cbfs/vboot: remove firmware component support

The Chrome OS verified boot path supported multiple CBFS
instances in the boot media as well as stand-alone assets
sitting in each vboot RW slot. Remove the support for the
stand-alone assets and always use CBFS accesses as the
way to retrieve data.

This is implemented by adding a cbfs_locator object which
is queried for locating the current CBFS. Additionally, it
is also signalled prior to when a program is about to be
loaded by coreboot for the subsequent stage/payload. This
provides the same opportunity as previous for vboot to
hook in and perform its logic.

BUG=chromium:445938
BRANCH=None
TEST=Built and ran on glados.
CQ-DEPEND=CL:307121,CL:31691,CL:31690

Change-Id: I6a3a15feb6edd355d6ec252c36b6f7885b383099
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/12689
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This commit is contained in:
Aaron Durbin 2015-12-08 17:00:23 -06:00
parent bf3dbaf86d
commit 6d720f38e0
26 changed files with 206 additions and 335 deletions

View File

@ -14,7 +14,6 @@
*/
#include <boot_device.h>
#include <console/console.h>
#include <cbfs.h>
#include <endian.h>
#include <stdlib.h>
@ -30,7 +29,7 @@ const struct region_device *boot_device_ro(void)
return &boot_dev.rdev;
}
int cbfs_boot_region_properties(struct cbfs_props *props)
static int cbfs_master_header_props(struct cbfs_props *props)
{
struct cbfs_header header;
int32_t offset;
@ -63,7 +62,10 @@ int cbfs_boot_region_properties(struct cbfs_props *props)
props->size -= header.bootblocksize;
props->size = ALIGN_DOWN(props->size, 64);
printk(BIOS_DEBUG, "CBFS @ %zx size %zx\n", props->offset, props->size);
return 0;
}
const struct cbfs_locator cbfs_master_header_locator = {
.name = "Master Header Locator",
.locate = cbfs_master_header_props,
};

View File

@ -99,14 +99,20 @@ static inline size_t region_sz(const struct region *r)
return r->size;
}
static inline const struct region *region_device_region(
const struct region_device *rdev)
{
return &rdev->region;
}
static inline size_t region_device_sz(const struct region_device *rdev)
{
return region_sz(&rdev->region);
return region_sz(region_device_region(rdev));
}
static inline size_t region_device_offset(const struct region_device *rdev)
{
return region_offset(&rdev->region);
return region_offset(region_device_region(rdev));
}
/* Memory map entire region device. Same semantics as rdev_mmap() above. */

View File

@ -14,11 +14,11 @@
*/
#include <arch/early_variables.h>
#include <assets.h>
#include <console/console.h>
#include <ec/google/chromeec/ec.h>
#include <fsp/car.h>
#include <fsp/util.h>
#include <program_loading.h>
#include <soc/intel/common/util.h>
#include <timestamp.h>
@ -79,15 +79,17 @@ asmlinkage void *romstage_after_verstage(void)
/* Need to locate the current FSP_INFO_HEADER. The cache-as-ram
* is still enabled. We can directly access work buffer here. */
FSP_INFO_HEADER *fih;
struct asset fsp = ASSET_INIT(ASSET_REFCODE, "fsp.bin");
struct prog fsp = PROG_INIT(ASSET_REFCODE, "fsp.bin");
console_init();
if (asset_locate(&fsp)) {
if (prog_locate(&fsp)) {
fih = NULL;
printk(BIOS_ERR, "Unable to locate %s\n", asset_name(&fsp));
printk(BIOS_ERR, "Unable to locate %s\n", prog_name(&fsp));
} else
fih = find_fsp((uintptr_t)asset_mmap(&fsp));
/* This leaks a mapping which this code assumes is benign as
* the flash is memory mapped CPU's address space. */
fih = find_fsp((uintptr_t)rdev_mmap_full(prog_rdev(&fsp)));
set_fih_car(fih);

View File

@ -81,4 +81,18 @@ struct cbfs_props {
/* Return < 0 on error otherwise props are filled out accordingly. */
int cbfs_boot_region_properties(struct cbfs_props *props);
/* Allow external logic to take action prior to locating a program
* (stage or payload). */
void cbfs_prepare_program_locate(void);
/* Object used to identify location of current cbfs to use for cbfs_boot_*
* operations. It's used by cbfs_boot_region_properties() and
* cbfs_prepare_program_locate(). */
struct cbfs_locator {
const char *name;
void (*prepare)(void);
/* Returns 0 on successful fill of cbfs properties. */
int (*locate)(struct cbfs_props *props);
};
#endif

View File

@ -106,10 +106,7 @@ static inline void prog_set_entry(struct prog *prog, void *e, void *arg)
}
/* Locate the identified program to run. Return 0 on success. < 0 on error. */
static inline int prog_locate(struct prog *prog)
{
return asset_locate(&prog->asset);
}
int prog_locate(struct prog *prog);
/* Run the program described by prog. */
void prog_run(struct prog *prog);

View File

@ -23,7 +23,6 @@ bootblock-y += assets.c
bootblock-y += prog_loaders.c
bootblock-y += prog_ops.c
bootblock-y += cbfs.c
bootblock-y += cbfs_boot_props.c
bootblock-$(CONFIG_COMMON_CBFS_SPI_WRAPPER) += cbfs_spi.c
bootblock-$(CONFIG_GENERIC_GPIO_LIB) += gpio.c
bootblock-y += libgcc.c
@ -47,7 +46,6 @@ verstage-y += delay.c
verstage-y += cbfs.c
verstage-y += halt.c
verstage-y += fmap.c
verstage-y += cbfs_boot_props.c
verstage-y += libgcc.c
verstage-y += memcmp.c
verstage-$(CONFIG_COLLECT_TIMESTAMPS) += timestamp.c
@ -76,7 +74,6 @@ $(foreach arch,$(ARCH_SUPPORTED),\
romstage-y += fmap.c
romstage-$(CONFIG_I2C_TPM) += delay.c
romstage-y += cbfs.c
romstage-y += cbfs_boot_props.c
romstage-$(CONFIG_COMMON_CBFS_SPI_WRAPPER) += cbfs_spi.c
romstage-$(CONFIG_COMPRESS_RAMSTAGE) += lzma.c lzmadecode.c
romstage-y += libgcc.c
@ -117,7 +114,6 @@ ramstage-y += delay.c
ramstage-y += fallback_boot.c
ramstage-y += compute_ip_checksum.c
ramstage-y += cbfs.c
ramstage-y += cbfs_boot_props.c
ramstage-$(CONFIG_COMMON_CBFS_SPI_WRAPPER) += cbfs_spi.c
ramstage-y += lzma.c lzmadecode.c
ramstage-y += stack.c

View File

@ -37,8 +37,6 @@ int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type)
const struct region_device *boot_dev;
struct cbfs_props props;
boot_device_init();
if (cbfs_boot_region_properties(&props))
return -1;
@ -255,3 +253,97 @@ out:
return 0;
}
static int cbfs_master_header_props(struct cbfs_props *props)
{
struct cbfs_header header;
const struct region_device *bdev;
int32_t rel_offset;
size_t offset;
bdev = boot_device_ro();
if (bdev == NULL)
return -1;
/* Find location of header using signed 32-bit offset from
* end of CBFS region. */
offset = CONFIG_CBFS_SIZE - sizeof(int32_t);
if (rdev_readat(bdev, &rel_offset, offset, sizeof(int32_t)) < 0)
return -1;
offset = CONFIG_CBFS_SIZE + rel_offset;
if (rdev_readat(bdev, &header, offset, sizeof(header)) < 0)
return -1;
header.magic = ntohl(header.magic);
header.romsize = ntohl(header.romsize);
header.offset = ntohl(header.offset);
if (header.magic != CBFS_HEADER_MAGIC)
return -1;
props->offset = header.offset;
props->size = header.romsize;
props->size -= props->offset;
printk(BIOS_SPEW, "CBFS @ %zx size %zx\n", props->offset, props->size);
return 0;
}
/* This struct is marked as weak to allow a particular platform to
* override the master header logic. This implementation should work for most
* devices. */
const struct cbfs_locator __attribute__((weak)) cbfs_master_header_locator = {
.name = "Master Header Locator",
.locate = cbfs_master_header_props,
};
extern const struct cbfs_locator vboot_locator;
static const struct cbfs_locator *locators[] = {
#if CONFIG_VBOOT_VERIFY_FIRMWARE
&vboot_locator,
#endif
&cbfs_master_header_locator,
};
int cbfs_boot_region_properties(struct cbfs_props *props)
{
int i;
boot_device_init();
for (i = 0; i < ARRAY_SIZE(locators); i++) {
const struct cbfs_locator *ops;
ops = locators[i];
if (ops->locate == NULL)
continue;
if (ops->locate(props))
continue;
LOG("'%s' located CBFS at [%zx:%zx)\n",
ops->name, props->offset, props->offset + props->size);
return 0;
}
return -1;
}
void cbfs_prepare_program_locate(void)
{
int i;
boot_device_init();
for (i = 0; i < ARRAY_SIZE(locators); i++) {
if (locators[i]->prepare == NULL)
continue;
locators[i]->prepare();
}
}

View File

@ -1,60 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2015 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <boot_device.h>
#include <cbfs.h>
#include <console/console.h>
#include <endian.h>
#include <commonlib/region.h>
/* This function is marked as weak to allow a particular platform to
* override the logic. This implementation should work for most devices. */
int __attribute__((weak)) cbfs_boot_region_properties(struct cbfs_props *props)
{
struct cbfs_header header;
const struct region_device *bdev;
int32_t rel_offset;
size_t offset;
bdev = boot_device_ro();
if (bdev == NULL)
return -1;
/* Find location of header using signed 32-bit offset from
* end of CBFS region. */
offset = CONFIG_CBFS_SIZE - sizeof(int32_t);
if (rdev_readat(bdev, &rel_offset, offset, sizeof(int32_t)) < 0)
return -1;
offset = CONFIG_CBFS_SIZE + rel_offset;
if (rdev_readat(bdev, &header, offset, sizeof(header)) < 0)
return -1;
header.magic = ntohl(header.magic);
header.romsize = ntohl(header.romsize);
header.offset = ntohl(header.offset);
if (header.magic != CBFS_HEADER_MAGIC)
return -1;
props->offset = header.offset;
props->size = header.romsize;
props->size -= props->offset;
printk(BIOS_SPEW, "CBFS @ %zx size %zx\n", props->offset, props->size);
return 0;
}

View File

@ -33,6 +33,20 @@
/* Only can represent up to 1 byte less than size_t. */
const struct mem_region_device addrspace_32bit = MEM_REGION_DEV_INIT(0, ~0UL);
int prog_locate(struct prog *prog)
{
struct cbfsf file;
cbfs_prepare_program_locate();
if (cbfs_boot_locate(&file, prog_name(prog), NULL))
return -1;
cbfs_file_data(prog_rdev(prog), &file);
return 0;
}
void run_romstage(void)
{
struct prog romstage =

View File

@ -21,14 +21,6 @@ config CHROMEOS
select EC_SOFTWARE_SYNC
select VIRTUAL_DEV_SWITCH
config VBOOT_RAMSTAGE_INDEX
hex
default 0x2
config VBOOT_REFCODE_INDEX
hex
default 0x3
config MAINBOARD_DIR
string
default google/auron

View File

@ -55,8 +55,4 @@ config TPM_PIRQ
hex
default 0x18 # GPP_E0_IRQ
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
endif

View File

@ -76,13 +76,6 @@ config BOOT_MEDIA_SPI_CHIP_SELECT
help
Which chip select to use for boot media.
# For foster, we are using vboot2. Thus, index for stages:
# VBOOT_ROMSTAGE_INDEX -> Use default value of 0x2
# VBOOT_RAMSTAGE_INDEX -> Use 0x3
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
config DRIVER_TPM_I2C_BUS
hex
default 0x2

View File

@ -55,8 +55,4 @@ config TPM_PIRQ
hex
default 0x18 # GPP_E0_IRQ
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
endif

View File

@ -50,8 +50,4 @@ config MAX_CPUS
int
default 8
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
endif

View File

@ -83,17 +83,6 @@ config BOOT_MEDIA_SPI_CHIP_SELECT
help
Which chip select to use for boot media.
# For smaug, we are using vboot2. Thus, index for stages:
# VBOOT_ROMSTAGE_INDEX -> Use default value of 0x2
# VBOOT_RAMSTAGE_INDEX -> Use 0x3
config VBOOT_BL31_INDEX
hex
default 0x4
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
config DRIVER_TPM_I2C_BUS
hex
default 0x2

View File

@ -50,8 +50,4 @@ config MAX_CPUS
int
default 8
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
endif

View File

@ -40,8 +40,4 @@ config MAX_CPUS
int
default 8
config VBOOT_RAMSTAGE_INDEX
hex
default 0x3
endif

View File

@ -47,12 +47,6 @@ config MAINBOARD_VENDOR
string
default "Intel"
config VBOOT_RAMSTAGE_INDEX
hex
default 0x2
config VBOOT_REFCODE_INDEX
hex
default 0x3
if !GOP_SUPPORT
config VGA_BIOS_FILE
string

View File

@ -28,6 +28,7 @@ config CHROMEOS
select ELOG if SPI_FLASH
select COLLECT_TIMESTAMPS
select VBOOT_VERIFY_FIRMWARE
select MULTIPLE_CBFS_INSTANCES
help
Enable ChromeOS specific features like the GPIO sub table in
the coreboot table. NOTE: Enabling this option on an unsupported

View File

@ -68,57 +68,6 @@ config CHIPSET_PROVIDES_VERSTAGE_MAIN_SYMBOL
help
The chipset code provides their own main() entry point.
# These VBOOT_X_INDEX are the position of X in FW_MAIN_A/B region. The index
# table is created by cros_bundle_firmware at build time based on the positions
# of the blobs listed in fmap.dts and stored at the top of FW_MAIN_A/B region.
# Unfortunately, there is no programmatical link between the blob list and the
# index number here.
config VBOOT_ROMSTAGE_INDEX
hex "Romstage component index"
default 2
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the romstage component in the verified
firmware block.
config VBOOT_RAMSTAGE_INDEX
hex "Ramstage component index"
default 1
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the ramstage component in the verified
firmware block.
config VBOOT_REFCODE_INDEX
hex "Reference code firmware index"
default 1
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the reference code component in the verified
firmware block.
config VBOOT_BOOT_LOADER_INDEX
hex "Bootloader component index"
default 0
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the bootloader component in the verified
firmware block.
config VBOOT_SECURE_OS_INDEX
hex "ARM64 Secure OS index"
default 0x5
depends on VBOOT_VERIFY_FIRMWARE
help
Secure OS software component used on ARM64 machines.
config VBOOT_BL31_INDEX
hex "ARM64 BL31 index"
default 0x4
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the BL31 program on ARM64 machines.
config VBOOT_DYNAMIC_WORK_BUFFER
bool "Vboot's work buffer is dynamically allocated."
default y if ARCH_ROMSTAGE_X86_32 && !SEPARATE_VERSTAGE

View File

@ -115,21 +115,27 @@ struct vb2_shared_data *vb2_get_shared_data(void)
return (void *)((uintptr_t)wd + wd->buffer_offset);
}
int vb2_get_selected_region(struct region_device *rdev)
int vb2_get_selected_region(struct region *region)
{
const struct selected_region *reg = vb2_selected_region();
struct region region = {
.offset = reg->offset,
.size = reg->size,
};
return vboot_region_device(&region, rdev);
if (reg == NULL)
return -1;
if (reg->offset == 0 && reg->size == 0)
return -1;
region->offset = reg->offset;
region->size = reg->size;
return 0;
}
void vb2_set_selected_region(struct region_device *rdev)
void vb2_set_selected_region(const struct region *region)
{
struct selected_region *reg = vb2_selected_region();
reg->offset = region_device_offset(rdev);
reg->size = region_device_sz(rdev);
reg->offset = region_offset(region);
reg->size = region_sz(region);
}
int vboot_is_slot_selected(void)

View File

@ -22,16 +22,13 @@ struct vb2_context;
struct vb2_shared_data;
void vboot_fill_handoff(void);
void *vboot_load_stage(int stage_index,
struct region *fw_main,
struct vboot_components *fw_info);
void vb2_init_work_context(struct vb2_context *ctx);
struct vb2_shared_data *vb2_get_shared_data(void);
/* Returns 0 on success. < 0 on failure. */
int vb2_get_selected_region(struct region_device *rdev);
void vb2_set_selected_region(struct region_device *rdev);
int vb2_get_selected_region(struct region *region);
void vb2_set_selected_region(const struct region *region);
int vboot_is_slot_selected(void);
int vboot_is_readonly_path(void);

View File

@ -120,12 +120,8 @@ static void fill_vboot_handoff(struct vboot_handoff *vboot_handoff,
void vboot_fill_handoff(void)
{
int i;
struct vboot_handoff *vh;
struct vb2_shared_data *sd;
struct region_device fw_main;
struct vboot_components *fw_info;
size_t metadata_sz;
sd = vb2_get_shared_data();
sd->workbuf_hash_offset = 0;
@ -142,33 +138,6 @@ void vboot_fill_handoff(void)
/* needed until we finish transtion to vboot2 for kernel verification */
fill_vboot_handoff(vh, sd);
/* Nothing left to do in readonly path. */
if (vboot_is_readonly_path())
return;
if (IS_ENABLED(CONFIG_MULTIPLE_CBFS_INSTANCES))
return;
if (vb2_get_selected_region(&fw_main))
die("No component metadata.\n");
metadata_sz = sizeof(*fw_info);
metadata_sz += MAX_PARSED_FW_COMPONENTS * sizeof(fw_info->entries[0]);
fw_info = rdev_mmap(&fw_main, 0, metadata_sz);
if (fw_info == NULL)
die("failed to locate firmware components\n");
/* these offset & size are used to load a rw boot loader */
for (i = 0; i < fw_info->num_components; i++) {
vh->components[i].address = region_device_offset(&fw_main);
vh->components[i].address += fw_info->entries[i].offset;
vh->components[i].size = fw_info->entries[i].size;
}
rdev_munmap(&fw_main, fw_info);
}
/*

View File

@ -13,7 +13,7 @@
* GNU General Public License for more details.
*/
#include <assets.h>
#include <arch/early_variables.h>
#include <cbfs.h>
#include <cbmem.h>
#include <console/console.h>
@ -59,7 +59,34 @@ static int verstage_should_load(void)
return 0;
}
static int vboot_active(struct asset *asset)
static int vboot_executed CAR_GLOBAL;
static int vboot_logic_executed(void)
{
/* If this stage is supposed to run the vboot logic ensure it has been
* executed. */
if (verification_should_run() && car_get_var(vboot_executed))
return 1;
/* If this stage is supposed to load verstage and verstage is returning
* back to the calling stage check that it has been executed. */
if (verstage_should_load() && IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
if (car_get_var(vboot_executed))
return 1;
/* Handle all other stages post vboot execution. */
if (!ENV_BOOTBLOCK) {
if (IS_ENABLED(CONFIG_VBOOT_STARTS_IN_BOOTBLOCK))
return 1;
if (IS_ENABLED(CONFIG_VBOOT_STARTS_IN_ROMSTAGE) &&
!ENV_ROMSTAGE)
return 1;
}
return 0;
}
static void vboot_prepare(void)
{
int run_verification;
@ -67,6 +94,7 @@ static int vboot_active(struct asset *asset)
if (run_verification) {
verstage_main();
car_set_var(vboot_executed, 1);
} else if (verstage_should_load()) {
struct cbfsf file;
struct prog verstage =
@ -91,7 +119,9 @@ static int vboot_active(struct asset *asset)
* runtime, but this provides a hint to the compiler for dead
* code elimination below. */
if (!IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
return 0;
return;
car_set_var(vboot_executed, 1);
}
/*
@ -106,103 +136,27 @@ static int vboot_active(struct asset *asset)
vb2_store_selected_region();
vboot_fill_handoff();
}
return vboot_is_slot_selected();
}
static int vboot_locate_by_components(const struct region_device *fw_main,
struct asset *asset)
static int vboot_locate(struct cbfs_props *props)
{
struct vboot_components *fw_info;
size_t metadata_sz;
size_t offset;
size_t size;
struct region_device *fw = asset_rdev(asset);
int fw_index = 0;
struct region selected_region;
if (asset_type(asset) == ASSET_ROMSTAGE)
fw_index = CONFIG_VBOOT_ROMSTAGE_INDEX;
else if (asset_type(asset) == ASSET_RAMSTAGE)
fw_index = CONFIG_VBOOT_RAMSTAGE_INDEX;
else if (asset_type(asset) == ASSET_PAYLOAD)
fw_index = CONFIG_VBOOT_BOOT_LOADER_INDEX;
else if (asset_type(asset) == ASSET_REFCODE)
fw_index = CONFIG_VBOOT_REFCODE_INDEX;
else if (asset_type(asset) == ASSET_BL31)
fw_index = CONFIG_VBOOT_BL31_INDEX;
else
die("Invalid program type for vboot.");
metadata_sz = sizeof(*fw_info);
metadata_sz += MAX_PARSED_FW_COMPONENTS * sizeof(fw_info->entries[0]);
fw_info = rdev_mmap(fw_main, 0, metadata_sz);
if (fw_info == NULL) {
printk(BIOS_INFO, "No component metadata.\n");
/* Don't honor vboot results until the vboot logic has run. */
if (!vboot_logic_executed())
return -1;
}
if (fw_index >= fw_info->num_components) {
printk(BIOS_INFO, "invalid index: %d\n", fw_index);
rdev_munmap(fw_main, fw_info);
if (vb2_get_selected_region(&selected_region))
return -1;
}
offset = fw_info->entries[fw_index].offset;
size = fw_info->entries[fw_index].size;
rdev_munmap(fw_main, fw_info);
if (rdev_chain(fw, fw_main, offset, size)) {
printk(BIOS_INFO, "invalid offset or size\n");
return -1;
}
props->offset = region_offset(&selected_region);
props->size = region_sz(&selected_region);
return 0;
}
static int vboot_locate_by_multi_cbfs(const struct region_device *fw_main,
struct asset *asset)
{
struct cbfsf file;
if (cbfs_locate(&file, fw_main, asset_name(asset), NULL))
return -1;
cbfs_file_data(asset_rdev(asset), &file);
return 0;
}
static int vboot_asset_locate(const struct region_device *fw_main,
struct asset *asset)
{
if (IS_ENABLED(CONFIG_MULTIPLE_CBFS_INSTANCES))
return vboot_locate_by_multi_cbfs(fw_main, asset);
else
return vboot_locate_by_components(fw_main, asset);
}
/* This function is only called when vboot_active() returns 1. That
* means we are taking vboot paths. */
static int vboot_locate(struct asset *asset)
{
struct region_device fw_main;
/* Code size optimization. We'd never actually get called under the
* followin cirumstances because verstage was loaded and ran -- never
* returning. */
if (verstage_should_load() && !IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
return 0;
if (vb2_get_selected_region(&fw_main))
die("failed to reference selected region\n");
return vboot_asset_locate(&fw_main, asset);
}
const struct asset_provider vboot_provider = {
const struct cbfs_locator vboot_locator = {
.name = "VBOOT",
.is_active = vboot_active,
.prepare = vboot_prepare,
.locate = vboot_locate,
};

View File

@ -323,6 +323,6 @@ void verstage_main(void)
}
printk(BIOS_INFO, "Slot %c is selected\n", is_slot_a(&ctx) ? 'A' : 'B');
vb2_set_selected_region(&fw_main);
vb2_set_selected_region(region_device_region(&fw_main));
timestamp_add_now(TS_END_VBOOT);
}

View File

@ -21,30 +21,14 @@
#include "chromeos.h"
#include "vboot_common.h"
/*
* The vboot handoff structure keeps track of a maximum number of firmware
* components in the verfieid RW area of flash. This is not a restriction on
* the number of components packed in a firmware block. It's only the maximum
* number of parsed firmware components (address and size) included in the
* handoff structure.
*/
#define MAX_PARSED_FW_COMPONENTS 6
struct firmware_component {
uint32_t address;
uint32_t size;
} __attribute__((packed));
/*
* The vboot_handoff structure contains the data to be consumed by downstream
* firmware after firmware selection has been completed. Namely it provides
* vboot shared data as well as the flags from VbInit. As noted above a finite
* number of components are parsed from the verfieid firmare region.
* vboot shared data as well as the flags from VbInit.
*/
struct vboot_handoff {
VbInitParams init_params;
uint32_t selected_firmware;
struct firmware_component components[MAX_PARSED_FW_COMPONENTS];
char shared_data[VB_SHARED_DATA_MIN_SIZE];
} __attribute__((packed));