bridge->limit = resource->limit;
/* Warn if it looks like APICs aren't declared. */
if ((resource->limit == 0xffffffff) &&
(resource->flags & IORESOURCE_ASSIGNED)) {
printk(BIOS_ERR,
"Resource limit looks wrong! (no APIC?)\n");
printk(BIOS_ERR, "%s %02lx limit %08llx\n",
dev_path(dev), resource->index, resource->limit);
}
if (resource->flags & IORESOURCE_IO) {
/*
* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/*
* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
/* Base must be aligned. */
base = round(base, resource->align);
resource->base = base;
base += resource->size;
printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
dev_path(dev), resource->index, resource->base,
resource->base + resource->size - 1,
resource2str(resource));
}
/*
* A PCI bridge resource does not need to be a power of two size, but
* it does have a minimum granularity. Round the size up to that
* minimum granularity so we know not to place something else at an
* address positively decoded by the bridge.
*/
bridge->size = round(base, bridge->gran) -
round(bridge->base, bridge->align);
printk(BIOS_SPEW, "%s %s: base: %llx size: %llx align: %d gran: %d"
" limit: %llx done\n", dev_path(bus->dev),
resource2str(bridge),
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
}
/**
* This function is the second part of the resource allocator.
*
* See the compute_resources function for a more detailed explanation.
*
* This function assigns the resources a value.
*
* @param bus The bus we are traversing.
* @param bridge The bridge resource which must contain the bus' resources.
* @param type_mask This value gets ANDed with the resource type.
* @param type This value must match the result of the AND.
*
* @see compute_resources
*/
static void __allocate_resources(struct bus *bus, struct resource *bridge,
unsigned long type_mask, unsigned long type)
{
const struct device *dev;
struct resource *resource;
resource_t base;
base = bridge->base;
if (!bus)
return;
printk(BIOS_SPEW, "%s %s: base:%llx size:%llx align:%d gran:%d "
"limit:%llx\n", dev_path(bus->dev),
resource2str(bridge),
base, bridge->size, bridge->align, bridge->gran, bridge->limit);
/* Remember we haven't found anything yet. */
resource = NULL;
/*
* Walk through all the resources on the current bus and allocate them
* address space.
*/
while ((dev = largest_resource(bus, &resource, type_mask, type))) {
/* Propagate the bridge limit to the resource register. */
if (resource->limit > bridge->limit)
resource->limit = bridge->limit;
/* Size 0 resources can be skipped. */
if (!resource->size)
continue;
if (resource->flags & IORESOURCE_IO) {
/*
* Don't allow potential aliases over the legacy PCI
* expansion card addresses. The legacy PCI decodes
* only 10 bits, uses 0x100 - 0x3ff. Therefore, only
* 0x00 - 0xff can be used out of each 0x400 block of
* I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
/*
* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
if ((round(base, resource->align) + resource->size - 1) <=
resource->limit) {
/* Base must be aligned. */
base = round(base, resource->align);
resource->base = base;
resource->limit = resource->base + resource->size - 1;
resource->flags |= IORESOURCE_ASSIGNED;
resource->flags &= ~IORESOURCE_STORED;
base += resource->size;
} else {
printk(BIOS_ERR, "!! Resource didn't fit !!\n");
printk(BIOS_ERR, " aligned base %llx size %llx "
"limit %llx\n", round(base, resource->align),
resource->size, resource->limit);
printk(BIOS_ERR, " %llx needs to be <= %llx "
"(limit)\n", (round(base, resource->align) +
resource->size) - 1, resource->limit);
printk(BIOS_ERR, " %s%s %02lx * [0x%llx - 0x%llx]"
" %s\n", (resource->flags & IORESOURCE_ASSIGNED)
? "Assigned: " : "", dev_path(dev),
resource->index, resource->base,
resource->base + resource->size - 1,
resource2str(resource));
}
printk(BIOS_SPEW, "%s %02lx * [0x%llx - 0x%llx] %s\n",
dev_path(dev), resource->index, resource->base,
resource->size ? resource->base + resource->size - 1 :
resource->base, resource2str(resource));
}
/*
* A PCI bridge resource does not need to be a power of two size, but
* it does have a minimum granularity. Round the size up to that
* minimum granularity so we know not to place something else at an
* address positively decoded by the bridge.
*/
bridge->flags |= IORESOURCE_ASSIGNED;
printk(BIOS_SPEW, "%s %s: next_base: %llx size: %llx align: %d "
"gran: %d done\n", dev_path(bus->dev),
resource2str(bridge), base, bridge->size, bridge->align,
bridge->gran);
/* For each child which is a bridge, __allocate_resources. */
for (dev = bus->children; dev; dev = dev->sibling) {
struct resource *child_bridge;
if (!dev->link_list)
continue;
/* Find the resources with matching type flags. */
for (child_bridge = dev->resource_list; child_bridge;
child_bridge = child_bridge->next) {
struct bus* link;
if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
(child_bridge->flags & type_mask) != type)
continue;
/*
* Split prefetchable memory if combined. Many domains
* use the same address space for prefetchable memory
* and non-prefetchable memory. Bridges below them need
* it separated. Add the PREFETCH flag to the type_mask
* and type.
*/
link = dev->link_list;
while (link && link->link_num !=
IOINDEX_LINK(child_bridge->index))
link = link->next;
if (link == NULL)
printk(BIOS_ERR, "link %ld not found on %s\n",
IOINDEX_LINK(child_bridge->index),
dev_path(dev));
__allocate_resources(link, child_bridge,
type_mask | IORESOURCE_PREFETCH,
type | (child_bridge->flags &
IORESOURCE_PREFETCH));
}
}
}
static int resource_is(struct resource *res, u32 type)
{
return (res->flags & IORESOURCE_TYPE_MASK) == type;
}
struct constraints {
struct resource io, mem;
};
static struct resource *resource_limit(struct constraints *limits,
struct resource *res)
{
struct resource *lim = NULL;
/* MEM, or I/O - skip any others. */
if (resource_is(res, IORESOURCE_MEM))
lim = &limits->mem;
else if (resource_is(res, IORESOURCE_IO))
lim = &limits->io;
return lim;
}
static void constrain_resources(const struct device *dev,
struct constraints* limits)
{
const struct device *child;
struct resource *res;
struct resource *lim;
struct bus *link;
/* Constrain limits based on the fixed resources of this device. */
for (res = dev->resource_list; res; res = res->next) {
if (!(res->flags & IORESOURCE_FIXED))
continue;
if (!res->size) {
/* It makes no sense to have 0-sized, fixed resources.*/
printk(BIOS_ERR, "skipping %s@%lx fixed resource, "
"size=0!\n", dev_path(dev), res->index);
continue;
}
lim = resource_limit(limits, res);
if (!lim)
continue;
/*
* Is it a fixed resource outside the current known region?
* If so, we don't have to consider it - it will be handled
* correctly and doesn't affect current region's limits.
*/
if (((res->base + res->size -1) < lim->base)
|| (res->base > lim->limit))
continue;
printk(BIOS_SPEW, "%s: %s %02lx base %08llx limit %08llx %s (fixed)\n",
__func__, dev_path(dev), res->index, res->base,
res->base + res->size - 1, resource2str(res));
/*
* Choose to be above or below fixed resources. This check is
* signed so that "negative" amounts of space are handled
* correctly.
*/
if ((signed long long)(lim->limit - (res->base + res->size -1))
> (signed long long)(res->base - lim->base))
lim->base = res->base + res->size;
else
lim->limit = res->base -1;
}
/* Descend into every enabled child and look for fixed resources. */
for (link = dev->link_list; link; link = link->next) {
for (child = link->children; child; child = child->sibling) {
if (child->enabled)
constrain_resources(child, limits);
}
}
}
static void avoid_fixed_resources(const struct device *dev)
{
struct constraints limits;
struct resource *res;
struct resource *lim;
printk(BIOS_SPEW, "%s: %s\n", __func__, dev_path(dev));
/* Initialize constraints to maximum size. */
limits.io.base = 0;
limits.io.limit = 0xffffffffffffffffULL;
limits.mem.base = 0;
limits.mem.limit = 0xffffffffffffffffULL;
/* Constrain the limits to dev's initial resources. */
for (res = dev->resource_list; res; res = res->next) {
if ((res->flags & IORESOURCE_FIXED))
continue;
printk(BIOS_SPEW, "%s:@%s %02lx limit %08llx\n", __func__,
dev_path(dev), res->index, res->limit);
lim = resource_limit(&limits, res);
if (!lim)
continue;
if (res->base > lim->base)
lim->base = res->base;
if (res->limit < lim->limit)
lim->limit = res->limit;
}
/* Look through the tree for fixed resources and update the limits. */
constrain_resources(dev, &limits);
/* Update dev's resources with new limits. */
for (res = dev->resource_list; res; res = res->next) {
if ((res->flags & IORESOURCE_FIXED))
continue;
lim = resource_limit(&limits, res);
if (!lim)
continue;
/* Is the resource outside the limits? */
if (lim->base > res->base)
res->base = lim->base;
if (res->limit > lim->limit)
res->limit = lim->limit;
/* MEM resources need to start at the highest address manageable. */
if (res->flags & IORESOURCE_MEM)
res->base = resource_max(res);
printk(BIOS_SPEW, "%s:@%s %02lx base %08llx limit %08llx\n",
__func__, dev_path(dev), res->index, res->base, res->limit);
}
}
void allocate_resources(const struct device *root)
{
struct resource *res;
const struct device *child;
/* Compute resources for all domains. */
for (child = root->link_list->children; child; child = child->sibling) {
if (!(child->path.type == DEVICE_PATH_DOMAIN))
continue;
post_log_path(child);
for (res = child->resource_list; res; res = res->next) {
if (res->flags & IORESOURCE_FIXED)
continue;
if (res->flags & IORESOURCE_MEM) {
compute_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
continue;
}
if (res->flags & IORESOURCE_IO) {
compute_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
continue;
}
}
}
/* For all domains. */
for (child = root->link_list->children; child; child=child->sibling)
if (child->path.type == DEVICE_PATH_DOMAIN)
avoid_fixed_resources(child);
/* Store the computed resource allocations into device registers ... */
printk(BIOS_INFO, "Setting resources...\n");
for (child = root->link_list->children; child; child = child->sibling) {
if (!(child->path.type == DEVICE_PATH_DOMAIN))
continue;
post_log_path(child);
for (res = child->resource_list; res; res = res->next) {
if (res->flags & IORESOURCE_FIXED)
continue;
if (res->flags & IORESOURCE_MEM) {
__allocate_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_MEM);
continue;
}
if (res->flags & IORESOURCE_IO) {
__allocate_resources(child->link_list,
res, IORESOURCE_TYPE_MASK, IORESOURCE_IO);
continue;
}
}
}
}