cbfs/vboot: remove firmware component support
The Chrome OS verified boot path supported multiple CBFS instances in the boot media as well as stand-alone assets sitting in each vboot RW slot. Remove the support for the stand-alone assets and always use CBFS accesses as the way to retrieve data. This is implemented by adding a cbfs_locator object which is queried for locating the current CBFS. Additionally, it is also signalled prior to when a program is about to be loaded by coreboot for the subsequent stage/payload. This provides the same opportunity as previous for vboot to hook in and perform its logic. BUG=chromium:445938 BRANCH=None TEST=Built and ran on glados. CQ-DEPEND=CL:307121,CL:31691,CL:31690 Change-Id: I6a3a15feb6edd355d6ec252c36b6f7885b383099 Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: https://review.coreboot.org/12689 Tested-by: build bot (Jenkins) Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com> Reviewed-by: Patrick Georgi <pgeorgi@google.com> Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This commit is contained in:
parent
bf3dbaf86d
commit
6d720f38e0
|
@ -14,7 +14,6 @@
|
|||
*/
|
||||
|
||||
#include <boot_device.h>
|
||||
#include <console/console.h>
|
||||
#include <cbfs.h>
|
||||
#include <endian.h>
|
||||
#include <stdlib.h>
|
||||
|
@ -30,7 +29,7 @@ const struct region_device *boot_device_ro(void)
|
|||
return &boot_dev.rdev;
|
||||
}
|
||||
|
||||
int cbfs_boot_region_properties(struct cbfs_props *props)
|
||||
static int cbfs_master_header_props(struct cbfs_props *props)
|
||||
{
|
||||
struct cbfs_header header;
|
||||
int32_t offset;
|
||||
|
@ -63,7 +62,10 @@ int cbfs_boot_region_properties(struct cbfs_props *props)
|
|||
props->size -= header.bootblocksize;
|
||||
props->size = ALIGN_DOWN(props->size, 64);
|
||||
|
||||
printk(BIOS_DEBUG, "CBFS @ %zx size %zx\n", props->offset, props->size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
const struct cbfs_locator cbfs_master_header_locator = {
|
||||
.name = "Master Header Locator",
|
||||
.locate = cbfs_master_header_props,
|
||||
};
|
||||
|
|
|
@ -99,14 +99,20 @@ static inline size_t region_sz(const struct region *r)
|
|||
return r->size;
|
||||
}
|
||||
|
||||
static inline const struct region *region_device_region(
|
||||
const struct region_device *rdev)
|
||||
{
|
||||
return &rdev->region;
|
||||
}
|
||||
|
||||
static inline size_t region_device_sz(const struct region_device *rdev)
|
||||
{
|
||||
return region_sz(&rdev->region);
|
||||
return region_sz(region_device_region(rdev));
|
||||
}
|
||||
|
||||
static inline size_t region_device_offset(const struct region_device *rdev)
|
||||
{
|
||||
return region_offset(&rdev->region);
|
||||
return region_offset(region_device_region(rdev));
|
||||
}
|
||||
|
||||
/* Memory map entire region device. Same semantics as rdev_mmap() above. */
|
||||
|
|
|
@ -14,11 +14,11 @@
|
|||
*/
|
||||
|
||||
#include <arch/early_variables.h>
|
||||
#include <assets.h>
|
||||
#include <console/console.h>
|
||||
#include <ec/google/chromeec/ec.h>
|
||||
#include <fsp/car.h>
|
||||
#include <fsp/util.h>
|
||||
#include <program_loading.h>
|
||||
#include <soc/intel/common/util.h>
|
||||
#include <timestamp.h>
|
||||
|
||||
|
@ -79,15 +79,17 @@ asmlinkage void *romstage_after_verstage(void)
|
|||
/* Need to locate the current FSP_INFO_HEADER. The cache-as-ram
|
||||
* is still enabled. We can directly access work buffer here. */
|
||||
FSP_INFO_HEADER *fih;
|
||||
struct asset fsp = ASSET_INIT(ASSET_REFCODE, "fsp.bin");
|
||||
struct prog fsp = PROG_INIT(ASSET_REFCODE, "fsp.bin");
|
||||
|
||||
console_init();
|
||||
|
||||
if (asset_locate(&fsp)) {
|
||||
if (prog_locate(&fsp)) {
|
||||
fih = NULL;
|
||||
printk(BIOS_ERR, "Unable to locate %s\n", asset_name(&fsp));
|
||||
printk(BIOS_ERR, "Unable to locate %s\n", prog_name(&fsp));
|
||||
} else
|
||||
fih = find_fsp((uintptr_t)asset_mmap(&fsp));
|
||||
/* This leaks a mapping which this code assumes is benign as
|
||||
* the flash is memory mapped CPU's address space. */
|
||||
fih = find_fsp((uintptr_t)rdev_mmap_full(prog_rdev(&fsp)));
|
||||
|
||||
set_fih_car(fih);
|
||||
|
||||
|
|
|
@ -81,4 +81,18 @@ struct cbfs_props {
|
|||
/* Return < 0 on error otherwise props are filled out accordingly. */
|
||||
int cbfs_boot_region_properties(struct cbfs_props *props);
|
||||
|
||||
/* Allow external logic to take action prior to locating a program
|
||||
* (stage or payload). */
|
||||
void cbfs_prepare_program_locate(void);
|
||||
|
||||
/* Object used to identify location of current cbfs to use for cbfs_boot_*
|
||||
* operations. It's used by cbfs_boot_region_properties() and
|
||||
* cbfs_prepare_program_locate(). */
|
||||
struct cbfs_locator {
|
||||
const char *name;
|
||||
void (*prepare)(void);
|
||||
/* Returns 0 on successful fill of cbfs properties. */
|
||||
int (*locate)(struct cbfs_props *props);
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -106,10 +106,7 @@ static inline void prog_set_entry(struct prog *prog, void *e, void *arg)
|
|||
}
|
||||
|
||||
/* Locate the identified program to run. Return 0 on success. < 0 on error. */
|
||||
static inline int prog_locate(struct prog *prog)
|
||||
{
|
||||
return asset_locate(&prog->asset);
|
||||
}
|
||||
int prog_locate(struct prog *prog);
|
||||
|
||||
/* Run the program described by prog. */
|
||||
void prog_run(struct prog *prog);
|
||||
|
|
|
@ -23,7 +23,6 @@ bootblock-y += assets.c
|
|||
bootblock-y += prog_loaders.c
|
||||
bootblock-y += prog_ops.c
|
||||
bootblock-y += cbfs.c
|
||||
bootblock-y += cbfs_boot_props.c
|
||||
bootblock-$(CONFIG_COMMON_CBFS_SPI_WRAPPER) += cbfs_spi.c
|
||||
bootblock-$(CONFIG_GENERIC_GPIO_LIB) += gpio.c
|
||||
bootblock-y += libgcc.c
|
||||
|
@ -47,7 +46,6 @@ verstage-y += delay.c
|
|||
verstage-y += cbfs.c
|
||||
verstage-y += halt.c
|
||||
verstage-y += fmap.c
|
||||
verstage-y += cbfs_boot_props.c
|
||||
verstage-y += libgcc.c
|
||||
verstage-y += memcmp.c
|
||||
verstage-$(CONFIG_COLLECT_TIMESTAMPS) += timestamp.c
|
||||
|
@ -76,7 +74,6 @@ $(foreach arch,$(ARCH_SUPPORTED),\
|
|||
romstage-y += fmap.c
|
||||
romstage-$(CONFIG_I2C_TPM) += delay.c
|
||||
romstage-y += cbfs.c
|
||||
romstage-y += cbfs_boot_props.c
|
||||
romstage-$(CONFIG_COMMON_CBFS_SPI_WRAPPER) += cbfs_spi.c
|
||||
romstage-$(CONFIG_COMPRESS_RAMSTAGE) += lzma.c lzmadecode.c
|
||||
romstage-y += libgcc.c
|
||||
|
@ -117,7 +114,6 @@ ramstage-y += delay.c
|
|||
ramstage-y += fallback_boot.c
|
||||
ramstage-y += compute_ip_checksum.c
|
||||
ramstage-y += cbfs.c
|
||||
ramstage-y += cbfs_boot_props.c
|
||||
ramstage-$(CONFIG_COMMON_CBFS_SPI_WRAPPER) += cbfs_spi.c
|
||||
ramstage-y += lzma.c lzmadecode.c
|
||||
ramstage-y += stack.c
|
||||
|
|
|
@ -37,8 +37,6 @@ int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type)
|
|||
const struct region_device *boot_dev;
|
||||
struct cbfs_props props;
|
||||
|
||||
boot_device_init();
|
||||
|
||||
if (cbfs_boot_region_properties(&props))
|
||||
return -1;
|
||||
|
||||
|
@ -255,3 +253,97 @@ out:
|
|||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cbfs_master_header_props(struct cbfs_props *props)
|
||||
{
|
||||
struct cbfs_header header;
|
||||
const struct region_device *bdev;
|
||||
int32_t rel_offset;
|
||||
size_t offset;
|
||||
|
||||
bdev = boot_device_ro();
|
||||
|
||||
if (bdev == NULL)
|
||||
return -1;
|
||||
|
||||
/* Find location of header using signed 32-bit offset from
|
||||
* end of CBFS region. */
|
||||
offset = CONFIG_CBFS_SIZE - sizeof(int32_t);
|
||||
if (rdev_readat(bdev, &rel_offset, offset, sizeof(int32_t)) < 0)
|
||||
return -1;
|
||||
|
||||
offset = CONFIG_CBFS_SIZE + rel_offset;
|
||||
if (rdev_readat(bdev, &header, offset, sizeof(header)) < 0)
|
||||
return -1;
|
||||
|
||||
header.magic = ntohl(header.magic);
|
||||
header.romsize = ntohl(header.romsize);
|
||||
header.offset = ntohl(header.offset);
|
||||
|
||||
if (header.magic != CBFS_HEADER_MAGIC)
|
||||
return -1;
|
||||
|
||||
props->offset = header.offset;
|
||||
props->size = header.romsize;
|
||||
props->size -= props->offset;
|
||||
|
||||
printk(BIOS_SPEW, "CBFS @ %zx size %zx\n", props->offset, props->size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This struct is marked as weak to allow a particular platform to
|
||||
* override the master header logic. This implementation should work for most
|
||||
* devices. */
|
||||
const struct cbfs_locator __attribute__((weak)) cbfs_master_header_locator = {
|
||||
.name = "Master Header Locator",
|
||||
.locate = cbfs_master_header_props,
|
||||
};
|
||||
|
||||
extern const struct cbfs_locator vboot_locator;
|
||||
|
||||
static const struct cbfs_locator *locators[] = {
|
||||
#if CONFIG_VBOOT_VERIFY_FIRMWARE
|
||||
&vboot_locator,
|
||||
#endif
|
||||
&cbfs_master_header_locator,
|
||||
};
|
||||
|
||||
int cbfs_boot_region_properties(struct cbfs_props *props)
|
||||
{
|
||||
int i;
|
||||
|
||||
boot_device_init();
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(locators); i++) {
|
||||
const struct cbfs_locator *ops;
|
||||
|
||||
ops = locators[i];
|
||||
|
||||
if (ops->locate == NULL)
|
||||
continue;
|
||||
|
||||
if (ops->locate(props))
|
||||
continue;
|
||||
|
||||
LOG("'%s' located CBFS at [%zx:%zx)\n",
|
||||
ops->name, props->offset, props->offset + props->size);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
void cbfs_prepare_program_locate(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
boot_device_init();
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(locators); i++) {
|
||||
if (locators[i]->prepare == NULL)
|
||||
continue;
|
||||
locators[i]->prepare();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,60 +0,0 @@
|
|||
/*
|
||||
* This file is part of the coreboot project.
|
||||
*
|
||||
* Copyright 2015 Google Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; version 2 of the License.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <boot_device.h>
|
||||
#include <cbfs.h>
|
||||
#include <console/console.h>
|
||||
#include <endian.h>
|
||||
#include <commonlib/region.h>
|
||||
|
||||
/* This function is marked as weak to allow a particular platform to
|
||||
* override the logic. This implementation should work for most devices. */
|
||||
int __attribute__((weak)) cbfs_boot_region_properties(struct cbfs_props *props)
|
||||
{
|
||||
struct cbfs_header header;
|
||||
const struct region_device *bdev;
|
||||
int32_t rel_offset;
|
||||
size_t offset;
|
||||
|
||||
bdev = boot_device_ro();
|
||||
|
||||
if (bdev == NULL)
|
||||
return -1;
|
||||
|
||||
/* Find location of header using signed 32-bit offset from
|
||||
* end of CBFS region. */
|
||||
offset = CONFIG_CBFS_SIZE - sizeof(int32_t);
|
||||
if (rdev_readat(bdev, &rel_offset, offset, sizeof(int32_t)) < 0)
|
||||
return -1;
|
||||
|
||||
offset = CONFIG_CBFS_SIZE + rel_offset;
|
||||
if (rdev_readat(bdev, &header, offset, sizeof(header)) < 0)
|
||||
return -1;
|
||||
|
||||
header.magic = ntohl(header.magic);
|
||||
header.romsize = ntohl(header.romsize);
|
||||
header.offset = ntohl(header.offset);
|
||||
|
||||
if (header.magic != CBFS_HEADER_MAGIC)
|
||||
return -1;
|
||||
|
||||
props->offset = header.offset;
|
||||
props->size = header.romsize;
|
||||
props->size -= props->offset;
|
||||
|
||||
printk(BIOS_SPEW, "CBFS @ %zx size %zx\n", props->offset, props->size);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -33,6 +33,20 @@
|
|||
/* Only can represent up to 1 byte less than size_t. */
|
||||
const struct mem_region_device addrspace_32bit = MEM_REGION_DEV_INIT(0, ~0UL);
|
||||
|
||||
int prog_locate(struct prog *prog)
|
||||
{
|
||||
struct cbfsf file;
|
||||
|
||||
cbfs_prepare_program_locate();
|
||||
|
||||
if (cbfs_boot_locate(&file, prog_name(prog), NULL))
|
||||
return -1;
|
||||
|
||||
cbfs_file_data(prog_rdev(prog), &file);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void run_romstage(void)
|
||||
{
|
||||
struct prog romstage =
|
||||
|
|
|
@ -21,14 +21,6 @@ config CHROMEOS
|
|||
select EC_SOFTWARE_SYNC
|
||||
select VIRTUAL_DEV_SWITCH
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x2
|
||||
|
||||
config VBOOT_REFCODE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
config MAINBOARD_DIR
|
||||
string
|
||||
default google/auron
|
||||
|
|
|
@ -55,8 +55,4 @@ config TPM_PIRQ
|
|||
hex
|
||||
default 0x18 # GPP_E0_IRQ
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
endif
|
||||
|
|
|
@ -76,13 +76,6 @@ config BOOT_MEDIA_SPI_CHIP_SELECT
|
|||
help
|
||||
Which chip select to use for boot media.
|
||||
|
||||
# For foster, we are using vboot2. Thus, index for stages:
|
||||
# VBOOT_ROMSTAGE_INDEX -> Use default value of 0x2
|
||||
# VBOOT_RAMSTAGE_INDEX -> Use 0x3
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
config DRIVER_TPM_I2C_BUS
|
||||
hex
|
||||
default 0x2
|
||||
|
|
|
@ -55,8 +55,4 @@ config TPM_PIRQ
|
|||
hex
|
||||
default 0x18 # GPP_E0_IRQ
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
endif
|
||||
|
|
|
@ -50,8 +50,4 @@ config MAX_CPUS
|
|||
int
|
||||
default 8
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
endif
|
||||
|
|
|
@ -83,17 +83,6 @@ config BOOT_MEDIA_SPI_CHIP_SELECT
|
|||
help
|
||||
Which chip select to use for boot media.
|
||||
|
||||
# For smaug, we are using vboot2. Thus, index for stages:
|
||||
# VBOOT_ROMSTAGE_INDEX -> Use default value of 0x2
|
||||
# VBOOT_RAMSTAGE_INDEX -> Use 0x3
|
||||
config VBOOT_BL31_INDEX
|
||||
hex
|
||||
default 0x4
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
config DRIVER_TPM_I2C_BUS
|
||||
hex
|
||||
default 0x2
|
||||
|
|
|
@ -50,8 +50,4 @@ config MAX_CPUS
|
|||
int
|
||||
default 8
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
endif
|
||||
|
|
|
@ -40,8 +40,4 @@ config MAX_CPUS
|
|||
int
|
||||
default 8
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
|
||||
endif
|
||||
|
|
|
@ -47,12 +47,6 @@ config MAINBOARD_VENDOR
|
|||
string
|
||||
default "Intel"
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex
|
||||
default 0x2
|
||||
config VBOOT_REFCODE_INDEX
|
||||
hex
|
||||
default 0x3
|
||||
if !GOP_SUPPORT
|
||||
config VGA_BIOS_FILE
|
||||
string
|
||||
|
|
|
@ -28,6 +28,7 @@ config CHROMEOS
|
|||
select ELOG if SPI_FLASH
|
||||
select COLLECT_TIMESTAMPS
|
||||
select VBOOT_VERIFY_FIRMWARE
|
||||
select MULTIPLE_CBFS_INSTANCES
|
||||
help
|
||||
Enable ChromeOS specific features like the GPIO sub table in
|
||||
the coreboot table. NOTE: Enabling this option on an unsupported
|
||||
|
|
|
@ -68,57 +68,6 @@ config CHIPSET_PROVIDES_VERSTAGE_MAIN_SYMBOL
|
|||
help
|
||||
The chipset code provides their own main() entry point.
|
||||
|
||||
# These VBOOT_X_INDEX are the position of X in FW_MAIN_A/B region. The index
|
||||
# table is created by cros_bundle_firmware at build time based on the positions
|
||||
# of the blobs listed in fmap.dts and stored at the top of FW_MAIN_A/B region.
|
||||
# Unfortunately, there is no programmatical link between the blob list and the
|
||||
# index number here.
|
||||
config VBOOT_ROMSTAGE_INDEX
|
||||
hex "Romstage component index"
|
||||
default 2
|
||||
depends on VBOOT_VERIFY_FIRMWARE
|
||||
help
|
||||
This is the index of the romstage component in the verified
|
||||
firmware block.
|
||||
|
||||
config VBOOT_RAMSTAGE_INDEX
|
||||
hex "Ramstage component index"
|
||||
default 1
|
||||
depends on VBOOT_VERIFY_FIRMWARE
|
||||
help
|
||||
This is the index of the ramstage component in the verified
|
||||
firmware block.
|
||||
|
||||
config VBOOT_REFCODE_INDEX
|
||||
hex "Reference code firmware index"
|
||||
default 1
|
||||
depends on VBOOT_VERIFY_FIRMWARE
|
||||
help
|
||||
This is the index of the reference code component in the verified
|
||||
firmware block.
|
||||
|
||||
config VBOOT_BOOT_LOADER_INDEX
|
||||
hex "Bootloader component index"
|
||||
default 0
|
||||
depends on VBOOT_VERIFY_FIRMWARE
|
||||
help
|
||||
This is the index of the bootloader component in the verified
|
||||
firmware block.
|
||||
|
||||
config VBOOT_SECURE_OS_INDEX
|
||||
hex "ARM64 Secure OS index"
|
||||
default 0x5
|
||||
depends on VBOOT_VERIFY_FIRMWARE
|
||||
help
|
||||
Secure OS software component used on ARM64 machines.
|
||||
|
||||
config VBOOT_BL31_INDEX
|
||||
hex "ARM64 BL31 index"
|
||||
default 0x4
|
||||
depends on VBOOT_VERIFY_FIRMWARE
|
||||
help
|
||||
This is the index of the BL31 program on ARM64 machines.
|
||||
|
||||
config VBOOT_DYNAMIC_WORK_BUFFER
|
||||
bool "Vboot's work buffer is dynamically allocated."
|
||||
default y if ARCH_ROMSTAGE_X86_32 && !SEPARATE_VERSTAGE
|
||||
|
|
|
@ -115,21 +115,27 @@ struct vb2_shared_data *vb2_get_shared_data(void)
|
|||
return (void *)((uintptr_t)wd + wd->buffer_offset);
|
||||
}
|
||||
|
||||
int vb2_get_selected_region(struct region_device *rdev)
|
||||
int vb2_get_selected_region(struct region *region)
|
||||
{
|
||||
const struct selected_region *reg = vb2_selected_region();
|
||||
struct region region = {
|
||||
.offset = reg->offset,
|
||||
.size = reg->size,
|
||||
};
|
||||
return vboot_region_device(®ion, rdev);
|
||||
|
||||
if (reg == NULL)
|
||||
return -1;
|
||||
|
||||
if (reg->offset == 0 && reg->size == 0)
|
||||
return -1;
|
||||
|
||||
region->offset = reg->offset;
|
||||
region->size = reg->size;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void vb2_set_selected_region(struct region_device *rdev)
|
||||
void vb2_set_selected_region(const struct region *region)
|
||||
{
|
||||
struct selected_region *reg = vb2_selected_region();
|
||||
reg->offset = region_device_offset(rdev);
|
||||
reg->size = region_device_sz(rdev);
|
||||
reg->offset = region_offset(region);
|
||||
reg->size = region_sz(region);
|
||||
}
|
||||
|
||||
int vboot_is_slot_selected(void)
|
||||
|
|
|
@ -22,16 +22,13 @@ struct vb2_context;
|
|||
struct vb2_shared_data;
|
||||
|
||||
void vboot_fill_handoff(void);
|
||||
void *vboot_load_stage(int stage_index,
|
||||
struct region *fw_main,
|
||||
struct vboot_components *fw_info);
|
||||
|
||||
void vb2_init_work_context(struct vb2_context *ctx);
|
||||
struct vb2_shared_data *vb2_get_shared_data(void);
|
||||
|
||||
/* Returns 0 on success. < 0 on failure. */
|
||||
int vb2_get_selected_region(struct region_device *rdev);
|
||||
void vb2_set_selected_region(struct region_device *rdev);
|
||||
int vb2_get_selected_region(struct region *region);
|
||||
void vb2_set_selected_region(const struct region *region);
|
||||
int vboot_is_slot_selected(void);
|
||||
int vboot_is_readonly_path(void);
|
||||
|
||||
|
|
|
@ -120,12 +120,8 @@ static void fill_vboot_handoff(struct vboot_handoff *vboot_handoff,
|
|||
|
||||
void vboot_fill_handoff(void)
|
||||
{
|
||||
int i;
|
||||
struct vboot_handoff *vh;
|
||||
struct vb2_shared_data *sd;
|
||||
struct region_device fw_main;
|
||||
struct vboot_components *fw_info;
|
||||
size_t metadata_sz;
|
||||
|
||||
sd = vb2_get_shared_data();
|
||||
sd->workbuf_hash_offset = 0;
|
||||
|
@ -142,33 +138,6 @@ void vboot_fill_handoff(void)
|
|||
|
||||
/* needed until we finish transtion to vboot2 for kernel verification */
|
||||
fill_vboot_handoff(vh, sd);
|
||||
|
||||
/* Nothing left to do in readonly path. */
|
||||
if (vboot_is_readonly_path())
|
||||
return;
|
||||
|
||||
if (IS_ENABLED(CONFIG_MULTIPLE_CBFS_INSTANCES))
|
||||
return;
|
||||
|
||||
if (vb2_get_selected_region(&fw_main))
|
||||
die("No component metadata.\n");
|
||||
|
||||
metadata_sz = sizeof(*fw_info);
|
||||
metadata_sz += MAX_PARSED_FW_COMPONENTS * sizeof(fw_info->entries[0]);
|
||||
|
||||
fw_info = rdev_mmap(&fw_main, 0, metadata_sz);
|
||||
|
||||
if (fw_info == NULL)
|
||||
die("failed to locate firmware components\n");
|
||||
|
||||
/* these offset & size are used to load a rw boot loader */
|
||||
for (i = 0; i < fw_info->num_components; i++) {
|
||||
vh->components[i].address = region_device_offset(&fw_main);
|
||||
vh->components[i].address += fw_info->entries[i].offset;
|
||||
vh->components[i].size = fw_info->entries[i].size;
|
||||
}
|
||||
|
||||
rdev_munmap(&fw_main, fw_info);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <assets.h>
|
||||
#include <arch/early_variables.h>
|
||||
#include <cbfs.h>
|
||||
#include <cbmem.h>
|
||||
#include <console/console.h>
|
||||
|
@ -59,7 +59,34 @@ static int verstage_should_load(void)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int vboot_active(struct asset *asset)
|
||||
static int vboot_executed CAR_GLOBAL;
|
||||
|
||||
static int vboot_logic_executed(void)
|
||||
{
|
||||
/* If this stage is supposed to run the vboot logic ensure it has been
|
||||
* executed. */
|
||||
if (verification_should_run() && car_get_var(vboot_executed))
|
||||
return 1;
|
||||
|
||||
/* If this stage is supposed to load verstage and verstage is returning
|
||||
* back to the calling stage check that it has been executed. */
|
||||
if (verstage_should_load() && IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
|
||||
if (car_get_var(vboot_executed))
|
||||
return 1;
|
||||
|
||||
/* Handle all other stages post vboot execution. */
|
||||
if (!ENV_BOOTBLOCK) {
|
||||
if (IS_ENABLED(CONFIG_VBOOT_STARTS_IN_BOOTBLOCK))
|
||||
return 1;
|
||||
if (IS_ENABLED(CONFIG_VBOOT_STARTS_IN_ROMSTAGE) &&
|
||||
!ENV_ROMSTAGE)
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void vboot_prepare(void)
|
||||
{
|
||||
int run_verification;
|
||||
|
||||
|
@ -67,6 +94,7 @@ static int vboot_active(struct asset *asset)
|
|||
|
||||
if (run_verification) {
|
||||
verstage_main();
|
||||
car_set_var(vboot_executed, 1);
|
||||
} else if (verstage_should_load()) {
|
||||
struct cbfsf file;
|
||||
struct prog verstage =
|
||||
|
@ -91,7 +119,9 @@ static int vboot_active(struct asset *asset)
|
|||
* runtime, but this provides a hint to the compiler for dead
|
||||
* code elimination below. */
|
||||
if (!IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
|
||||
return 0;
|
||||
return;
|
||||
|
||||
car_set_var(vboot_executed, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -106,103 +136,27 @@ static int vboot_active(struct asset *asset)
|
|||
vb2_store_selected_region();
|
||||
vboot_fill_handoff();
|
||||
}
|
||||
|
||||
return vboot_is_slot_selected();
|
||||
}
|
||||
|
||||
static int vboot_locate_by_components(const struct region_device *fw_main,
|
||||
struct asset *asset)
|
||||
static int vboot_locate(struct cbfs_props *props)
|
||||
{
|
||||
struct vboot_components *fw_info;
|
||||
size_t metadata_sz;
|
||||
size_t offset;
|
||||
size_t size;
|
||||
struct region_device *fw = asset_rdev(asset);
|
||||
int fw_index = 0;
|
||||
struct region selected_region;
|
||||
|
||||
if (asset_type(asset) == ASSET_ROMSTAGE)
|
||||
fw_index = CONFIG_VBOOT_ROMSTAGE_INDEX;
|
||||
else if (asset_type(asset) == ASSET_RAMSTAGE)
|
||||
fw_index = CONFIG_VBOOT_RAMSTAGE_INDEX;
|
||||
else if (asset_type(asset) == ASSET_PAYLOAD)
|
||||
fw_index = CONFIG_VBOOT_BOOT_LOADER_INDEX;
|
||||
else if (asset_type(asset) == ASSET_REFCODE)
|
||||
fw_index = CONFIG_VBOOT_REFCODE_INDEX;
|
||||
else if (asset_type(asset) == ASSET_BL31)
|
||||
fw_index = CONFIG_VBOOT_BL31_INDEX;
|
||||
else
|
||||
die("Invalid program type for vboot.");
|
||||
|
||||
metadata_sz = sizeof(*fw_info);
|
||||
metadata_sz += MAX_PARSED_FW_COMPONENTS * sizeof(fw_info->entries[0]);
|
||||
|
||||
fw_info = rdev_mmap(fw_main, 0, metadata_sz);
|
||||
|
||||
if (fw_info == NULL) {
|
||||
printk(BIOS_INFO, "No component metadata.\n");
|
||||
/* Don't honor vboot results until the vboot logic has run. */
|
||||
if (!vboot_logic_executed())
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (fw_index >= fw_info->num_components) {
|
||||
printk(BIOS_INFO, "invalid index: %d\n", fw_index);
|
||||
rdev_munmap(fw_main, fw_info);
|
||||
if (vb2_get_selected_region(&selected_region))
|
||||
return -1;
|
||||
}
|
||||
|
||||
offset = fw_info->entries[fw_index].offset;
|
||||
size = fw_info->entries[fw_index].size;
|
||||
rdev_munmap(fw_main, fw_info);
|
||||
|
||||
if (rdev_chain(fw, fw_main, offset, size)) {
|
||||
printk(BIOS_INFO, "invalid offset or size\n");
|
||||
return -1;
|
||||
}
|
||||
props->offset = region_offset(&selected_region);
|
||||
props->size = region_sz(&selected_region);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vboot_locate_by_multi_cbfs(const struct region_device *fw_main,
|
||||
struct asset *asset)
|
||||
{
|
||||
struct cbfsf file;
|
||||
|
||||
if (cbfs_locate(&file, fw_main, asset_name(asset), NULL))
|
||||
return -1;
|
||||
|
||||
cbfs_file_data(asset_rdev(asset), &file);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vboot_asset_locate(const struct region_device *fw_main,
|
||||
struct asset *asset)
|
||||
{
|
||||
if (IS_ENABLED(CONFIG_MULTIPLE_CBFS_INSTANCES))
|
||||
return vboot_locate_by_multi_cbfs(fw_main, asset);
|
||||
else
|
||||
return vboot_locate_by_components(fw_main, asset);
|
||||
}
|
||||
|
||||
/* This function is only called when vboot_active() returns 1. That
|
||||
* means we are taking vboot paths. */
|
||||
static int vboot_locate(struct asset *asset)
|
||||
{
|
||||
struct region_device fw_main;
|
||||
|
||||
/* Code size optimization. We'd never actually get called under the
|
||||
* followin cirumstances because verstage was loaded and ran -- never
|
||||
* returning. */
|
||||
if (verstage_should_load() && !IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
|
||||
return 0;
|
||||
|
||||
if (vb2_get_selected_region(&fw_main))
|
||||
die("failed to reference selected region\n");
|
||||
|
||||
return vboot_asset_locate(&fw_main, asset);
|
||||
}
|
||||
|
||||
const struct asset_provider vboot_provider = {
|
||||
const struct cbfs_locator vboot_locator = {
|
||||
.name = "VBOOT",
|
||||
.is_active = vboot_active,
|
||||
.prepare = vboot_prepare,
|
||||
.locate = vboot_locate,
|
||||
};
|
||||
|
|
|
@ -323,6 +323,6 @@ void verstage_main(void)
|
|||
}
|
||||
|
||||
printk(BIOS_INFO, "Slot %c is selected\n", is_slot_a(&ctx) ? 'A' : 'B');
|
||||
vb2_set_selected_region(&fw_main);
|
||||
vb2_set_selected_region(region_device_region(&fw_main));
|
||||
timestamp_add_now(TS_END_VBOOT);
|
||||
}
|
||||
|
|
|
@ -21,30 +21,14 @@
|
|||
#include "chromeos.h"
|
||||
#include "vboot_common.h"
|
||||
|
||||
/*
|
||||
* The vboot handoff structure keeps track of a maximum number of firmware
|
||||
* components in the verfieid RW area of flash. This is not a restriction on
|
||||
* the number of components packed in a firmware block. It's only the maximum
|
||||
* number of parsed firmware components (address and size) included in the
|
||||
* handoff structure.
|
||||
*/
|
||||
#define MAX_PARSED_FW_COMPONENTS 6
|
||||
|
||||
struct firmware_component {
|
||||
uint32_t address;
|
||||
uint32_t size;
|
||||
} __attribute__((packed));
|
||||
|
||||
/*
|
||||
* The vboot_handoff structure contains the data to be consumed by downstream
|
||||
* firmware after firmware selection has been completed. Namely it provides
|
||||
* vboot shared data as well as the flags from VbInit. As noted above a finite
|
||||
* number of components are parsed from the verfieid firmare region.
|
||||
* vboot shared data as well as the flags from VbInit.
|
||||
*/
|
||||
struct vboot_handoff {
|
||||
VbInitParams init_params;
|
||||
uint32_t selected_firmware;
|
||||
struct firmware_component components[MAX_PARSED_FW_COMPONENTS];
|
||||
char shared_data[VB_SHARED_DATA_MIN_SIZE];
|
||||
} __attribute__((packed));
|
||||
|
||||
|
|
Loading…
Reference in New Issue