lib: Raw import FDT devicetree from depthcharge

Import from https://chromium.googlesource.com/chromiumos/platform/depthcharge
Required for general devicetree patching and FIT support.

Coding style and coreboot integration will be done in a separate commit.

Change-Id: Ida75d4786eae38d84bfc71bf53573dafca8eda40
Signed-off-by: Patrick Rudolph <patrick.rudolph@9elements.com>
Reviewed-on: https://review.coreboot.org/25632
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Julius Werner <jwerner@chromium.org>
This commit is contained in:
Patrick Rudolph 2018-04-12 11:44:43 +02:00 committed by Patrick Georgi
parent 4c81d4464f
commit 67aca3e7dc
4 changed files with 1244 additions and 0 deletions

219
src/include/device_tree.h Normal file
View File

@ -0,0 +1,219 @@
/*
* Copyright 2013 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __BASE_DEVICE_TREE_H__
#define __BASE_DEVICE_TREE_H__
#include <stdint.h>
#include "base/list.h"
/*
* Flattened device tree structures/constants.
*/
typedef struct FdtHeader {
uint32_t magic;
uint32_t totalsize;
uint32_t structure_offset;
uint32_t strings_offset;
uint32_t reserve_map_offset;
uint32_t version;
uint32_t last_compatible_version;
uint32_t boot_cpuid_phys;
uint32_t strings_size;
uint32_t structure_size;
} FdtHeader;
static const uint32_t FdtMagic = 0xd00dfeed;
static const uint32_t TokenBeginNode = 1;
static const uint32_t TokenEndNode = 2;
static const uint32_t TokenProperty = 3;
static const uint32_t TokenEnd = 9;
typedef struct FdtProperty
{
const char *name;
void *data;
uint32_t size;
} FdtProperty;
/*
* Unflattened device tree structures.
*/
typedef struct DeviceTreeProperty
{
FdtProperty prop;
ListNode list_node;
} DeviceTreeProperty;
typedef struct DeviceTreeNode
{
const char *name;
// List of DeviceTreeProperty-s.
ListNode properties;
// List of DeviceTreeNodes.
ListNode children;
ListNode list_node;
} DeviceTreeNode;
typedef struct DeviceTreeReserveMapEntry
{
uint64_t start;
uint64_t size;
ListNode list_node;
} DeviceTreeReserveMapEntry;
typedef struct DeviceTree
{
void *header;
uint32_t header_size;
ListNode reserve_map;
DeviceTreeNode *root;
} DeviceTree;
/*
* Flattened device tree functions. These generally return the number of bytes
* which were consumed reading the requested value.
*/
// Read the property, if any, at offset offset.
int fdt_next_property(void *blob, uint32_t offset, FdtProperty *prop);
// Read the name of the node, if any, at offset offset.
int fdt_node_name(void *blob, uint32_t offset, const char **name);
void fdt_print_node(void *blob, uint32_t offset);
int fdt_skip_node(void *blob, uint32_t offset);
// Read a flattened device tree into a heirarchical structure which refers to
// the contents of the flattened tree in place. Modifying the flat tree
// invalidates the unflattened one.
DeviceTree *fdt_unflatten(void *blob);
/*
* Unflattened device tree functions.
*/
// Figure out how big a device tree would be if it were flattened.
uint32_t dt_flat_size(DeviceTree *tree);
// Flatten a device tree into the buffer pointed to by dest.
void dt_flatten(DeviceTree *tree, void *dest);
void dt_print_node(DeviceTreeNode *node);
// Read #address-cells and #size-cells properties from a node.
void dt_read_cell_props(DeviceTreeNode *node, u32 *addrcp, u32 *sizecp);
// Look up or create a node relative to a parent node, through its path
// represented as an array of strings.
DeviceTreeNode *dt_find_node(DeviceTreeNode *parent, const char **path,
u32 *addrcp, u32 *sizecp, int create);
// Look up or create a node relative to a parent node, through its path
// represented as a string of '/' separated node names.
DeviceTreeNode *dt_find_node_by_path(DeviceTreeNode *parent, const char *path,
u32 *addrcp, u32 *sizecp, int create);
// Look up a node relative to a parent node, through its compatible string.
DeviceTreeNode *dt_find_compat(DeviceTreeNode *parent, const char *compatible);
// Look up the next child of a parent node, through its compatible string. It
// uses child pointer as the marker to find next.
DeviceTreeNode *dt_find_next_compat_child(DeviceTreeNode *parent,
DeviceTreeNode *child,
const char *compat);
// Look up a node relative to a parent node, through its property value.
DeviceTreeNode *dt_find_prop_value(DeviceTreeNode *parent, const char *name,
void *data, size_t size);
// Write src into *dest as a 'length'-byte big-endian integer.
void dt_write_int(u8 *dest, u64 src, size_t length);
// Add different kinds of properties to a node, or update existing ones.
void dt_add_bin_prop(DeviceTreeNode *node, char *name, void *data, size_t size);
void dt_add_string_prop(DeviceTreeNode *node, char *name, char *str);
void dt_add_u32_prop(DeviceTreeNode *node, char *name, u32 val);
void dt_add_reg_prop(DeviceTreeNode *node, u64 *addrs, u64 *sizes,
int count, u32 addr_cells, u32 size_cells);
int dt_set_bin_prop_by_path(DeviceTree *tree, const char *path,
void *data, size_t size, int create);
void dt_find_bin_prop(DeviceTreeNode *node, const char *name, void **data,
size_t *size);
const char *dt_find_string_prop(DeviceTreeNode *node, const char *name);
/*
* Fixups to apply to a kernel's device tree before booting it.
*/
typedef struct DeviceTreeFixup
{
// The function which does the fixing.
int (*fixup)(struct DeviceTreeFixup *fixup, DeviceTree *tree);
ListNode list_node;
} DeviceTreeFixup;
extern ListNode device_tree_fixups;
int dt_apply_fixups(DeviceTree *tree);
/*
* Structure defining mapping between arbitrary objects and the device tree
* path to the property corresponding to the object.
*/
typedef struct {
int force_create; /* If false - do not create a new node. */
const char *dt_path;
const char *key;
} DtPathMap;
/*
* Copy mac addresses from sysinfo table into the device tree. The mapping
* between the dt_maps entries and sysinfo mac address table elements is
* implicit, i.e. the device tree node found in the maps entry, gets assinged
* the mac address found in the sysinfo table, in the same order.
*/
int dt_set_mac_addresses(DeviceTree *tree, const DtPathMap *dt_maps);
/*
* Copy WIFI calibration data from sysinfo table into the device tree. Each
* WIFI calibration blob stored the sysinfo table contains key and data. The
* key is used for mapping into the device tree path. The data becomes the
* contents of the device tree property at that path.
*/
int dt_set_wifi_calibration(DeviceTree *tree, const DtPathMap *maps);
/*
* Retrieve Country Code data from VPD and add it into the device tree.
*/
int dt_set_wifi_country_code(DeviceTree *tree, const DtPathMap *maps);
/*
* Init/retrieve the /reserved-memory/ node.
*/
DeviceTreeNode *dt_init_reserved_memory_node(DeviceTree *tree);
#endif /* __BASE_DEVICE_TREE_H__ */

44
src/include/list.h Normal file
View File

@ -0,0 +1,44 @@
/*
* Copyright 2012 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __BASE_LIST_H__
#define __BASE_LIST_H__
#include <stddef.h>
#include <stdint.h>
#include "base/container_of.h"
typedef struct ListNode {
struct ListNode *next;
struct ListNode *prev;
} ListNode;
// Remove ListNode node from the doubly linked list it's a part of.
void list_remove(ListNode *node);
// Insert ListNode node after ListNode after in a doubly linked list.
void list_insert_after(ListNode *node, ListNode *after);
// Insert ListNode node before ListNode before in a doubly linked list.
void list_insert_before(ListNode *node, ListNode *before);
#define list_for_each(ptr, head, member) \
for ((ptr) = container_of((head).next, typeof(*(ptr)), member); \
&((ptr)->member); \
(ptr) = container_of((ptr)->member.next, \
typeof(*(ptr)), member))
#endif /* __BASE_LIST_H__ */

937
src/lib/device_tree.c Normal file
View File

@ -0,0 +1,937 @@
/*
* Copyright 2013 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <endian.h>
#include <libpayload.h>
#include <stdint.h>
#include "base/device_tree.h"
/*
* Functions for picking apart flattened trees.
*/
static uint32_t size32(uint32_t val)
{
return (val + sizeof(uint32_t) - 1) / sizeof(uint32_t);
}
int fdt_next_property(void *blob, uint32_t offset, FdtProperty *prop)
{
FdtHeader *header = (FdtHeader *)blob;
uint32_t *ptr = (uint32_t *)(((uint8_t *)blob) + offset);
int index = 0;
if (betohl(ptr[index++]) != TokenProperty)
return 0;
uint32_t size = betohl(ptr[index++]);
uint32_t name_offset = betohl(ptr[index++]);
name_offset += betohl(header->strings_offset);
if (prop) {
prop->name = (char *)((uint8_t *)blob + name_offset);
prop->data = &ptr[index];
prop->size = size;
}
index += size32(size);
return index * 4;
}
int fdt_node_name(void *blob, uint32_t offset, const char **name)
{
uint8_t *ptr = ((uint8_t *)blob) + offset;
if (betohl(*(uint32_t *)ptr) != TokenBeginNode)
return 0;
ptr += 4;
if (name)
*name = (char *)ptr;
return size32(strlen((char *)ptr) + 1) * sizeof(uint32_t) + 4;
}
/*
* Functions for printing flattened trees.
*/
static void print_indent(int depth)
{
while (depth--)
printf(" ");
}
static void print_property(FdtProperty *prop, int depth)
{
print_indent(depth);
printf("prop \"%s\" (%d bytes).\n", prop->name, prop->size);
print_indent(depth + 1);
for (int i = 0; i < MIN(25, prop->size); i++) {
printf("%02x ", ((uint8_t *)prop->data)[i]);
}
if (prop->size > 25)
printf("...");
printf("\n");
}
static int print_flat_node(void *blob, uint32_t start_offset, int depth)
{
int offset = start_offset;
const char *name;
int size;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
print_indent(depth);
printf("name = %s\n", name);
FdtProperty prop;
while ((size = fdt_next_property(blob, offset, &prop))) {
print_property(&prop, depth + 1);
offset += size;
}
while ((size = print_flat_node(blob, offset, depth + 1)))
offset += size;
return offset - start_offset + sizeof(uint32_t);
}
void fdt_print_node(void *blob, uint32_t offset)
{
print_flat_node(blob, offset, 0);
}
/*
* A utility function to skip past nodes in flattened trees.
*/
int fdt_skip_node(void *blob, uint32_t start_offset)
{
int offset = start_offset;
int size;
const char *name;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
while ((size = fdt_next_property(blob, offset, NULL)))
offset += size;
while ((size = fdt_skip_node(blob, offset)))
offset += size;
return offset - start_offset + sizeof(uint32_t);
}
/*
* Functions to turn a flattened tree into an unflattened one.
*/
static DeviceTreeNode node_cache[1000];
static int node_counter = 0;
static DeviceTreeProperty prop_cache[5000];
static int prop_counter = 0;
/*
* Libpayload's malloc() has linear allocation complexity and goes completely
* mental after a few thousand small requests. This little hack will absorb
* the worst of it to avoid increasing boot time for no reason.
*/
static DeviceTreeNode *alloc_node(void)
{
if (node_counter >= ARRAY_SIZE(node_cache))
return xzalloc(sizeof(DeviceTreeNode));
return &node_cache[node_counter++];
}
static DeviceTreeProperty *alloc_prop(void)
{
if (prop_counter >= ARRAY_SIZE(prop_cache))
return xzalloc(sizeof(DeviceTreeProperty));
return &prop_cache[prop_counter++];
}
static int fdt_unflatten_node(void *blob, uint32_t start_offset,
DeviceTreeNode **new_node)
{
ListNode *last;
int offset = start_offset;
const char *name;
int size;
size = fdt_node_name(blob, offset, &name);
if (!size)
return 0;
offset += size;
DeviceTreeNode *node = alloc_node();
*new_node = node;
node->name = name;
FdtProperty fprop;
last = &node->properties;
while ((size = fdt_next_property(blob, offset, &fprop))) {
DeviceTreeProperty *prop = alloc_prop();
prop->prop = fprop;
list_insert_after(&prop->list_node, last);
last = &prop->list_node;
offset += size;
}
DeviceTreeNode *child;
last = &node->children;
while ((size = fdt_unflatten_node(blob, offset, &child))) {
list_insert_after(&child->list_node, last);
last = &child->list_node;
offset += size;
}
return offset - start_offset + sizeof(uint32_t);
}
static int fdt_unflatten_map_entry(void *blob, uint32_t offset,
DeviceTreeReserveMapEntry **new_entry)
{
uint64_t *ptr = (uint64_t *)(((uint8_t *)blob) + offset);
uint64_t start = betohll(ptr[0]);
uint64_t size = betohll(ptr[1]);
if (!size)
return 0;
DeviceTreeReserveMapEntry *entry = xzalloc(sizeof(*entry));
*new_entry = entry;
entry->start = start;
entry->size = size;
return sizeof(uint64_t) * 2;
}
DeviceTree *fdt_unflatten(void *blob)
{
DeviceTree *tree = xzalloc(sizeof(*tree));
FdtHeader *header = (FdtHeader *)blob;
tree->header = header;
uint32_t struct_offset = betohl(header->structure_offset);
uint32_t strings_offset = betohl(header->strings_offset);
uint32_t reserve_offset = betohl(header->reserve_map_offset);
uint32_t min_offset = 0;
min_offset = MIN(struct_offset, strings_offset);
min_offset = MIN(min_offset, reserve_offset);
// Assume everything up to the first non-header component is part of
// the header and needs to be preserved. This will protect us against
// new elements being added in the future.
tree->header_size = min_offset;
DeviceTreeReserveMapEntry *entry;
uint32_t offset = reserve_offset;
int size;
ListNode *last = &tree->reserve_map;
while ((size = fdt_unflatten_map_entry(blob, offset, &entry))) {
list_insert_after(&entry->list_node, last);
last = &entry->list_node;
offset += size;
}
fdt_unflatten_node(blob, struct_offset, &tree->root);
return tree;
}
/*
* Functions to find the size of device tree would take if it was flattened.
*/
static void dt_flat_prop_size(DeviceTreeProperty *prop, uint32_t *struct_size,
uint32_t *strings_size)
{
// Starting token.
*struct_size += sizeof(uint32_t);
// Size.
*struct_size += sizeof(uint32_t);
// Name offset.
*struct_size += sizeof(uint32_t);
// Property value.
*struct_size += size32(prop->prop.size) * sizeof(uint32_t);
// Property name.
*strings_size += strlen(prop->prop.name) + 1;
}
static void dt_flat_node_size(DeviceTreeNode *node, uint32_t *struct_size,
uint32_t *strings_size)
{
// Starting token.
*struct_size += sizeof(uint32_t);
// Node name.
*struct_size += size32(strlen(node->name) + 1) * sizeof(uint32_t);
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node)
dt_flat_prop_size(prop, struct_size, strings_size);
DeviceTreeNode *child;
list_for_each(child, node->children, list_node)
dt_flat_node_size(child, struct_size, strings_size);
// End token.
*struct_size += sizeof(uint32_t);
}
uint32_t dt_flat_size(DeviceTree *tree)
{
uint32_t size = tree->header_size;
DeviceTreeReserveMapEntry *entry;
list_for_each(entry, tree->reserve_map, list_node)
size += sizeof(uint64_t) * 2;
size += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
size += struct_size;
// End token.
size += sizeof(uint32_t);
size += strings_size;
return size;
}
/*
* Functions to flatten a device tree.
*/
static void dt_flatten_map_entry(DeviceTreeReserveMapEntry *entry,
void **map_start)
{
((uint64_t *)*map_start)[0] = htobell(entry->start);
((uint64_t *)*map_start)[1] = htobell(entry->size);
*map_start = ((uint8_t *)*map_start) + sizeof(uint64_t) * 2;
}
static void dt_flatten_prop(DeviceTreeProperty *prop, void **struct_start,
void *strings_base, void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
*((uint32_t *)dstruct) = htobel(TokenProperty);
dstruct += sizeof(uint32_t);
*((uint32_t *)dstruct) = htobel(prop->prop.size);
dstruct += sizeof(uint32_t);
uint32_t name_offset = (uintptr_t)dstrings - (uintptr_t)strings_base;
*((uint32_t *)dstruct) = htobel(name_offset);
dstruct += sizeof(uint32_t);
strcpy((char *)dstrings, prop->prop.name);
dstrings += strlen(prop->prop.name) + 1;
memcpy(dstruct, prop->prop.data, prop->prop.size);
dstruct += size32(prop->prop.size) * 4;
*struct_start = dstruct;
*strings_start = dstrings;
}
static void dt_flatten_node(DeviceTreeNode *node, void **struct_start,
void *strings_base, void **strings_start)
{
uint8_t *dstruct = (uint8_t *)*struct_start;
uint8_t *dstrings = (uint8_t *)*strings_start;
*((uint32_t *)dstruct) = htobel(TokenBeginNode);
dstruct += sizeof(uint32_t);
strcpy((char *)dstruct, node->name);
dstruct += size32(strlen(node->name) + 1) * 4;
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node)
dt_flatten_prop(prop, (void **)&dstruct, strings_base,
(void **)&dstrings);
DeviceTreeNode *child;
list_for_each(child, node->children, list_node)
dt_flatten_node(child, (void **)&dstruct, strings_base,
(void **)&dstrings);
*((uint32_t *)dstruct) = htobel(TokenEndNode);
dstruct += sizeof(uint32_t);
*struct_start = dstruct;
*strings_start = dstrings;
}
void dt_flatten(DeviceTree *tree, void *start_dest)
{
uint8_t *dest = (uint8_t *)start_dest;
memcpy(dest, tree->header, tree->header_size);
FdtHeader *header = (FdtHeader *)dest;
dest += tree->header_size;
DeviceTreeReserveMapEntry *entry;
list_for_each(entry, tree->reserve_map, list_node)
dt_flatten_map_entry(entry, (void **)&dest);
((uint64_t *)dest)[0] = ((uint64_t *)dest)[1] = 0;
dest += sizeof(uint64_t) * 2;
uint32_t struct_size = 0;
uint32_t strings_size = 0;
dt_flat_node_size(tree->root, &struct_size, &strings_size);
uint8_t *struct_start = dest;
header->structure_offset = htobel(dest - (uint8_t *)start_dest);
header->structure_size = htobel(struct_size);
dest += struct_size;
*((uint32_t *)dest) = htobel(TokenEnd);
dest += sizeof(uint32_t);
uint8_t *strings_start = dest;
header->strings_offset = htobel(dest - (uint8_t *)start_dest);
header->strings_size = htobel(strings_size);
dest += strings_size;
dt_flatten_node(tree->root, (void **)&struct_start, strings_start,
(void **)&strings_start);
header->totalsize = htobel(dest - (uint8_t *)start_dest);
}
/*
* Functions for printing a non-flattened device tree.
*/
static void print_node(DeviceTreeNode *node, int depth)
{
print_indent(depth);
printf("name = %s\n", node->name);
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node)
print_property(&prop->prop, depth + 1);
DeviceTreeNode *child;
list_for_each(child, node->children, list_node)
print_node(child, depth + 1);
}
void dt_print_node(DeviceTreeNode *node)
{
print_node(node, 0);
}
/*
* Functions for reading and manipulating an unflattened device tree.
*/
/*
* Read #address-cells and #size-cells properties from a node.
*
* @param node The device tree node to read from.
* @param addrcp Pointer to store #address-cells in, skipped if NULL.
* @param sizecp Pointer to store #size-cells in, skipped if NULL.
*/
void dt_read_cell_props(DeviceTreeNode *node, u32 *addrcp, u32 *sizecp)
{
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (addrcp && !strcmp("#address-cells", prop->prop.name))
*addrcp = betohl(*(u32 *)prop->prop.data);
if (sizecp && !strcmp("#size-cells", prop->prop.name))
*sizecp = betohl(*(u32 *)prop->prop.data);
}
}
/*
* Find a node from a device tree path, relative to a parent node.
*
* @param parent The node from which to start the relative path lookup.
* @param path An array of path component strings that will be looked
* up in order to find the node. Must be terminated with
* a NULL pointer. Example: {'firmware', 'coreboot', NULL}
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*/
DeviceTreeNode *dt_find_node(DeviceTreeNode *parent, const char **path,
u32 *addrcp, u32 *sizecp, int create)
{
DeviceTreeNode *node, *found = NULL;
// Update #address-cells and #size-cells for this level.
dt_read_cell_props(parent, addrcp, sizecp);
if (!*path)
return parent;
// Find the next node in the path, if it exists.
list_for_each(node, parent->children, list_node) {
if (!strcmp(node->name, *path)) {
found = node;
break;
}
}
// Otherwise create it or return NULL.
if (!found) {
if (!create)
return NULL;
found = alloc_node();
found->name = strdup(*path);
if (!found->name)
return NULL;
list_insert_after(&found->list_node, &parent->children);
}
return dt_find_node(found, path + 1, addrcp, sizecp, create);
}
/*
* Find a node from a string device tree path, relative to a parent node.
*
* @param parent The node from which to start the relative path lookup.
* @param path A string representing a path in the device tree, with
* nodes separated by '/'. Example: "soc/firmware/coreboot"
* @param addrcp Pointer that will be updated with any #address-cells
* value found in the path. May be NULL to ignore.
* @param sizecp Pointer that will be updated with any #size-cells
* value found in the path. May be NULL to ignore.
* @param create 1: Create node(s) if not found. 0: Return NULL instead.
* @return The found/created node, or NULL.
*
* It is the caller responsibility to provide the correct path string, namely
* not starting or ending with a '/', and not having "//" anywhere in it.
*/
DeviceTreeNode *dt_find_node_by_path(DeviceTreeNode *parent, const char *path,
u32 *addrcp, u32 *sizecp, int create)
{
char *dup_path = strdup(path);
/* Hopefully enough depth for any node. */
const char *path_array[15];
int i;
char *next_slash;
DeviceTreeNode *node = NULL;
if (!dup_path)
return NULL;
next_slash = dup_path;
path_array[0] = dup_path;
for (i = 1; i < (ARRAY_SIZE(path_array) - 1); i++) {
next_slash = strchr(next_slash, '/');
if (!next_slash)
break;
*next_slash++ = '\0';
path_array[i] = next_slash;
}
if (!next_slash) {
path_array[i] = NULL;
node = dt_find_node(parent, path_array,
addrcp, sizecp, create);
}
free(dup_path);
return node;
}
/*
* Check if given node is compatible.
*
* @param node The node which is to be checked for compatible property.
* @param compat The compatible string to match.
* @return 1 = compatible, 0 = not compatible.
*/
static int dt_check_compat_match(DeviceTreeNode *node, const char *compat)
{
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("compatible", prop->prop.name)) {
size_t bytes = prop->prop.size;
const char *str = prop->prop.data;
while (bytes > 0) {
if (!strncmp(compat, str, bytes))
return 1;
size_t len = strnlen(str, bytes) + 1;
if (bytes <= len)
break;
str += len;
bytes -= len;
}
break;
}
}
return 0;
}
/*
* Find a node from a compatible string, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
DeviceTreeNode *dt_find_compat(DeviceTreeNode *parent, const char *compat)
{
// Check if the parent node itself is compatible.
if (dt_check_compat_match(parent, compat))
return parent;
DeviceTreeNode *child;
list_for_each(child, parent->children, list_node) {
DeviceTreeNode *found = dt_find_compat(child, compat);
if (found)
return found;
}
return NULL;
}
/*
* Find the next compatible child of a given parent. All children upto the
* child passed in by caller are ignored. If child is NULL, it considers all the
* children to find the first child which is compatible.
*
* @param parent The parent node under which to look.
* @param child The child node to start search from (exclusive). If NULL
* consider all children.
* @param compat The compatible string to find.
* @return The found node, or NULL.
*/
DeviceTreeNode *dt_find_next_compat_child(DeviceTreeNode *parent,
DeviceTreeNode *child,
const char *compat)
{
DeviceTreeNode *next;
int ignore = 0;
if (child)
ignore = 1;
list_for_each(next, parent->children, list_node) {
if (ignore) {
if (child == next)
ignore = 0;
continue;
}
if (dt_check_compat_match(next, compat))
return next;
}
return NULL;
}
/*
* Find a node with matching property value, in the subtree of a parent node.
*
* @param parent The parent node under which to look.
* @param name The property name to look for.
* @param data The property value to look for.
* @param size The property size.
*/
DeviceTreeNode *dt_find_prop_value(DeviceTreeNode *parent, const char *name,
void *data, size_t size)
{
DeviceTreeProperty *prop;
/* Check if parent itself has the required property value. */
list_for_each(prop, parent->properties, list_node) {
if (!strcmp(name, prop->prop.name)) {
size_t bytes = prop->prop.size;
void *prop_data = prop->prop.data;
if (size != bytes)
break;
if (!memcmp(data, prop_data, size))
return parent;
break;
}
}
DeviceTreeNode *child;
list_for_each(child, parent->children, list_node) {
DeviceTreeNode *found = dt_find_prop_value(child, name, data,
size);
if (found)
return found;
}
return NULL;
}
/*
* Write an arbitrary sized big-endian integer into a pointer.
*
* @param dest Pointer to the DT property data buffer to write.
* @param src The integer to write (in CPU endianess).
* @param length the length of the destination integer in bytes.
*/
void dt_write_int(u8 *dest, u64 src, size_t length)
{
while (length--) {
dest[length] = (u8)src;
src >>= 8;
}
}
/*
* Add an arbitrary property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param data The raw data blob to be stored in the property.
* @param size The size of data in bytes.
*/
void dt_add_bin_prop(DeviceTreeNode *node, char *name, void *data, size_t size)
{
DeviceTreeProperty *prop;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
prop->prop.data = data;
prop->prop.size = size;
return;
}
}
prop = alloc_prop();
list_insert_after(&prop->list_node, &node->properties);
prop->prop.name = name;
prop->prop.data = data;
prop->prop.size = size;
}
/*
* Find given string property in a node and return its content.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @return The found string, or NULL.
*/
const char *dt_find_string_prop(DeviceTreeNode *node, const char *name)
{
void *content;
size_t size;
dt_find_bin_prop(node, name, &content, &size);
return content;
}
/*
* Find given property in a node.
*
* @param node The device tree node to search.
* @param name The name of the property.
* @param data Pointer to return raw data blob in the property.
* @param size Pointer to return the size of data in bytes.
*/
void dt_find_bin_prop(DeviceTreeNode *node, const char *name, void **data,
size_t *size)
{
DeviceTreeProperty *prop;
*data = NULL;
*size = 0;
list_for_each(prop, node->properties, list_node) {
if (!strcmp(prop->prop.name, name)) {
*data = prop->prop.data;
*size = prop->prop.size;
return;
}
}
}
/*
* Add a string property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param str The zero-terminated string to be stored in the property.
*/
void dt_add_string_prop(DeviceTreeNode *node, char *name, char *str)
{
dt_add_bin_prop(node, name, str, strlen(str) + 1);
}
/*
* Add a 32-bit integer property to a node, or update it if it already exists.
*
* @param node The device tree node to add to.
* @param name The name of the new property.
* @param val The integer to be stored in the property.
*/
void dt_add_u32_prop(DeviceTreeNode *node, char *name, u32 val)
{
u32 *val_ptr = xmalloc(sizeof(val));
*val_ptr = htobel(val);
dt_add_bin_prop(node, name, val_ptr, sizeof(*val_ptr));
}
/*
* Add a 'reg' address list property to a node, or update it if it exists.
*
* @param node The device tree node to add to.
* @param addrs Array of address values to be stored in the property.
* @param sizes Array of corresponding size values to 'addrs'.
* @param count Number of values in 'addrs' and 'sizes' (must be equal).
* @param addr_cells Value of #address-cells property valid for this node.
* @param size_cells Value of #size-cells property valid for this node.
*/
void dt_add_reg_prop(DeviceTreeNode *node, u64 *addrs, u64 *sizes,
int count, u32 addr_cells, u32 size_cells)
{
int i;
size_t length = (addr_cells + size_cells) * sizeof(u32) * count;
u8 *data = xmalloc(length);
u8 *cur = data;
for (i = 0; i < count; i++) {
dt_write_int(cur, addrs[i], addr_cells * sizeof(u32));
cur += addr_cells * sizeof(u32);
dt_write_int(cur, sizes[i], size_cells * sizeof(u32));
cur += size_cells * sizeof(u32);
}
dt_add_bin_prop(node, "reg", data, length);
}
/*
* Fixups to apply to a kernel's device tree before booting it.
*/
ListNode device_tree_fixups;
int dt_apply_fixups(DeviceTree *tree)
{
DeviceTreeFixup *fixup;
list_for_each(fixup, device_tree_fixups, list_node) {
assert(fixup->fixup);
if (fixup->fixup(fixup, tree))
return 1;
}
return 0;
}
int dt_set_bin_prop_by_path(DeviceTree *tree, const char *path,
void *data, size_t data_size, int create)
{
char *path_copy, *prop_name;
DeviceTreeNode *dt_node;
path_copy = strdup(path);
if (!path_copy) {
printf("Failed to allocate a copy of path %s\n", path);
return 1;
}
prop_name = strrchr(path_copy, '/');
if (!prop_name) {
printf("Path %s does not include '/'\n", path);
free(path_copy);
return 1;
}
*prop_name++ = '\0'; /* Separate path from the property name. */
dt_node = dt_find_node_by_path(tree->root, path_copy, NULL,
NULL, create);
if (!dt_node) {
printf("Failed to %s %s in the device tree\n",
create ? "create" : "find", path_copy);
free(path_copy);
return 1;
}
dt_add_bin_prop(dt_node, prop_name, data, data_size);
return 0;
}
/*
* Prepare the /reserved-memory/ node.
*
* Technically, this can be called more than one time, to init and/or retrieve
* the node. But dt_add_u32_prop() may leak a bit of memory if you do.
*
* @tree: Device tree to add/retrieve from.
* @return: The /reserved-memory/ node (or NULL, if error).
*/
DeviceTreeNode *dt_init_reserved_memory_node(DeviceTree *tree)
{
DeviceTreeNode *reserved;
u32 addr = 0, size = 0;
reserved = dt_find_node_by_path(tree->root, "reserved-memory", &addr,
&size, 1);
if (!reserved)
return NULL;
// Binding doc says this should have the same #{address,size}-cells as
// the root.
dt_add_u32_prop(reserved, "#address-cells", addr);
dt_add_u32_prop(reserved, "#size-cells", size);
// Binding doc says this should be empty (i.e., 1:1 mapping from root).
dt_add_bin_prop(reserved, "ranges", NULL, 0);
return reserved;
}

44
src/lib/list.c Normal file
View File

@ -0,0 +1,44 @@
/*
* Copyright 2012 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "base/list.h"
void list_remove(ListNode *node)
{
if (node->prev)
node->prev->next = node->next;
if (node->next)
node->next->prev = node->prev;
}
void list_insert_after(ListNode *node, ListNode *after)
{
node->next = after->next;
node->prev = after;
after->next = node;
if (node->next)
node->next->prev = node;
}
void list_insert_before(ListNode *node, ListNode *before)
{
node->prev = before->prev;
node->next = before;
before->prev = node;
if (node->prev)
node->prev->next = node;
}