soc/amd/common/block/data_fabric: Use register bitslice structs

Now that the socs have defined the DF FICAA and MMIO Control registers,
update the common code to use them.

Signed-off-by: Fred Reitberger <reitbergerfred@gmail.com>
Change-Id: Ia5566f7af6cf5444fc8c627e004dd08185468c77
Reviewed-on: https://review.coreboot.org/c/coreboot/+/69073
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Felix Held <felix-coreboot@felixheld.de>
This commit is contained in:
Fred Reitberger 2022-11-01 08:42:41 -04:00
parent 42cdd22597
commit 437d011621
1 changed files with 19 additions and 19 deletions

View File

@ -13,14 +13,12 @@
static void data_fabric_set_indirect_address(uint8_t func, uint16_t reg, uint8_t instance_id) static void data_fabric_set_indirect_address(uint8_t func, uint16_t reg, uint8_t instance_id)
{ {
uint32_t fabric_indirect_access_reg = DF_IND_CFG_INST_ACC_EN; union df_ficaa ficaa = { .cfg_inst_acc_en = 1 };
/* Register offset field [10:2] in this register corresponds to [10:2] of the /* convert register address to 32-bit register number */
requested offset. */ ficaa.reg_num = reg >> 2;
fabric_indirect_access_reg |= reg & DF_IND_CFG_ACC_REG_MASK; ficaa.func_num = func;
fabric_indirect_access_reg |= ficaa.inst_id = instance_id;
(func << DF_IND_CFG_ACC_FUN_SHIFT) & DF_IND_CFG_ACC_FUN_MASK; pci_write_config32(SOC_DF_F4_DEV, DF_FICAA_BIOS, ficaa.raw);
fabric_indirect_access_reg |= instance_id << DF_IND_CFG_INST_ID_SHIFT;
pci_write_config32(SOC_DF_F4_DEV, DF_FICAA_BIOS, fabric_indirect_access_reg);
} }
uint32_t data_fabric_read32(uint8_t function, uint16_t reg, uint8_t instance_id) uint32_t data_fabric_read32(uint8_t function, uint16_t reg, uint8_t instance_id)
@ -64,16 +62,17 @@ void data_fabric_print_mmio_conf(void)
void data_fabric_disable_mmio_reg(unsigned int reg) void data_fabric_disable_mmio_reg(unsigned int reg)
{ {
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), union df_mmio_control ctrl = { .fabric_id = IOMS0_FABRIC_ID };
IOMS0_FABRIC_ID << DF_MMIO_DST_FABRIC_ID_SHIFT); data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl.raw);
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), 0); data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), 0);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), 0); data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), 0);
} }
static bool is_mmio_reg_disabled(unsigned int reg) static bool is_mmio_reg_disabled(unsigned int reg)
{ {
uint32_t val = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(reg)); union df_mmio_control ctrl;
return !(val & (DF_MMIO_WE | DF_MMIO_RE)); ctrl.raw = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(reg));
return !(ctrl.we || ctrl.re);
} }
int data_fabric_find_unused_mmio_reg(void) int data_fabric_find_unused_mmio_reg(void)
@ -109,7 +108,8 @@ void data_fabric_set_mmio_np(void)
unsigned int i; unsigned int i;
int reg; int reg;
uint32_t base, limit, ctrl; uint32_t base, limit;
union df_mmio_control ctrl;
const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT; const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT;
const uint32_t np_top = (LAPIC_DEFAULT_BASE - 1) >> D18F0_MMIO_SHIFT; const uint32_t np_top = (LAPIC_DEFAULT_BASE - 1) >> D18F0_MMIO_SHIFT;
@ -117,8 +117,8 @@ void data_fabric_set_mmio_np(void)
for (i = 0; i < NUM_NB_MMIO_REGS; i++) { for (i = 0; i < NUM_NB_MMIO_REGS; i++) {
/* Adjust all registers that overlap */ /* Adjust all registers that overlap */
ctrl = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i)); ctrl.raw = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i));
if (!(ctrl & (DF_MMIO_WE | DF_MMIO_RE))) if (!(ctrl.we || ctrl.re))
continue; /* not enabled */ continue; /* not enabled */
base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i)); base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i));
@ -145,7 +145,7 @@ void data_fabric_set_mmio_np(void)
} }
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1); data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit); data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl); data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl.raw);
continue; continue;
} }
@ -162,11 +162,11 @@ void data_fabric_set_mmio_np(void)
return; return;
} }
union df_mmio_control np_ctrl = { .fabric_id = IOMS0_FABRIC_ID,
.np = 1, .we = 1, .re = 1 };
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot); data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top); data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), np_ctrl.raw);
(IOMS0_FABRIC_ID << DF_MMIO_DST_FABRIC_ID_SHIFT) | DF_MMIO_NP
| DF_MMIO_WE | DF_MMIO_RE);
data_fabric_print_mmio_conf(); data_fabric_print_mmio_conf();
} }