drivers/analogix: Add anx7625 MIPI DSI/DPI to DP bridge driver

The ANX7625 is an ultra-low power 4K Mobile HD Transmitter designed for
portable devices. It converts MIPI DSI/DPI to DisplayPort 1.3 4K.

BRANCH=none
BUG=b:140132295
TEST=emerge-jacuzzi coreboot

Change-Id: I02ef29798b0257632e0750f09a4390b3d0226367
Signed-off-by: Jitao Shi <jitao.shi@mediatek.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/35623
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Hung-Te Lin <hungte@chromium.org>
This commit is contained in:
Jitao Shi 2019-09-26 10:22:08 +08:00 committed by Patrick Georgi
parent ee8f969e1e
commit 542919f370
4 changed files with 1288 additions and 0 deletions

View File

@ -0,0 +1,17 @@
##
## This file is part of the coreboot project.
##
## Copyright 2019 Analogix Semiconductor.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
config DRIVER_ANALOGIX_ANX7625
bool

View File

@ -0,0 +1,16 @@
##
## This file is part of the coreboot project.
##
## Copyright 2019 Analogix Semiconductor.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
ramstage-$(CONFIG_DRIVER_ANALOGIX_ANX7625) += anx7625.c

View File

@ -0,0 +1,892 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2019 Analogix Semiconductor.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include <delay.h>
#include <device/i2c_simple.h>
#include <edid.h>
#include <gpio.h>
#include <timer.h>
#include <string.h>
#include "anx7625.h"
#define ANXERROR(format, ...) \
printk(BIOS_ERR, "ERROR: %s: " format, __func__, ##__VA_ARGS__)
#define ANXINFO(format, ...) \
printk(BIOS_INFO, "%s: " format, __func__, ##__VA_ARGS__)
#define ANXDEBUG(format, ...) \
printk(BIOS_DEBUG, "%s: " format, __func__, ##__VA_ARGS__)
/*
* There is a sync issue while accessing I2C register between AP(CPU) and
* internal firmware(OCM). To avoid the race condition, AP should access the
* reserved slave address before slave address changes.
*/
static int i2c_access_workaround(uint8_t bus, uint8_t saddr)
{
uint8_t offset;
static uint8_t saddr_backup = 0;
int ret = 0;
if (saddr == saddr_backup)
return ret;
saddr_backup = saddr;
switch (saddr) {
case TCPC_INTERFACE_ADDR:
offset = RSVD_00_ADDR;
break;
case TX_P0_ADDR:
offset = RSVD_D1_ADDR;
break;
case TX_P1_ADDR:
offset = RSVD_60_ADDR;
break;
case RX_P0_ADDR:
offset = RSVD_39_ADDR;
break;
case RX_P1_ADDR:
offset = RSVD_7F_ADDR;
break;
default:
offset = RSVD_00_ADDR;
break;
}
ret = i2c_writeb(bus, saddr, offset, 0x00);
if (ret < 0)
ANXERROR("Failed to access %#x:%#x\n", saddr, offset);
return ret;
}
static int anx7625_reg_read(uint8_t bus, uint8_t saddr, uint8_t offset,
uint8_t *val)
{
int ret;
i2c_access_workaround(bus, saddr);
ret = i2c_readb(bus, saddr, offset, val);
if (ret < 0) {
ANXERROR("Failed to read i2c reg=%#x:%#x\n", saddr, offset);
return ret;
}
return *val;
}
static int anx7625_reg_block_read(uint8_t bus, uint8_t saddr, uint8_t reg_addr,
uint8_t len, uint8_t *buf)
{
int ret;
i2c_access_workaround(bus, saddr);
ret = i2c_read_bytes(bus, saddr, reg_addr, buf, len);
if (ret < 0)
ANXERROR("Failed to read i2c block=%#x:%#x[len=%#x]\n", saddr,
reg_addr, len);
return ret;
}
static int anx7625_reg_write(uint8_t bus, uint8_t saddr, uint8_t reg_addr,
uint8_t reg_val)
{
int ret;
i2c_access_workaround(bus, saddr);
ret = i2c_writeb(bus, saddr, reg_addr, reg_val);
if (ret < 0)
ANXERROR("Failed to write i2c id=%#x:%#x\n", saddr, reg_addr);
return ret;
}
static int anx7625_write_or(uint8_t bus, uint8_t saddr, uint8_t offset,
uint8_t mask)
{
uint8_t val;
int ret;
ret = anx7625_reg_read(bus, saddr, offset, &val);
if (ret < 0)
return ret;
return anx7625_reg_write(bus, saddr, offset, val | mask);
}
static int anx7625_write_and(uint8_t bus, uint8_t saddr, uint8_t offset,
uint8_t mask)
{
int ret;
uint8_t val;
ret = anx7625_reg_read(bus, saddr, offset, &val);
if (ret < 0)
return ret;
return anx7625_reg_write(bus, saddr, offset, val & mask);
}
static int wait_aux_op_finish(uint8_t bus)
{
uint8_t val;
int ret = -1;
int loop;
for (loop = 0; loop < 150; loop++) {
mdelay(2);
anx7625_reg_read(bus, RX_P0_ADDR, AP_AUX_CTRL_STATUS, &val);
if (!(val & AP_AUX_CTRL_OP_EN)) {
ret = 0;
break;
}
}
if (ret != 0) {
ANXERROR("Timed out waiting aux operation.\n");
return ret;
}
ret = anx7625_reg_read(bus, RX_P0_ADDR, AP_AUX_CTRL_STATUS, &val);
if (ret < 0 || val & 0x0F) {
ANXDEBUG("aux status %02x\n", val);
ret = -1;
}
return ret;
}
static unsigned long gcd(unsigned long a, unsigned long b)
{
if (a == 0)
return b;
while (b != 0) {
if (a > b)
a = a - b;
else
b = b - a;
}
return a;
}
/* Reduce fraction a/b */
static void anx7625_reduction_of_a_fraction(unsigned long *_a,
unsigned long *_b)
{
unsigned long gcd_num;
unsigned long a = *_a, b = *_b, old_a, old_b;
u32 denom = 1;
gcd_num = gcd(a, b);
a /= gcd_num;
b /= gcd_num;
old_a = a;
old_b = b;
while (a > MAX_UNSIGNED_24BIT || b > MAX_UNSIGNED_24BIT) {
denom++;
a = old_a / denom;
b = old_b / denom;
}
/* Increase a, b to have higher ODFC PLL output frequency accuracy. */
while ((a << 1) < MAX_UNSIGNED_24BIT && (b << 1) < MAX_UNSIGNED_24BIT) {
a <<= 1;
b <<= 1;
}
*_a = a;
*_b = b;
}
static int anx7625_calculate_m_n(u32 pixelclock,
unsigned long *m, unsigned long *n,
uint8_t *pd)
{
uint8_t post_divider = *pd;
if (pixelclock > PLL_OUT_FREQ_ABS_MAX / POST_DIVIDER_MIN) {
/* pixel clock frequency is too high */
ANXERROR("pixelclock %u higher than %lu, "
"output may be unstable\n",
pixelclock, PLL_OUT_FREQ_ABS_MAX / POST_DIVIDER_MIN);
return 1;
}
if (pixelclock < PLL_OUT_FREQ_ABS_MIN / POST_DIVIDER_MAX) {
/* pixel clock frequency is too low */
ANXERROR("pixelclock %u lower than %lu, "
"output may be unstable\n",
pixelclock, PLL_OUT_FREQ_ABS_MIN / POST_DIVIDER_MAX);
return 1;
}
post_divider = 1;
for (post_divider = 1;
pixelclock < PLL_OUT_FREQ_MIN / post_divider;
post_divider++)
;
if (post_divider > POST_DIVIDER_MAX) {
for (post_divider = 1;
pixelclock < PLL_OUT_FREQ_ABS_MIN / post_divider;
post_divider++)
;
if (post_divider > POST_DIVIDER_MAX) {
ANXERROR("cannot find property post_divider(%d)\n",
post_divider);
return 1;
}
}
/* Patch to improve the accuracy */
if (post_divider == 7) {
/* 27,000,000 is not divisible by 7 */
post_divider = 8;
} else if (post_divider == 11) {
/* 27,000,000 is not divisible by 11 */
post_divider = 12;
} else if (post_divider == 13 || post_divider == 14) {
/*27,000,000 is not divisible by 13 or 14*/
post_divider = 15;
}
if (pixelclock * post_divider > PLL_OUT_FREQ_ABS_MAX) {
ANXINFO("act clock(%u) large than maximum(%lu)\n",
pixelclock * post_divider, PLL_OUT_FREQ_ABS_MAX);
return 1;
}
*m = (unsigned long long)pixelclock * 599 / 600;
*n = XTAL_FRQ / post_divider;
*pd = post_divider;
anx7625_reduction_of_a_fraction(m, n);
return 0;
}
static int anx7625_odfc_config(uint8_t bus, uint8_t post_divider)
{
int ret;
/* config input reference clock frequency 27MHz/19.2MHz */
ret = anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_16,
~(REF_CLK_27000kHz << MIPI_FREF_D_IND));
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_16,
(REF_CLK_27000kHz << MIPI_FREF_D_IND));
/* post divider */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_8, 0x0f);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_8,
post_divider << 4);
/* add patch for MIS2-125 (5pcs ANX7625 fail ATE MBIST test) */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_7,
~MIPI_PLL_VCO_TUNE_REG_VAL);
/* reset ODFC PLL */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_7,
~MIPI_PLL_RESET_N);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_7,
MIPI_PLL_RESET_N);
if (ret < 0)
ANXERROR("IO error.\n");
return ret;
}
static int anx7625_dsi_video_config(uint8_t bus, struct display_timing *dt)
{
unsigned long m, n;
u16 htotal;
int ret;
uint8_t post_divider = 0;
ret = anx7625_calculate_m_n(dt->pixelclock * 1000, &m, &n,
&post_divider);
if (ret != 0) {
ANXERROR("cannot get property m n value.\n");
return -1;
}
ANXINFO("compute M(%lu), N(%lu), divider(%d).\n", m, n, post_divider);
/* configure pixel clock */
ret = anx7625_reg_write(bus, RX_P0_ADDR, PIXEL_CLOCK_L,
(dt->pixelclock / 1000) & 0xFF);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, PIXEL_CLOCK_H,
(dt->pixelclock / 1000) >> 8);
/* lane count */
ret |= anx7625_write_and(bus, RX_P1_ADDR, MIPI_LANE_CTRL_0, 0xfc);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_LANE_CTRL_0, 3);
/* Htotal */
htotal = dt->hactive + dt->hfront_porch +
dt->hback_porch + dt->hsync_len;
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_TOTAL_PIXELS_L, htotal & 0xFF);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_TOTAL_PIXELS_H, htotal >> 8);
/* Hactive */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_ACTIVE_PIXELS_L, dt->hactive & 0xFF);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_ACTIVE_PIXELS_H, dt->hactive >> 8);
/* HFP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_FRONT_PORCH_L, dt->hfront_porch);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_FRONT_PORCH_H,
dt->hfront_porch >> 8);
/* HWS */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_SYNC_WIDTH_L, dt->hsync_len);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_SYNC_WIDTH_H, dt->hsync_len >> 8);
/* HBP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_BACK_PORCH_L, dt->hback_porch);
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
HORIZONTAL_BACK_PORCH_H, dt->hback_porch >> 8);
/* Vactive */
ret |= anx7625_reg_write(bus, RX_P2_ADDR, ACTIVE_LINES_L, dt->vactive);
ret |= anx7625_reg_write(bus, RX_P2_ADDR, ACTIVE_LINES_H,
dt->vactive >> 8);
/* VFP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
VERTICAL_FRONT_PORCH, dt->vfront_porch);
/* VWS */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
VERTICAL_SYNC_WIDTH, dt->vsync_len);
/* VBP */
ret |= anx7625_reg_write(bus, RX_P2_ADDR,
VERTICAL_BACK_PORCH, dt->vback_porch);
/* M value */
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_M_NUM_23_16, (m >> 16) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_M_NUM_15_8, (m >> 8) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_M_NUM_7_0, (m & 0xff));
/* N value */
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_N_NUM_23_16, (n >> 16) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR,
MIPI_PLL_N_NUM_15_8, (n >> 8) & 0xff);
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_PLL_N_NUM_7_0,
(n & 0xff));
/* diff */
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_DIGITAL_ADJ_1, 0x37);
ret |= anx7625_odfc_config(bus, post_divider - 1);
if (ret < 0)
ANXERROR("mipi dsi setup IO error.\n");
return ret;
}
static int anx7625_swap_dsi_lane3(uint8_t bus)
{
int ret;
uint8_t val;
/* swap MIPI-DSI data lane 3 P and N */
ret = anx7625_reg_read(bus, RX_P1_ADDR, MIPI_SWAP, &val);
if (ret < 0) {
ANXERROR("IO error: access MIPI_SWAP.\n");
return -1;
}
val |= (1 << MIPI_SWAP_CH3);
return anx7625_reg_write(bus, RX_P1_ADDR, MIPI_SWAP, val);
}
static int anx7625_api_dsi_config(uint8_t bus, struct display_timing *dt)
{
int val, ret;
/* swap MIPI-DSI data lane 3 P and N */
ret = anx7625_swap_dsi_lane3(bus);
if (ret < 0) {
ANXERROR("IO error: swap dsi lane 3 failed.\n");
return ret;
}
/* DSI clock settings */
val = (0 << MIPI_HS_PWD_CLK) |
(0 << MIPI_HS_RT_CLK) |
(0 << MIPI_PD_CLK) |
(1 << MIPI_CLK_RT_MANUAL_PD_EN) |
(1 << MIPI_CLK_HS_MANUAL_PD_EN) |
(0 << MIPI_CLK_DET_DET_BYPASS) |
(0 << MIPI_CLK_MISS_CTRL) |
(0 << MIPI_PD_LPTX_CH_MANUAL_PD_EN);
ret = anx7625_reg_write(bus, RX_P1_ADDR, MIPI_PHY_CONTROL_3, val);
/*
* Decreased HS prepare tg delay from 160ns to 80ns work with
* a) Dragon board 810 series (Qualcomm AP)
* b) Moving Pixel DSI source (PG3A pattern generator +
* P332 D-PHY Probe) default D-PHY tg 5ns/step
*/
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_TIME_HS_PRPR, 0x10);
/* enable DSI mode */
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_18,
SELECT_DSI << MIPI_DPI_SELECT);
ret |= anx7625_dsi_video_config(bus, dt);
if (ret < 0) {
ANXERROR("dsi video tg config failed\n");
return ret;
}
/* toggle m, n ready */
ret = anx7625_write_and(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_6,
~(MIPI_M_NUM_READY | MIPI_N_NUM_READY));
mdelay(1);
ret |= anx7625_write_or(bus, RX_P1_ADDR, MIPI_DIGITAL_PLL_6,
MIPI_M_NUM_READY | MIPI_N_NUM_READY);
/* configure integer stable register */
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_VIDEO_STABLE_CNT, 0x02);
/* power on MIPI RX */
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_LANE_CTRL_10, 0x00);
ret |= anx7625_reg_write(bus, RX_P1_ADDR, MIPI_LANE_CTRL_10, 0x80);
if (ret < 0)
ANXERROR("IO error: mipi dsi enable init failed.\n");
return ret;
}
static int anx7625_dsi_config(uint8_t bus, struct display_timing *dt)
{
int ret;
ANXINFO("config dsi.\n");
/* DSC disable */
ret = anx7625_write_and(bus, RX_P0_ADDR, R_DSC_CTRL_0, ~DSC_EN);
ret |= anx7625_api_dsi_config(bus, dt);
if (ret < 0) {
ANXERROR("IO error: api dsi config error.\n");
return ret;
}
/* set MIPI RX EN */
ret = anx7625_write_or(bus, RX_P0_ADDR, AP_AV_STATUS, AP_MIPI_RX_EN);
/* clear mute flag */
ret |= anx7625_write_and(bus, RX_P0_ADDR, AP_AV_STATUS, ~AP_MIPI_MUTE);
if (ret < 0)
ANXERROR("IO error: enable mipi rx failed.\n");
else
ANXINFO("success to config DSI\n");
return ret;
}
static int sp_tx_rst_aux(uint8_t bus)
{
int ret;
ret = anx7625_write_or(bus, TX_P2_ADDR, RST_CTRL2, AUX_RST);
ret |= anx7625_write_and(bus, TX_P2_ADDR, RST_CTRL2, ~AUX_RST);
return ret;
}
static int sp_tx_aux_wr(uint8_t bus, uint8_t offset)
{
int ret;
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_BUFF_START, offset);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_COMMAND, 0x04);
ret |= anx7625_write_or(bus, RX_P0_ADDR,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
return ret | wait_aux_op_finish(bus);
}
static int sp_tx_aux_rd(uint8_t bus, uint8_t len_cmd)
{
int ret;
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_COMMAND, len_cmd);
ret |= anx7625_write_or(bus, RX_P0_ADDR,
AP_AUX_CTRL_STATUS, AP_AUX_CTRL_OP_EN);
return ret | wait_aux_op_finish(bus);
}
static int sp_tx_get_edid_block(uint8_t bus)
{
int ret;
uint8_t val = 0;
sp_tx_aux_wr(bus, 0x7e);
sp_tx_aux_rd(bus, 0x01);
ret = anx7625_reg_read(bus, RX_P0_ADDR, AP_AUX_BUFF_START, &val);
if (ret < 0) {
ANXERROR("IO error: access AUX BUFF.\n");
return -1;
}
ANXINFO("EDID Block = %d\n", val + 1);
if (val > 3)
val = 1;
return val;
}
static int edid_read(uint8_t bus, uint8_t offset, uint8_t *pblock_buf)
{
uint8_t c, cnt = 0;
c = 0;
for (cnt = 0; cnt < 3; cnt++) {
sp_tx_aux_wr(bus, offset);
/* set I2C read com 0x01 mot = 0 and read 16 bytes */
c = sp_tx_aux_rd(bus, 0xf1);
if (c == 1) {
sp_tx_rst_aux(bus);
ANXERROR("edid read failed, reset!\n");
cnt++;
} else {
anx7625_reg_block_read(bus, RX_P0_ADDR,
AP_AUX_BUFF_START,
MAX_DPCD_BUFFER_SIZE, pblock_buf);
return 0;
}
}
return 1;
}
static int segments_edid_read(uint8_t bus, uint8_t segment, uint8_t *buf,
uint8_t offset)
{
uint8_t c, cnt = 0;
int ret;
/* write address only */
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_7_0, 0x30);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_COMMAND, 0x04);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_CTRL_STATUS,
AP_AUX_CTRL_ADDRONLY | AP_AUX_CTRL_OP_EN);
ret |= wait_aux_op_finish(bus);
/* write segment address */
ret |= sp_tx_aux_wr(bus, segment);
/* data read */
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_7_0, 0x50);
if (ret < 0) {
ANXERROR("IO error: aux initial failed.\n");
return ret;
}
for (cnt = 0; cnt < 3; cnt++) {
sp_tx_aux_wr(bus, offset);
/* set I2C read com 0x01 mot = 0 and read 16 bytes */
c = sp_tx_aux_rd(bus, 0xf1);
if (c == 1) {
ret = sp_tx_rst_aux(bus);
ANXERROR("segment read failed, reset!\n");
cnt++;
} else {
ret = anx7625_reg_block_read(bus, RX_P0_ADDR,
AP_AUX_BUFF_START,
MAX_DPCD_BUFFER_SIZE, buf);
return ret;
}
}
return ret;
}
static int sp_tx_edid_read(uint8_t bus, uint8_t *pedid_blocks_buf,
uint32_t size)
{
uint8_t offset, edid_pos;
int count, blocks_num;
uint8_t pblock_buf[MAX_DPCD_BUFFER_SIZE];
uint8_t i;
uint8_t g_edid_break = 0;
int ret;
/* address initial */
ret = anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_7_0, 0x50);
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AUX_ADDR_15_8, 0);
ret |= anx7625_write_and(bus, RX_P0_ADDR, AP_AUX_ADDR_19_16, 0xf0);
if (ret < 0) {
ANXERROR("access aux channel IO error.\n");
return -1;
}
blocks_num = sp_tx_get_edid_block(bus);
if (blocks_num < 0)
return blocks_num;
count = 0;
do {
switch (count) {
case 0:
case 1:
for (i = 0; i < 8; i++) {
offset = (i + count * 8) * MAX_DPCD_BUFFER_SIZE;
g_edid_break = edid_read(bus, offset,
pblock_buf);
if (g_edid_break == 1)
break;
if (offset <= size - MAX_DPCD_BUFFER_SIZE)
memcpy(&pedid_blocks_buf[offset],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
}
break;
case 2:
case 3:
offset = (count == 2) ? 0x00 : 0x80;
for (i = 0; i < 8; i++) {
edid_pos = (i + count * 8) *
MAX_DPCD_BUFFER_SIZE;
if (g_edid_break == 1)
break;
segments_edid_read(bus, count / 2,
pblock_buf, offset);
if (edid_pos <= size - MAX_DPCD_BUFFER_SIZE)
memcpy(&pedid_blocks_buf[edid_pos],
pblock_buf,
MAX_DPCD_BUFFER_SIZE);
offset = offset + 0x10;
}
break;
default:
die("%s: count should be <= 3", __func__);
break;
}
count++;
} while (blocks_num >= count);
/* reset aux channel */
sp_tx_rst_aux(bus);
return blocks_num;
}
static void anx7625_disable_pd_protocol(uint8_t bus)
{
int ret;
/* reset main ocm */
ret = anx7625_reg_write(bus, RX_P0_ADDR, 0x88, 0x40);
/* Disable PD */
ret |= anx7625_reg_write(bus, RX_P0_ADDR, AP_AV_STATUS, AP_DISABLE_PD);
/* release main ocm */
ret |= anx7625_reg_write(bus, RX_P0_ADDR, 0x88, 0x00);
if (ret < 0)
ANXERROR("Failed to disable PD feature.\n");
else
ANXINFO("Disabled PD feature.\n");
}
#define FLASH_LOAD_STA 0x05
#define FLASH_LOAD_STA_CHK (1 << 7)
static int anx7625_power_on_init(uint8_t bus)
{
int i, ret;
uint8_t val, version, revision;
anx7625_reg_write(bus, RX_P0_ADDR, XTAL_FRQ_SEL, XTAL_FRQ_27M);
for (i = 0; i < OCM_LOADING_TIME; i++) {
/* check interface */
ret = anx7625_reg_read(bus, RX_P0_ADDR, FLASH_LOAD_STA, &val);
if (ret < 0) {
ANXERROR("Failed to load flash\n");
return ret;
}
if ((val & FLASH_LOAD_STA_CHK) != FLASH_LOAD_STA_CHK) {
mdelay(1);
continue;
}
ANXINFO("Init interface.\n");
anx7625_disable_pd_protocol(bus);
anx7625_reg_read(bus, RX_P0_ADDR, OCM_FW_VERSION, &version);
anx7625_reg_read(bus, RX_P0_ADDR, OCM_FW_REVERSION, &revision);
ANXINFO("Firmware: ver %#02x, rev %#02x.\n", version, revision);
return 0;
}
return -1;
}
static void anx7625_start_dp_work(uint8_t bus)
{
int ret;
uint8_t val;
/* not support HDCP */
ret = anx7625_write_and(bus, RX_P1_ADDR, 0xee, 0x9f);
/* try auth flag */
ret |= anx7625_write_or(bus, RX_P1_ADDR, 0xec, 0x10);
/* interrupt for DRM */
ret |= anx7625_write_or(bus, RX_P1_ADDR, 0xff, 0x01);
if (ret < 0)
return;
ret = anx7625_reg_read(bus, RX_P1_ADDR, 0x86, &val);
if (ret < 0)
return;
ANXINFO("Secure OCM version=%02x\n", val);
}
static int anx7625_hpd_change_detect(uint8_t bus)
{
int ret;
uint8_t status;
ret = anx7625_reg_read(bus, RX_P0_ADDR, SYSTEM_STSTUS, &status);
if (ret < 0) {
ANXERROR("IO error: Failed to clear interrupt status.\n");
return ret;
}
if (status & HPD_STATUS) {
anx7625_start_dp_work(bus);
ANXINFO("HPD received 0x7e:0x45=%#x\n", status);
return 1;
}
return 0;
}
static void anx7625_parse_edid(const struct edid *edid,
struct display_timing *dt)
{
dt->pixelclock = edid->mode.pixel_clock;
dt->hactive = edid->mode.ha;
dt->hsync_len = edid->mode.hspw;
dt->hback_porch = (edid->mode.hbl - edid->mode.hso -
edid->mode.hborder - edid->mode.hspw);
dt->hfront_porch = edid->mode.hso - edid->mode.hborder;
dt->vactive = edid->mode.va;
dt->vsync_len = edid->mode.vspw;
dt->vfront_porch = edid->mode.vso - edid->mode.vborder;
dt->vback_porch = (edid->mode.vbl - edid->mode.vso -
edid->mode.vspw - edid->mode.vborder);
ANXINFO("pixelclock(%d).\n"
" hactive(%d), hsync(%d), hfp(%d), hbp(%d)\n"
" vactive(%d), vsync(%d), vfp(%d), vbp(%d)\n",
dt->pixelclock,
dt->hactive, dt->hsync_len, dt->hfront_porch, dt->hback_porch,
dt->vactive, dt->vsync_len, dt->vfront_porch, dt->vback_porch);
}
int anx7625_dp_start(uint8_t bus, const struct edid *edid)
{
int ret;
struct display_timing dt;
anx7625_parse_edid(edid, &dt);
ret = anx7625_dsi_config(bus, &dt);
if (ret < 0)
ANXERROR("MIPI phy setup error.\n");
else
ANXINFO("MIPI phy setup OK.\n");
return ret;
}
int anx7625_dp_get_edid(uint8_t bus, struct edid *out)
{
int block_num;
int ret;
u8 edid[FOUR_BLOCK_SIZE];
block_num = sp_tx_edid_read(bus, edid, FOUR_BLOCK_SIZE);
if (block_num < 0) {
ANXERROR("Failed to get eDP EDID.\n");
return -1;
}
ret = decode_edid(edid, (block_num + 1) * ONE_BLOCK_SIZE, out);
if (ret != EDID_CONFORMANT) {
ANXERROR("Failed to decode EDID.\n");
return -1;
}
return 0;
}
int anx7625_init(uint8_t bus)
{
int retry_hpd_change = 50;
int retry_power_on = 3;
while (--retry_power_on) {
if (anx7625_power_on_init(bus) == 0)
break;
}
if (!retry_power_on) {
ANXERROR("Failed to power on.\n");
return -1;
}
while (--retry_hpd_change) {
mdelay(10);
int detected = anx7625_hpd_change_detect(bus);
if (detected < 0)
return -1;
if (detected > 0)
return 0;
}
ANXERROR("Timed out to detect HPD change on bus %d.\n", bus);
return -1;
}

View File

@ -0,0 +1,363 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright(c) 2016, Analogix Semiconductor. All rights reserved.
*
*/
#include <edid.h>
#include <types.h>
#ifndef __ANX7625_H__
#define __ANX7625_H__
#ifndef LOG_TAG
#define LOG_TAG "anx7625dp"
#endif
#define ANX7625_DRV_VERSION "0.1.04"
/* Loading OCM re-trying times */
#define OCM_LOADING_TIME 10
/********* ANX7625 Register **********/
#define ANXI2CSIM
#ifdef ANXI2CSIM
#define TX_P0_ADDR 0x38
#define TX_P1_ADDR 0x3D
#define TX_P2_ADDR 0x39
#define RX_P0_ADDR 0x3F
#define RX_P1_ADDR 0x42
#define RX_P2_ADDR 0x2A
#define TCPC_INTERFACE_ADDR 0x2C
#else
#define TX_P0_ADDR 0x70
#define TX_P1_ADDR 0x7A
#define TX_P2_ADDR 0x72
#define RX_P0_ADDR 0x7e
#define RX_P1_ADDR 0x84
#define RX_P2_ADDR 0x54
#define TCPC_INTERFACE_ADDR 0x58
#endif
#define RSVD_00_ADDR 0x00
#define RSVD_D1_ADDR 0xD1
#define RSVD_60_ADDR 0x60
#define RSVD_39_ADDR 0x39
#define RSVD_7F_ADDR 0x7F
/* anx7625 clock frequency in Hz */
#define XTAL_FRQ (27*1000000)
#define POST_DIVIDER_MIN 1
#define POST_DIVIDER_MAX 16
#define PLL_OUT_FREQ_MIN 520000000UL
#define PLL_OUT_FREQ_MAX 730000000UL
#define PLL_OUT_FREQ_ABS_MIN 300000000UL
#define PLL_OUT_FREQ_ABS_MAX 800000000UL
#define MAX_UNSIGNED_24BIT 16777215UL
/***************************************************************/
/* Register definition of device address 0x58 */
#define PRODUCT_ID_L 0x02
#define PRODUCT_ID_H 0x03
#define INTR_ALERT_1 0xCC
#define INTR_SOFTWARE_INT (1<<3)
#define INTR_RECEIVED_MSG (1<<5)
#define SYSTEM_STSTUS 0x45
#define INTERFACE_CHANGE_INT 0x44
#define HPD_STATUS_CHANGE 0x80
#define HPD_STATUS 0x80
/******** END of I2C Address 0x58 ********/
/***************************************************************/
/* Register definition of device address 0x70 */
#define I2C_ADDR_70_DPTX 0x70
#define SP_TX_LINK_BW_SET_REG 0xA0
#define SP_TX_LANE_COUNT_SET_REG 0xA1
#define M_VID_0 0xC0
#define M_VID_1 0xC1
#define M_VID_2 0xC2
#define N_VID_0 0xC3
#define N_VID_1 0xC4
#define N_VID_2 0xC5
/***************************************************************/
/* Register definition of device address 0x72 */
#define AUX_RST 0x04
#define RST_CTRL2 0x07
#define SP_TX_TOTAL_LINE_STA_L 0x24
#define SP_TX_TOTAL_LINE_STA_H 0x25
#define SP_TX_ACT_LINE_STA_L 0x26
#define SP_TX_ACT_LINE_STA_H 0x27
#define SP_TX_V_F_PORCH_STA 0x28
#define SP_TX_V_SYNC_STA 0x29
#define SP_TX_V_B_PORCH_STA 0x2A
#define SP_TX_TOTAL_PIXEL_STA_L 0x2B
#define SP_TX_TOTAL_PIXEL_STA_H 0x2C
#define SP_TX_ACT_PIXEL_STA_L 0x2D
#define SP_TX_ACT_PIXEL_STA_H 0x2E
#define SP_TX_H_F_PORCH_STA_L 0x2F
#define SP_TX_H_F_PORCH_STA_H 0x30
#define SP_TX_H_SYNC_STA_L 0x31
#define SP_TX_H_SYNC_STA_H 0x32
#define SP_TX_H_B_PORCH_STA_L 0x33
#define SP_TX_H_B_PORCH_STA_H 0x34
#define SP_TX_VID_CTRL 0x84
#define SP_TX_BPC_MASK 0xE0
#define SP_TX_BPC_6 0x00
#define SP_TX_BPC_8 0x20
#define SP_TX_BPC_10 0x40
#define SP_TX_BPC_12 0x60
#define VIDEO_BIT_MATRIX_12 0x4c
#define AUDIO_CHANNEL_STATUS_1 0xd0
#define AUDIO_CHANNEL_STATUS_2 0xd1
#define AUDIO_CHANNEL_STATUS_3 0xd2
#define AUDIO_CHANNEL_STATUS_4 0xd3
#define AUDIO_CHANNEL_STATUS_5 0xd4
#define AUDIO_CHANNEL_STATUS_6 0xd5
#define TDM_SLAVE_MODE 0x10
#define I2S_SLAVE_MODE 0x08
#define AUDIO_CONTROL_REGISTER 0xe6
#define TDM_TIMING_MODE 0x08
#define I2C_ADDR_72_DPTX 0x72
#define VIDEO_CONTROL_0 0x08
#define ACTIVE_LINES_L 0x14
#define ACTIVE_LINES_H 0x15 /* note: bit[7:6] are reserved */
#define VERTICAL_FRONT_PORCH 0x16
#define VERTICAL_SYNC_WIDTH 0x17
#define VERTICAL_BACK_PORCH 0x18
#define HORIZONTAL_TOTAL_PIXELS_L 0x19
#define HORIZONTAL_TOTAL_PIXELS_H 0x1A /* note: bit[7:6] are reserved */
#define HORIZONTAL_ACTIVE_PIXELS_L 0x1B
#define HORIZONTAL_ACTIVE_PIXELS_H 0x1C /* note: bit[7:6] are reserved */
#define HORIZONTAL_FRONT_PORCH_L 0x1D
#define HORIZONTAL_FRONT_PORCH_H 0x1E /* note: bit[7:4] are reserved */
#define HORIZONTAL_SYNC_WIDTH_L 0x1F
#define HORIZONTAL_SYNC_WIDTH_H 0x20 /* note: bit[7:4] are reserved */
#define HORIZONTAL_BACK_PORCH_L 0x21
#define HORIZONTAL_BACK_PORCH_H 0x22 /* note: bit[7:4] are reserved */
/******** END of I2C Address 0x72 *********/
/***************************************************************/
/* Register definition of device address 0x7e */
#define I2C_ADDR_7E_FLASH_CONTROLLER 0x7E
#define XTAL_FRQ_SEL 0x3F
/* bit field positions */
#define XTAL_FRQ_SEL_POS 5
/* bit field values */
#define XTAL_FRQ_19M2 (0 << XTAL_FRQ_SEL_POS)
#define XTAL_FRQ_27M (4 << XTAL_FRQ_SEL_POS)
#define R_DSC_CTRL_0 0x40
#define READ_STATUS_EN 7
#define CLK_1MEG_RB 6 /* 1MHz clock reset; 0=reset, 0=reset release */
#define DSC_BIST_DONE 1 /* bit[5:1]: 1=DSC MBIST pass */
#define DSC_EN 0x01 /* 1=DSC enabled, 0=DSC disabled */
#define OCM_FW_VERSION 0x31
#define OCM_FW_REVERSION 0x32
#define AP_AUX_ADDR_7_0 0x11
#define AP_AUX_ADDR_15_8 0x12
#define AP_AUX_ADDR_19_16 0x13
/* note: bit[0:3] AUX status, bit 4 op_en, bit 5 address only */
#define AP_AUX_CTRL_STATUS 0x14
#define AP_AUX_CTRL_OP_EN 0x10
#define AP_AUX_CTRL_ADDRONLY 0x20
#define AP_AUX_BUFF_START 0x15
#define PIXEL_CLOCK_L 0x25
#define PIXEL_CLOCK_H 0x26
#define AP_AUX_COMMAND 0x27 /* com+len */
/* bit 0&1: 3D video structure */
/* 0x01: frame packing, 0x02:Line alternative, 0x03:Side-by-side(full) */
#define AP_AV_STATUS 0x28
#define AP_VIDEO_CHG (1<<2)
#define AP_AUDIO_CHG (1<<3)
#define AP_MIPI_MUTE (1<<4) /* 1:MIPI input mute, 0: ummute */
#define AP_MIPI_RX_EN (1<<5) /* 1: MIPI RX input in 0: no RX in */
#define AP_DISABLE_PD (1<<6)
#define AP_DISABLE_DISPLAY (1<<7)
/***************************************************************/
/* Register definition of device address 0x84 */
#define MIPI_PHY_CONTROL_3 0x03
#define MIPI_HS_PWD_CLK 7
#define MIPI_HS_RT_CLK 6
#define MIPI_PD_CLK 5
#define MIPI_CLK_RT_MANUAL_PD_EN 4
#define MIPI_CLK_HS_MANUAL_PD_EN 3
#define MIPI_CLK_DET_DET_BYPASS 2
#define MIPI_CLK_MISS_CTRL 1
#define MIPI_PD_LPTX_CH_MANUAL_PD_EN 0
#define MIPI_LANE_CTRL_0 0x05
#define MIPI_TIME_HS_PRPR 0x08
/* After MIPI RX protocol layer received this many video frames, */
/* protocol layer starts to reconstruct video stream from PHY */
#define MIPI_VIDEO_STABLE_CNT 0x0A
#define MIPI_LANE_CTRL_10 0x0F
#define MIPI_DIGITAL_ADJ_1 0x1B
#define MIPI_PLL_M_NUM_23_16 0x1E
#define MIPI_PLL_M_NUM_15_8 0x1F
#define MIPI_PLL_M_NUM_7_0 0x20
#define MIPI_PLL_N_NUM_23_16 0x21
#define MIPI_PLL_N_NUM_15_8 0x22
#define MIPI_PLL_N_NUM_7_0 0x23
#define MIPI_DIGITAL_PLL_6 0x2A
/* bit[7:6]: VCO band control, only effective */
/* when MIPI_PLL_FORCE_BAND_EN (0x84:0x2B[6]) is 1 */
#define MIPI_M_NUM_READY 0x10
#define MIPI_N_NUM_READY 0x08
#define STABLE_INTEGER_CNT_EN 0x04
#define MIPI_PLL_TEST_BIT 0
/* bit[1:0]: test point output select - */
/* 00: VCO power, 01: dvdd_pdt, 10: dvdd, 11: vcox */
#define MIPI_DIGITAL_PLL_7 0x2B
#define MIPI_PLL_FORCE_N_EN 7
#define MIPI_PLL_FORCE_BAND_EN 6
#define MIPI_PLL_VCO_TUNE_REG 4
/* bit[5:4]: VCO metal capacitance - */
/* 00: +20% fast, 01: +10% fast (default), 10: typical, 11: -10% slow */
#define MIPI_PLL_VCO_TUNE_REG_VAL 0x30
#define MIPI_PLL_PLL_LDO_BIT 2
/* bit[3:2]: vco_v2i power - */
/* 00: 1.40V, 01: 1.45V (default), 10: 1.50V, 11: 1.55V */
#define MIPI_PLL_RESET_N 0x02
#define MIPI_FRQ_FORCE_NDET 0
#define MIPI_ALERT_CLR_0 0x2D
#define HS_link_error_clear 7
/* This bit itself is S/C, and it clears 0x84:0x31[7] */
#define MIPI_ALERT_OUT_0 0x31
#define check_sum_err_hs_sync 7
/* This bit is cleared by 0x84:0x2D[7] */
#define MIPI_DIGITAL_PLL_8 0x33
#define MIPI_POST_DIV_VAL 4
/* n means divided by (n+1), n = 0~15 */
#define MIPI_EN_LOCK_FRZ 3
#define MIPI_FRQ_COUNTER_RST 2
#define MIPI_FRQ_SET_REG_8 1
/* bit 0 is reserved */
#define MIPI_DIGITAL_PLL_9 0x34
#define MIPI_DIGITAL_PLL_16 0x3B
#define MIPI_FRQ_FREEZE_NDET 7
#define MIPI_FRQ_REG_SET_ENABLE 6
#define MIPI_REG_FORCE_SEL_EN 5
#define MIPI_REG_SEL_DIV_REG 4
#define MIPI_REG_FORCE_PRE_DIV_EN 3
/* bit 2 is reserved */
#define MIPI_FREF_D_IND 1
#define REF_CLK_27000kHz 1
#define REF_CLK_19200kHz 0
#define MIPI_REG_PLL_PLL_TEST_ENABLE 0
#define MIPI_DIGITAL_PLL_18 0x3D
#define FRQ_COUNT_RB_SEL 7
#define REG_FORCE_POST_DIV_EN 6
#define MIPI_DPI_SELECT 5
#define SELECT_DSI 1
#define SELECT_DPI 0
#define REG_BAUD_DIV_RATIO 0
#define H_BLANK_L 0x3E
/* for DSC only */
#define H_BLANK_H 0x3F
/* for DSC only; note: bit[7:6] are reserved */
#define MIPI_SWAP 0x4A
#define MIPI_SWAP_CH0 7
#define MIPI_SWAP_CH1 6
#define MIPI_SWAP_CH2 5
#define MIPI_SWAP_CH3 4
#define MIPI_SWAP_CLK 3
/* bit[2:0] are reserved */
/******** END of I2C Address 0x84 *********/
/* DPCD regs */
#define DPCD_DPCD_REV 0x00
#define DPCD_MAX_LINK_RATE 0x01
#define DPCD_MAX_LANE_COUNT 0x02
/********* ANX7625 Register End **********/
/***************** Display *****************/
enum AudioFs {
AUDIO_FS_441K = 0x00,
AUDIO_FS_48K = 0x02,
AUDIO_FS_32K = 0x03,
AUDIO_FS_882K = 0x08,
AUDIO_FS_96K = 0x0a,
AUDIO_FS_1764K = 0x0c,
AUDIO_FS_192K = 0x0e
};
enum AudioWdLen {
AUDIO_W_LEN_16_20MAX = 0x02,
AUDIO_W_LEN_18_20MAX = 0x04,
AUDIO_W_LEN_17_20MAX = 0x0c,
AUDIO_W_LEN_19_20MAX = 0x08,
AUDIO_W_LEN_20_20MAX = 0x0a,
AUDIO_W_LEN_20_24MAX = 0x03,
AUDIO_W_LEN_22_24MAX = 0x05,
AUDIO_W_LEN_21_24MAX = 0x0d,
AUDIO_W_LEN_23_24MAX = 0x09,
AUDIO_W_LEN_24_24MAX = 0x0b
};
#define I2S_CH_2 0x01
#define TDM_CH_4 0x03
#define TDM_CH_6 0x05
#define TDM_CH_8 0x07
#define MAX_DPCD_BUFFER_SIZE 16
#define ONE_BLOCK_SIZE 128
#define FOUR_BLOCK_SIZE (128*4)
struct display_timing {
unsigned int pixelclock;
unsigned int hactive;
unsigned int hfront_porch;
unsigned int hback_porch;
unsigned int hsync_len;
unsigned int vactive;
unsigned int vfront_porch;
unsigned int vback_porch;
unsigned int vsync_len;
};
int anx7625_dp_start(uint8_t bus, const struct edid *edid);
int anx7625_dp_get_edid(uint8_t bus, struct edid *out);
int anx7625_init(uint8_t bus);
#endif /* __ANX7625_H__ */