northbridge/amd/amdmct: Read SPD data into cache to decrease bootup time

Change-Id: Ic16a927a3f1fc6f7cb1aea36a8abe8cc1999cb52
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: http://review.coreboot.org/11973
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This commit is contained in:
Timothy Pearson 2015-06-02 20:51:59 -05:00 committed by Stefan Reinauer
parent 4c502697ee
commit 453b543716
2 changed files with 92 additions and 76 deletions

View File

@ -176,7 +176,7 @@ static void mct_WriteLevelization_HW(struct MCTStatStruc *pMCTstat,
static u8 Get_Latency_Diff(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct);
static void SyncSetting(struct DCTStatStruc *pDCTstat);
static u8 crcCheck(u8 smbaddr);
static uint8_t crcCheck(struct DCTStatStruc *pDCTstat, uint8_t dimm);
static void mct_ExtMCTConfig_Bx(struct DCTStatStruc *pDCTstat);
static void mct_ExtMCTConfig_Cx(struct DCTStatStruc *pDCTstat);
@ -1176,6 +1176,20 @@ static void precise_memclk_delay_fam15(struct MCTStatStruc *pMCTstat, struct DCT
precise_ndelay_fam15(pMCTstat, delay_ns);
}
static void read_spd_bytes(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, uint8_t dimm)
{
uint8_t addr;
uint16_t byte;
addr = Get_DIMMAddress_D(pDCTstat, dimm);
pDCTstat->spd_data.spd_address[dimm] = addr;
for (byte = 0; byte < 256; byte++) {
pDCTstat->spd_data.spd_bytes[dimm][byte] = mctRead_SPD(addr, byte);
}
}
static void mctAutoInitMCT_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
@ -2441,7 +2455,6 @@ static void SPD2ndTiming(struct MCTStatStruc *pMCTstat,
u32 dword;
u32 dev;
u32 val;
u16 smbaddr;
printk(BIOS_DEBUG, "%s: Start\n", __func__);
@ -2461,64 +2474,62 @@ static void SPD2ndTiming(struct MCTStatStruc *pMCTstat,
for ( i = 0; i< MAX_DIMMS_SUPPORTED; i++) {
LDIMM = i >> 1;
if (pDCTstat->DIMMValid & (1 << i)) {
smbaddr = Get_DIMMAddress_D(pDCTstat, (dct + i));
val = mctRead_SPD(smbaddr, SPD_MTBDivisor); /* MTB=Dividend/Divisor */
MTB16x = ((mctRead_SPD(smbaddr, SPD_MTBDividend) & 0xFF)<<4);
val = pDCTstat->spd_data.spd_bytes[dct + i][SPD_MTBDivisor]; /* MTB=Dividend/Divisor */
MTB16x = ((pDCTstat->spd_data.spd_bytes[dct + i][SPD_MTBDividend] & 0xff) << 4);
MTB16x /= val; /* transfer to MTB*16 */
byte = mctRead_SPD(smbaddr, SPD_tRPmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tRPmin];
val = byte * MTB16x;
if (Trp < val)
Trp = val;
byte = mctRead_SPD(smbaddr, SPD_tRRDmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tRRDmin];
val = byte * MTB16x;
if (Trrd < val)
Trrd = val;
byte = mctRead_SPD(smbaddr, SPD_tRCDmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tRCDmin];
val = byte * MTB16x;
if (Trcd < val)
Trcd = val;
byte = mctRead_SPD(smbaddr, SPD_tRTPmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tRTPmin];
val = byte * MTB16x;
if (Trtp < val)
Trtp = val;
byte = mctRead_SPD(smbaddr, SPD_tWRmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tWRmin];
val = byte * MTB16x;
if (Twr < val)
Twr = val;
byte = mctRead_SPD(smbaddr, SPD_tWTRmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tWTRmin];
val = byte * MTB16x;
if (Twtr < val)
Twtr = val;
val = mctRead_SPD(smbaddr, SPD_Upper_tRAS_tRC) & 0xFF;
val = pDCTstat->spd_data.spd_bytes[dct + i][SPD_Upper_tRAS_tRC] & 0xFF;
val >>= 4;
val <<= 8;
val |= mctRead_SPD(smbaddr, SPD_tRCmin) & 0xFF;
val |= pDCTstat->spd_data.spd_bytes[dct + i][SPD_tRCmin] & 0xFF;
val *= MTB16x;
if (Trc < val)
Trc = val;
byte = mctRead_SPD(smbaddr, SPD_Density) & 0xF;
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_Density] & 0xF;
if (Trfc[LDIMM] < byte)
Trfc[LDIMM] = byte;
val = mctRead_SPD(smbaddr, SPD_Upper_tRAS_tRC) & 0xF;
val = pDCTstat->spd_data.spd_bytes[dct + i][SPD_Upper_tRAS_tRC] & 0xF;
val <<= 8;
val |= (mctRead_SPD(smbaddr, SPD_tRASmin) & 0xFF);
val |= (pDCTstat->spd_data.spd_bytes[dct + i][SPD_tRASmin] & 0xFF);
val *= MTB16x;
if (Tras < val)
Tras = val;
val = mctRead_SPD(smbaddr, SPD_Upper_tFAW) & 0xF;
val = pDCTstat->spd_data.spd_bytes[dct + i][SPD_Upper_tFAW] & 0xF;
val <<= 8;
val |= mctRead_SPD(smbaddr, SPD_tFAWmin) & 0xFF;
val |= pDCTstat->spd_data.spd_bytes[dct + i][SPD_tFAWmin] & 0xFF;
val *= MTB16x;
if (Tfaw < val)
Tfaw = val;
@ -2934,7 +2945,7 @@ static void SPDGetTCL_D(struct MCTStatStruc *pMCTstat,
u8 CLactual, CLdesired, CLT_Fail;
uint16_t min_frequency_tck16x;
u8 smbaddr, byte = 0, bytex = 0;
u8 byte = 0, bytex = 0;
CASLatLow = 0xFF;
CASLatHigh = 0xFF;
@ -2955,28 +2966,27 @@ static void SPDGetTCL_D(struct MCTStatStruc *pMCTstat,
for (i = 0; i < MAX_DIMMS_SUPPORTED; i++) {
if (pDCTstat->DIMMValid & (1 << i)) {
smbaddr = Get_DIMMAddress_D(pDCTstat, (dct + i));
/* Step 1: Determine the common set of supported CAS Latency
* values for all modules on the memory channel using the CAS
* Latencies Supported in SPD bytes 14 and 15.
*/
byte = mctRead_SPD(smbaddr, SPD_CASLow);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_CASLow];
CASLatLow &= byte;
byte = mctRead_SPD(smbaddr, SPD_CASHigh);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_CASHigh];
CASLatHigh &= byte;
/* Step 2: Determine tAAmin(all) which is the largest tAAmin
value for all modules on the memory channel (SPD byte 16). */
byte = mctRead_SPD(smbaddr, SPD_MTBDivisor);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_MTBDivisor];
MTB16x = ((mctRead_SPD(smbaddr, SPD_MTBDividend) & 0xFF)<<4);
MTB16x = ((pDCTstat->spd_data.spd_bytes[dct + i][SPD_MTBDividend] & 0xFF)<<4);
MTB16x /= byte; /* transfer to MTB*16 */
byte = mctRead_SPD(smbaddr, SPD_tAAmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tAAmin];
if (tAAmin16x < byte * MTB16x)
tAAmin16x = byte * MTB16x;
/* Step 3: Determine tCKmin(all) which is the largest tCKmin
value for all modules on the memory channel (SPD byte 12). */
byte = mctRead_SPD(smbaddr, SPD_tCKmin);
byte = pDCTstat->spd_data.spd_bytes[dct + i][SPD_tCKmin];
if (tCKmin16x < byte * MTB16x)
tCKmin16x = byte * MTB16x;
@ -3347,7 +3357,6 @@ static void SPDSetBanks_D(struct MCTStatStruc *pMCTstat,
u8 byte;
u16 word;
u32 dword;
u16 smbaddr;
dev = pDCTstat->dev_dct;
@ -3358,16 +3367,14 @@ static void SPDSetBanks_D(struct MCTStatStruc *pMCTstat,
byte -= 3;
if (pDCTstat->DIMMValid & (1<<byte)) {
smbaddr = Get_DIMMAddress_D(pDCTstat, (ChipSel + dct));
byte = mctRead_SPD(smbaddr, SPD_Addressing);
byte = pDCTstat->spd_data.spd_bytes[ChipSel + dct][SPD_Addressing];
Rows = (byte >> 3) & 0x7; /* Rows:0b=12-bit,... */
Cols = byte & 0x7; /* Cols:0b=9-bit,... */
byte = mctRead_SPD(smbaddr, SPD_Density);
byte = pDCTstat->spd_data.spd_bytes[ChipSel + dct][SPD_Density];
Banks = (byte >> 4) & 7; /* Banks:0b=3-bit,... */
byte = mctRead_SPD(smbaddr, SPD_Organization);
byte = pDCTstat->spd_data.spd_bytes[ChipSel + dct][SPD_Organization];
Ranks = ((byte >> 3) & 7) + 1;
/* Configure Bank encoding
@ -3462,46 +3469,42 @@ static void SPDCalcWidth_D(struct MCTStatStruc *pMCTstat,
* and determine the width mode: 64-bit, 64-bit muxed, 128-bit.
*/
u8 i;
u8 smbaddr, smbaddr1;
u8 byte, byte1;
/* Check Symmetry of Channel A and Channel B DIMMs
(must be matched for 128-bit mode).*/
for (i=0; i < MAX_DIMMS_SUPPORTED; i += 2) {
if ((pDCTstat->DIMMValid & (1 << i)) && (pDCTstat->DIMMValid & (1<<(i+1)))) {
smbaddr = Get_DIMMAddress_D(pDCTstat, i);
smbaddr1 = Get_DIMMAddress_D(pDCTstat, i+1);
byte = mctRead_SPD(smbaddr, SPD_Addressing) & 0x7;
byte1 = mctRead_SPD(smbaddr1, SPD_Addressing) & 0x7;
byte = pDCTstat->spd_data.spd_bytes[i][SPD_Addressing] & 0x7;
byte1 = pDCTstat->spd_data.spd_bytes[i + 1][SPD_Addressing] & 0x7;
if (byte != byte1) {
pDCTstat->ErrStatus |= (1<<SB_DimmMismatchO);
break;
}
byte = mctRead_SPD(smbaddr, SPD_Density) & 0x0f;
byte1 = mctRead_SPD(smbaddr1, SPD_Density) & 0x0f;
byte = pDCTstat->spd_data.spd_bytes[i][SPD_Density] & 0x0f;
byte1 = pDCTstat->spd_data.spd_bytes[i + 1][SPD_Density] & 0x0f;
if (byte != byte1) {
pDCTstat->ErrStatus |= (1<<SB_DimmMismatchO);
break;
}
byte = mctRead_SPD(smbaddr, SPD_Organization) & 0x7;
byte1 = mctRead_SPD(smbaddr1, SPD_Organization) & 0x7;
byte = pDCTstat->spd_data.spd_bytes[i][SPD_Organization] & 0x7;
byte1 = pDCTstat->spd_data.spd_bytes[i + 1][SPD_Organization] & 0x7;
if (byte != byte1) {
pDCTstat->ErrStatus |= (1<<SB_DimmMismatchO);
break;
}
byte = (mctRead_SPD(smbaddr, SPD_Organization) >> 3) & 0x7;
byte1 = (mctRead_SPD(smbaddr1, SPD_Organization) >> 3) & 0x7;
byte = (pDCTstat->spd_data.spd_bytes[i][SPD_Organization] >> 3) & 0x7;
byte1 = (pDCTstat->spd_data.spd_bytes[i + 1][SPD_Organization] >> 3) & 0x7;
if (byte != byte1) {
pDCTstat->ErrStatus |= (1<<SB_DimmMismatchO);
break;
}
byte = mctRead_SPD(smbaddr, SPD_DMBANKS) & 7; /* #ranks-1 */
byte1 = mctRead_SPD(smbaddr1, SPD_DMBANKS) & 7; /* #ranks-1 */
byte = pDCTstat->spd_data.spd_bytes[i][SPD_DMBANKS] & 7; /* #ranks-1 */
byte1 = pDCTstat->spd_data.spd_bytes[i + 1][SPD_DMBANKS] & 7; /* #ranks-1 */
if (byte != byte1) {
pDCTstat->ErrStatus |= (1<<SB_DimmMismatchO);
break;
@ -3682,8 +3685,9 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
status = mctRead_SPD(smbaddr, SPD_ByteUse);
if (status >= 0) { /* SPD access is ok */
pDCTstat->DIMMPresent |= 1 << i;
if (crcCheck(smbaddr)) { /* CRC is OK */
byte = mctRead_SPD(smbaddr, SPD_TYPE);
read_spd_bytes(pMCTstat, pDCTstat, i);
if (crcCheck(pDCTstat, i)) { /* CRC is OK */
byte = pDCTstat->spd_data.spd_bytes[i][SPD_TYPE];
if (byte == JED_DDR3SDRAM) {
/*Dimm is 'Present'*/
pDCTstat->DIMMValid |= 1 << i;
@ -3696,36 +3700,41 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
} else {
/*if NV_SPDCHK_RESTRT is set to 1, ignore faulty SPD checksum*/
pDCTstat->ErrStatus |= 1<<SB_DIMMChkSum;
byte = mctRead_SPD(smbaddr, SPD_TYPE);
byte = pDCTstat->spd_data.spd_bytes[i][SPD_TYPE];
if (byte == JED_DDR3SDRAM)
pDCTstat->DIMMValid |= 1 << i;
}
}
/* Zero DIMM SPD data cache if DIMM not present / valid */
if (!(pDCTstat->DIMMValid & (1 << i)))
memset(pDCTstat->spd_data.spd_bytes[i], 0, sizeof(pDCTstat->spd_data.spd_bytes[i]));
/* Get module information for SMBIOS */
if (pDCTstat->DIMMValid & (1 << i)) {
pDCTstat->DimmManufacturerID[i] = 0;
for (k = 0; k < 8; k++)
pDCTstat->DimmManufacturerID[i] |= ((uint64_t)mctRead_SPD(smbaddr, SPD_MANID_START + k)) << (k * 8);
pDCTstat->DimmManufacturerID[i] |= ((uint64_t)pDCTstat->spd_data.spd_bytes[i][SPD_MANID_START + k]) << (k * 8);
for (k = 0; k < SPD_PARTN_LENGTH; k++)
pDCTstat->DimmPartNumber[i][k] = mctRead_SPD(smbaddr, SPD_PARTN_START + k);
pDCTstat->DimmPartNumber[i][k] = pDCTstat->spd_data.spd_bytes[i][SPD_PARTN_START + k];
pDCTstat->DimmPartNumber[i][SPD_PARTN_LENGTH] = 0;
pDCTstat->DimmRevisionNumber[i] = 0;
for (k = 0; k < 2; k++)
pDCTstat->DimmRevisionNumber[i] |= ((uint16_t)mctRead_SPD(smbaddr, SPD_REVNO_START + k)) << (k * 8);
pDCTstat->DimmRevisionNumber[i] |= ((uint16_t)pDCTstat->spd_data.spd_bytes[i][SPD_REVNO_START + k]) << (k * 8);
pDCTstat->DimmSerialNumber[i] = 0;
for (k = 0; k < 4; k++)
pDCTstat->DimmSerialNumber[i] |= ((uint32_t)mctRead_SPD(smbaddr, SPD_SERIAL_START + k)) << (k * 8);
pDCTstat->DimmRows[i] = (mctRead_SPD(smbaddr, SPD_Addressing) & 0x38) >> 3;
pDCTstat->DimmCols[i] = mctRead_SPD(smbaddr, SPD_Addressing) & 0x7;
pDCTstat->DimmRanks[i] = ((mctRead_SPD(smbaddr, SPD_Organization) & 0x38) >> 3) + 1;
pDCTstat->DimmBanks[i] = 1ULL << (((mctRead_SPD(smbaddr, SPD_Density) & 0x70) >> 4) + 3);
pDCTstat->DimmWidth[i] = 1ULL << ((mctRead_SPD(smbaddr, SPD_BusWidth) & 0x7) + 3);
pDCTstat->DimmSerialNumber[i] |= ((uint32_t)pDCTstat->spd_data.spd_bytes[i][SPD_SERIAL_START + k]) << (k * 8);
pDCTstat->DimmRows[i] = (pDCTstat->spd_data.spd_bytes[i][SPD_Addressing] & 0x38) >> 3;
pDCTstat->DimmCols[i] = pDCTstat->spd_data.spd_bytes[i][SPD_Addressing] & 0x7;
pDCTstat->DimmRanks[i] = ((pDCTstat->spd_data.spd_bytes[i][SPD_Organization] & 0x38) >> 3) + 1;
pDCTstat->DimmBanks[i] = 1ULL << (((pDCTstat->spd_data.spd_bytes[i][SPD_Density] & 0x70) >> 4) + 3);
pDCTstat->DimmWidth[i] = 1ULL << ((pDCTstat->spd_data.spd_bytes[i][SPD_BusWidth] & 0x7) + 3);
}
/* Check supported voltage(s) */
pDCTstat->DimmSupportedVoltages[i] = mctRead_SPD(smbaddr, SPD_Voltage) & 0x7;
pDCTstat->DimmSupportedVoltages[i] = pDCTstat->spd_data.spd_bytes[i][SPD_Voltage] & 0x7;
pDCTstat->DimmSupportedVoltages[i] ^= 0x1; /* Invert LSB to convert from SPD format to internal bitmap format */
/* Check module type */
byte = mctRead_SPD(smbaddr, SPD_DIMMTYPE) & 0x7;
byte = pDCTstat->spd_data.spd_bytes[i][SPD_DIMMTYPE] & 0x7;
if (byte == JED_RDIMM || byte == JED_MiniRDIMM) {
RegDIMMPresent |= 1 << i;
pDCTstat->DimmRegistered[i] = 1;
@ -3739,13 +3748,13 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
pDCTstat->DimmLoadReduced[i] = 0;
}
/* Check ECC capable */
byte = mctRead_SPD(smbaddr, SPD_BusWidth);
byte = pDCTstat->spd_data.spd_bytes[i][SPD_BusWidth];
if (byte & JED_ECC) {
/* DIMM is ECC capable */
pDCTstat->DimmECCPresent |= 1 << i;
}
/* Check if x4 device */
devwidth = mctRead_SPD(smbaddr, SPD_Organization) & 0x7; /* 0:x4,1:x8,2:x16 */
devwidth = pDCTstat->spd_data.spd_bytes[i][SPD_Organization] & 0x7; /* 0:x4,1:x8,2:x16 */
if (devwidth == 0) {
/* DIMM is made with x4 or x16 drams */
pDCTstat->Dimmx4Present |= 1 << i;
@ -3755,7 +3764,7 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
pDCTstat->Dimmx16Present |= 1 << i;
}
byte = (mctRead_SPD(smbaddr, SPD_Organization) >> 3);
byte = (pDCTstat->spd_data.spd_bytes[i][SPD_Organization] >> 3);
byte &= 7;
if (byte == 3) { /* 4ranks */
/* if any DIMMs are QR, we have to make two passes through DIMMs*/
@ -3790,7 +3799,7 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
/* check address mirror support for unbuffered dimm */
/* check number of registers on a dimm for registered dimm */
byte = mctRead_SPD(smbaddr, SPD_AddressMirror);
byte = pDCTstat->spd_data.spd_bytes[i][SPD_AddressMirror];
if (RegDIMMPresent & (1 << i)) {
if ((byte & 3) > 1)
pDCTstat->MirrPresU_NumRegR |= 1 << i;
@ -3799,20 +3808,20 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
pDCTstat->MirrPresU_NumRegR |= 1 << i;
}
/* Get byte62: Reference Raw Card information. We dont need it now. */
/* byte = mctRead_SPD(smbaddr, SPD_RefRawCard); */
/* byte = pDCTstat->spd_data.spd_bytes[i][SPD_RefRawCard]; */
/* Get Byte65/66 for register manufacture ID code */
if ((0x97 == mctRead_SPD(smbaddr, SPD_RegManufactureID_H)) &&
(0x80 == mctRead_SPD(smbaddr, SPD_RegManufactureID_L))) {
if (0x16 == mctRead_SPD(smbaddr, SPD_RegManRevID))
if ((0x97 == pDCTstat->spd_data.spd_bytes[i][SPD_RegManufactureID_H]) &&
(0x80 == pDCTstat->spd_data.spd_bytes[i][SPD_RegManufactureID_L])) {
if (0x16 == pDCTstat->spd_data.spd_bytes[i][SPD_RegManRevID])
pDCTstat->RegMan2Present |= 1 << i;
else
pDCTstat->RegMan1Present |= 1 << i;
}
/* Get Control word values for RC3. We dont need it. */
byte = mctRead_SPD(smbaddr, 70);
byte = pDCTstat->spd_data.spd_bytes[i][70];
pDCTstat->CtrlWrd3 |= (byte >> 4) << (i << 2); /* C3 = SPD byte 70 [7:4] */
/* Get Control word values for RC4, and RC5 */
byte = mctRead_SPD(smbaddr, 71);
byte = pDCTstat->spd_data.spd_bytes[i][71];
pDCTstat->CtrlWrd4 |= (byte & 0xFF) << (i << 2); /* RC4 = SPD byte 71 [3:0] */
pDCTstat->CtrlWrd5 |= (byte >> 4) << (i << 2); /* RC5 = SPD byte 71 [7:4] */
}
@ -6190,14 +6199,14 @@ static void AfterDramInit_D(struct DCTStatStruc *pDCTstat, u8 dct) {
* 1010 001111 16 3 10 4GB
* 1011 010111 16 3 11 8GB
*/
u8 crcCheck(u8 smbaddr)
uint8_t crcCheck(struct DCTStatStruc *pDCTstat, uint8_t dimm)
{
u8 byte_use;
u8 Index;
u16 CRC;
u8 byte, i;
byte_use = mctRead_SPD(smbaddr, SPD_ByteUse);
byte_use = pDCTstat->spd_data.spd_bytes[dimm][SPD_ByteUse];
if (byte_use & 0x80)
byte_use = 117;
else
@ -6205,7 +6214,7 @@ u8 crcCheck(u8 smbaddr)
CRC = 0;
for (Index = 0; Index < byte_use; Index ++) {
byte = mctRead_SPD(smbaddr, Index);
byte = pDCTstat->spd_data.spd_bytes[dimm][Index];
CRC ^= byte << 8;
for (i=0; i<8; i++) {
if (CRC & 0x8000) {
@ -6215,5 +6224,5 @@ u8 crcCheck(u8 smbaddr)
CRC <<= 1;
}
}
return CRC == (mctRead_SPD(smbaddr, SPD_byte_127) << 8 | mctRead_SPD(smbaddr, SPD_byte_126));
return CRC == (pDCTstat->spd_data.spd_bytes[dimm][SPD_byte_127] << 8 | pDCTstat->spd_data.spd_bytes[dimm][SPD_byte_126]);
}

View File

@ -318,6 +318,11 @@ struct MCTStatStruc {
===============================================================================*/
#include "mwlc_d.h" /* I have to */
struct amd_spd_node_data {
uint8_t spd_bytes[MAX_DIMMS_SUPPORTED][256]; /* [DIMM][byte] */
uint8_t spd_address[MAX_DIMMS_SUPPORTED]; /* [DIMM] */
} __attribute__((packed));
struct DCTStatStruc { /* A per Node structure*/
/* DCTStatStruct_F - start */
u8 Node_ID; /* Node ID of current controller */
@ -611,6 +616,8 @@ struct DCTStatStruc { /* A per Node structure*/
char DimmPartNumber[MAX_DIMMS_SUPPORTED][SPD_PARTN_LENGTH+1];
uint16_t DimmRevisionNumber[MAX_DIMMS_SUPPORTED];
uint32_t DimmSerialNumber[MAX_DIMMS_SUPPORTED];
struct amd_spd_node_data spd_data;
} __attribute__((packed));
struct amd_s3_persistent_mct_channel_data {