nb/intel/x4x/raminit: Rework receive enable calibration

Moves receive enable calibration to a separate file to lighten
raminit.c a bit.

Receive enable calibration is quite similar to gm45 so it reuses some
of its function names.

The functional changes are:
* the minimum coarse is now reset for each channel;
* on the second fine search for DQS high, TAP overflow is handled by
  increasing medium;
* start coarse at CAS + 1 instead of CAS - 1. Other Intel northbridges
  do the same and the results are more in line with register dumps
  from vendor bios.
These might improve stability.

TESTED on ga-g41m-es2l

Change-Id: I0c970455e609d3ce96a262cbf110336a2079da4d
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
Reviewed-on: https://review.coreboot.org/18692
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Nico Huber <nico.h@gmx.de>
This commit is contained in:
Arthur Heymans 2017-03-07 20:48:14 +01:00
parent e464ccd116
commit 6d7a8c1125
4 changed files with 378 additions and 282 deletions

View File

@ -20,6 +20,7 @@ romstage-y += early_init.c
romstage-y += raminit.c romstage-y += raminit.c
romstage-y += raminit_ddr2.c romstage-y += raminit_ddr2.c
romstage-y += ram_calc.c romstage-y += ram_calc.c
romstage-y += rcven.c
ramstage-y += acpi.c ramstage-y += acpi.c
ramstage-y += ram_calc.c ramstage-y += ram_calc.c

View File

@ -31,11 +31,6 @@
#define ME_UMA_SIZEMB 0 #define ME_UMA_SIZEMB 0
static inline void barrier(void)
{
asm volatile("mfence":::);
}
static u32 fsb2mhz(u32 speed) static u32 fsb2mhz(u32 speed)
{ {
return (speed * 267) + 800; return (speed * 267) + 800;
@ -1161,282 +1156,6 @@ static void jedec_ddr2(struct sysinfo *s)
printk(BIOS_DEBUG, "MRS done\n"); printk(BIOS_DEBUG, "MRS done\n");
} }
static u8 sampledqs(u16 mchloc, u32 addr, u8 hilow, u8 repeat)
{
u8 dqsmatch = 1;
volatile u32 strobe;
while (repeat-- > 0) {
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0x2;
udelay(2);
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) | 0x2;
udelay(2);
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0x2;
udelay(2);
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) | 0x2;
udelay(2);
barrier();
strobe = read32((u32 *)addr);
barrier();
if (((MCHBAR32(mchloc) & 0x40) >> 6) != hilow)
dqsmatch = 0;
}
return dqsmatch;
}
static void rcven_ddr2(struct sysinfo *s)
{
u8 i, reg8, ch, lane;
u32 addr;
u8 tap = 0;
u8 savecc, savemedium, savetap, coarsecommon, medium;
u8 lanecoarse[8] = {0};
u8 mincoarse = 0xff;
u8 pitap[2][8];
u16 coarsectrl[2];
u16 coarsedelay[2];
u16 mediumphase[2];
u16 readdelay[2];
u16 mchbar;
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xc;
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0xc;
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80;
FOR_EACH_POPULATED_CHANNEL(s->dimms, ch) {
addr = (ch << 29);
for (i = 0; !RANK_IS_POPULATED(s->dimms, ch, i); i++)
addr += 128*1024*1024;
for (lane = 0; lane < 8; lane++) {
printk(BIOS_DEBUG, "Channel %d, Lane %d addr=0x%08x\n", ch, lane, addr);
coarsecommon = (s->selected_timings.CAS - 1);
switch (lane) {
case 0: case 1:
medium = 0;
break;
case 2: case 3:
medium = 1;
break;
case 4: case 5:
medium = 2;
break;
case 6: case 7:
medium = 3;
break;
default:
medium = 0;
break;
}
mchbar = 0x400*ch + 0x561 + (lane << 2);
tap = 0;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) |
(coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) |
(medium << (lane*2));
MCHBAR8(0x400*ch + 0x560 + lane*4) = MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf;
MCHBAR8(0x400*ch + 0x560 + lane*4) = MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0x70;
savecc = coarsecommon;
savemedium = medium;
savetap = 0;
MCHBAR16(0x400*ch + 0x588) = (MCHBAR16(0x400*ch + 0x588) & ~(3 << (lane*2))) |
(1 << (lane*2));
printk(BIOS_DEBUG, "rcven 0.1 coarse=%d\n", coarsecommon);
while (sampledqs(mchbar, addr, 1, 1) == 1) {
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (coarsecommon > 16) {
die("Coarse > 16: DQS tuning failed, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (high -> low transition) coarse=%d medium=%d\n", coarsecommon, medium);
savemedium = medium;
savecc = coarsecommon;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) |
(coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) & ~(3 << (lane*2))) |
(medium << (lane*2));
}
printk(BIOS_DEBUG, "rcven 0.2\n");
while (sampledqs(mchbar, addr, 0, 1) == 1) {
savemedium = medium;
savecc = coarsecommon;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (coarsecommon > 16) {
die("Coarse DQS tuning 2 failed, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (low -> high transition) coarse=%d medium=%d\n", coarsecommon, medium);
coarsecommon = savecc;
medium = savemedium;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
printk(BIOS_DEBUG, "rcven 0.3\n");
tap = 0;
while (sampledqs(mchbar, addr, 1, 1) == 0) {
savetap = tap;
tap++;
if (tap > 14)
break;
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | tap;
}
tap = savetap;
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | tap;
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0x70) | 0x30;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (sampledqs(mchbar, addr, 1, 1) == 0)
die("Not at DQS high, doh\n");
printk(BIOS_DEBUG, "rcven 0.4\n");
while (sampledqs(mchbar, addr, 1, 1) == 1) {
coarsecommon--;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
if (coarsecommon == 0) {
die("Couldn't find DQS-high 0 indicator, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (high -> low transition) coarse=%d medium=%d\n", coarsecommon, medium);
printk(BIOS_DEBUG, "rcven 0.5\n");
while (sampledqs(mchbar, addr, 0, 1) == 1) {
savemedium = medium;
savecc = coarsecommon;
if (medium < 3) {
medium++;
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
} else {
medium = 0;
coarsecommon++;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
}
if (coarsecommon > 16) {
die("Coarse DQS tuning 5 failed, halt\n");
break;
}
}
printk(BIOS_DEBUG, " GOT IT (low -> high transition) coarse=%d medium=%d\n", coarsecommon, medium);
printk(BIOS_DEBUG, "rcven 0.6\n");
coarsecommon = savecc;
medium = savemedium;
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) &
~0xf0000) | (coarsecommon << 16);
MCHBAR16(0x400*ch + 0x58c) = (MCHBAR16(0x400*ch + 0x58c) &
~(3 << (lane*2))) | (medium << (lane*2));
while (sampledqs(mchbar, addr, 1, 1) == 0) {
savetap = tap;
tap++;
if (tap > 14)
break;
MCHBAR8(0x400*ch + 0x560 + lane*4) =
(MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf) | tap;
}
tap = savetap;
MCHBAR8(0x400*ch + 0x560 + lane*4) =
(MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0xf) | tap;
MCHBAR8(0x400*ch + 0x560 + lane*4) =
(MCHBAR8(0x400*ch + 0x560 + lane*4) & ~0x70) | 0x70;
pitap[ch][lane] = 0x70 | tap;
MCHBAR16(0x400*ch + 0x588) = MCHBAR16(0x400*ch + 0x588) & ~(3 << (lane*2));
lanecoarse[lane] = coarsecommon;
printk(BIOS_DEBUG, "rcven 0.7\n");
} // END EACH LANE
// Find minimum coarse value
for (lane = 0; lane < 8; lane++) {
if (mincoarse > lanecoarse[lane])
mincoarse = lanecoarse[lane];
}
printk(BIOS_DEBUG, "Found min coarse value = %d\n", mincoarse);
for (lane = 0; lane < 8; lane++) {
reg8 = (lanecoarse[lane] == 0) ? 0 : lanecoarse[lane] - mincoarse;
MCHBAR16(0x400*ch + 0x5fa) = (MCHBAR16(0x400*ch + 0x5fa) & ~(3 << (lane*2))) |
(reg8 << (lane*2));
}
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) | (mincoarse << 16);
coarsectrl[ch] = mincoarse;
coarsedelay[ch] = MCHBAR16(0x400*ch + 0x5fa);
mediumphase[ch] = MCHBAR16(0x400*ch + 0x58c);
readdelay[ch] = MCHBAR16(0x400*ch + 0x588);
} // END EACH POPULATED CHANNEL
FOR_EACH_CHANNEL(ch) {
for (lane = 0; lane < 8; lane++) {
MCHBAR8(0x400*ch + 0x560 + (lane*4)) =
(MCHBAR8(0x400*ch + 0x560 + (lane*4)) & ~0xf) | pitap[ch][lane];
}
MCHBAR32(0x400*ch + 0x248) = (MCHBAR32(0x400*ch + 0x248) & ~0xf0000) |
(coarsectrl[ch] << 16);
MCHBAR16(0x400*ch + 0x5fa) = coarsedelay[ch];
MCHBAR16(0x400*ch + 0x58c) = mediumphase[ch];
}
printk(BIOS_DEBUG, "End rcven\n");
}
static void sdram_save_receive_enable(void) static void sdram_save_receive_enable(void)
{ {
int i = 0; int i = 0;
@ -1505,7 +1224,7 @@ static void sdram_program_receive_enable(struct sysinfo *s)
|| (s->boot_path == BOOT_PATH_RESUME)) { || (s->boot_path == BOOT_PATH_RESUME)) {
sdram_recover_receive_enable(); sdram_recover_receive_enable();
} else { } else {
rcven_ddr2(s); rcven(s);
sdram_save_receive_enable(); sdram_save_receive_enable();
} }
} }

View File

@ -0,0 +1,375 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Damien Zammit <damien@zamaudio.com>
* Copyright (C) 2017 Arthur Heymans <arthur@aheymans.xyz>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/io.h>
#include <console/console.h>
#include <delay.h>
#include "iomap.h"
#include "x4x.h"
#define MAX_COARSE 15
#define DQS_HIGH 1
#define DQS_LOW 0
#define RESET_CNTL(channel) (0x5d8 + channel * 0x400)
struct rec_timing {
u8 medium;
u8 coarse;
u8 pi;
u8 tap;
};
static inline void barrier(void)
{
asm volatile("mfence":::);
}
static u8 sampledqs(u32 addr, u8 lane, u8 channel)
{
volatile u32 strobe;
u32 sample_offset = 0x400 * channel + 0x561 + lane * 4;
/* Reset the DQS probe */
MCHBAR8(RESET_CNTL(channel)) &= ~0x2;
udelay(2);
MCHBAR8(RESET_CNTL(channel)) |= 0x2;
udelay(2);
barrier();
strobe = read32((u32 *)addr);
barrier();
return (MCHBAR8(sample_offset) >> 6) & 1;
}
static void program_timing(const struct rec_timing *timing, u8 channel,
u8 lane)
{
u32 reg32;
u16 reg16;
u8 reg8;
printk(RAM_SPEW, " Programming timings:"
"Coarse: %d, Medium: %d, TAP: %d, PI: %d\n",
timing->coarse, timing->medium, timing->tap, timing->pi);
reg32 = MCHBAR32(0x400 * channel + 0x248);
reg32 &= ~0xf0000;
reg32 |= timing->coarse << 16;
MCHBAR32(0x400 * channel + 0x248) = reg32;
reg16 = MCHBAR16(0x400 * channel + 0x58c);
reg16 &= ~(3 << (lane * 2));
reg16 |= timing->medium << (lane * 2);
MCHBAR16(0x400 * channel + 0x58c) = reg16;
reg8 = MCHBAR8(0x400 * channel + 0x560 + lane * 4);
reg8 &= ~0x7f;
reg8 |= timing->tap;
reg8 |= timing->pi << 4;
MCHBAR8(0x400 * channel + 0x560 + lane * 4) = reg8;
}
static int increase_medium(struct rec_timing *timing)
{
if (timing->medium < 3) {
timing->medium++;
} else if (timing->coarse < MAX_COARSE) {
timing->medium = 0;
timing->coarse++;
} else {
printk(BIOS_ERR, "Cannot increase medium any further.\n");
return -1;
}
return 0;
}
static int decrease_medium(struct rec_timing *timing)
{
if (timing->medium > 0) {
timing->medium--;
} else if (timing->coarse > 0) {
timing->medium = 3;
timing->coarse--;
} else {
printk(BIOS_ERR, "Cannot lower medium any further.\n");
return -1;
}
return 0;
}
static int increase_tap(struct rec_timing *timing)
{
if (timing->tap == 14) {
if (increase_medium(timing))
return -1;
timing->tap = 0;
} else {
timing->tap++;
}
return 0;
}
static int decrease_tap(struct rec_timing *timing)
{
if (timing->tap > 0) {
timing->tap--;
} else {
if (decrease_medium(timing))
return -1;
timing->tap = 14;
}
return 0;
}
static int decr_coarse_low(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
printk(BIOS_DEBUG,
" Decreasing coarse until high to low transition is found\n");
while (sampledqs(addr, lane, channel) != DQS_LOW) {
if (timing->coarse == 0) {
printk(BIOS_CRIT,
"Couldn't find DQS-high 0 indicator, halt\n");
return -1;
}
timing->coarse--;
program_timing(timing, channel, lane);
}
printk(BIOS_DEBUG, " DQS low at coarse=%d medium=%d\n",
timing->coarse, timing->medium);
return 0;
}
static int fine_search_dqs_high(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
printk(BIOS_DEBUG,
" Increasing TAP until low to high transition is found\n");
/*
* We use a do while loop since it happens that the strobe read
* is inconsistent, with the strobe already high. The current
* code flow results in failure later when finding the preamble,
* at which DQS needs to be high is often not the case if TAP was
* not increased at least once here. Work around this by incrementing
* TAP at least once to guarantee searching for preamble start at
* DQS high.
* This seems to be the result of hysteresis on some settings, where
* the DQS probe is influenced by its previous value.
*/
if (sampledqs(addr, lane, channel) == DQS_HIGH) {
printk(BIOS_WARNING,
"DQS already HIGH... DQS probe is inconsistent!\n"
"Continuing....\n");
}
do {
if (increase_tap(timing)) {
printk(BIOS_CRIT,
"Could not find DQS-high on fine search.\n");
return -1;
}
program_timing(timing, channel, lane);
} while (sampledqs(addr, lane, channel) != DQS_HIGH);
printk(BIOS_DEBUG, " DQS high at coarse=%d medium=%d tap:%d\n",
timing->coarse, timing->medium, timing->tap);
return 0;
}
static int find_dqs_low(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
/* Look for DQS low, using quarter steps. */
printk(BIOS_DEBUG, " Increasing medium until DQS LOW is found\n");
while (sampledqs(addr, lane, channel) != DQS_LOW) {
if (increase_medium(timing)) {
printk(BIOS_CRIT,
"Coarse > 15: DQS tuning failed, halt\n");
return -1;
}
program_timing(timing, channel, lane);
}
printk(BIOS_DEBUG, " DQS low at coarse=%d medium=%d\n",
timing->coarse, timing->medium);
return 0;
}
static int find_dqs_high(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
/* Look for DQS high, using quarter steps. */
printk(BIOS_DEBUG, " Increasing medium until DQS HIGH is found\n");
while (sampledqs(addr, lane, channel) != DQS_HIGH) {
if (increase_medium(timing)) {
printk(BIOS_CRIT,
"Coarse > 16: DQS tuning failed, halt\n");
return -1;
}
program_timing(timing, channel, lane);
}
printk(BIOS_DEBUG, " DQS high at coarse=%d medium=%d\n",
timing->coarse, timing->medium);
return 0;
}
static int find_dqs_edge_lowhigh(u8 channel, u8 lane,
u32 addr, struct rec_timing *timing)
{
/* Medium search for DQS high. */
if (find_dqs_high(channel, lane, addr, timing))
return -1;
/* Go back and perform finer search. */
if (decrease_medium(timing))
return -1;
program_timing(timing, channel, lane);
if (fine_search_dqs_high(channel, lane, addr, timing) < 0)
return -1;
return 0;
}
static int find_preamble(u8 channel, u8 lane, u32 addr,
struct rec_timing *timing)
{
/* Add a quarter step */
if (increase_medium(timing))
return -1;
program_timing(timing, channel, lane);
/* Verify we are at high */
if (sampledqs(addr, lane, channel) != DQS_HIGH) {
printk(BIOS_CRIT, "Not at DQS high, d'oh\n");
return -1;
}
/* Decrease coarse until LOW is found */
if (decr_coarse_low(channel, lane, addr, timing))
return -1;
return 0;
}
static int calibrate_receive_enable(u8 channel, u8 lane,
u32 addr, struct rec_timing *timing)
{
program_timing(timing, channel, lane);
/* Set receive enable bit */
MCHBAR16(0x400 * channel + 0x588) = (MCHBAR16(0x400 * channel + 0x588)
& ~(3 << (lane * 2))) | (1 << (lane * 2));
if (find_dqs_low(channel, lane, addr, timing))
return -1;
/* Advance a little further. */
if (increase_medium(timing)) {
/* A finer search could be implemented */
printk(BIOS_WARNING, "Cannot increase medium further");
return -1;
}
program_timing(timing, channel, lane);
if (find_dqs_edge_lowhigh(channel, lane, addr, timing))
return -1;
/* Go back on fine search */
if (decrease_tap(timing))
return -1;
timing->pi = 3;
program_timing(timing, channel, lane);
if (find_preamble(channel, lane, addr, timing))
return -1;
if (find_dqs_edge_lowhigh(channel, lane, addr, timing))
return -1;
if (decrease_tap(timing))
return -1;
timing->pi = 7;
program_timing(timing, channel, lane);
/* Unset receive enable bit */
MCHBAR16(0x400 * channel + 0x588) = MCHBAR16(0x400 * channel + 0x588) &
~(3 << (lane * 2));
return 0;
}
void rcven(const struct sysinfo *s)
{
int i;
u8 channel, lane, reg8;
u32 addr;
struct rec_timing timing[8];
u8 mincoarse;
MCHBAR8(0x5d8) = MCHBAR8(0x5d8) & ~0xc;
MCHBAR8(0x9d8) = MCHBAR8(0x9d8) & ~0xc;
MCHBAR8(0x5dc) = MCHBAR8(0x5dc) & ~0x80;
FOR_EACH_POPULATED_CHANNEL(s->dimms, channel) {
addr = (channel << 29);
mincoarse = 0xff;
for (i = 0; i < RANKS_PER_CHANNEL &&
!RANK_IS_POPULATED(s->dimms, channel, i); i++)
addr += 128 * MiB;
for (lane = 0; lane < 8; lane++) {
printk(BIOS_DEBUG, "Channel %d, Lane %d addr=0x%08x\n",
channel, lane, addr);
timing[lane].coarse = (s->selected_timings.CAS + 1);
switch (lane) {
default:
case 0:
case 1:
timing[lane].medium = 0;
break;
case 2:
case 3:
timing[lane].medium = 1;
break;
case 4:
case 5:
timing[lane].medium = 2;
break;
case 6:
case 7:
timing[lane].medium = 3;
break;
}
timing[lane].tap = 0;
timing[lane].pi = 0;
if (calibrate_receive_enable(channel, lane, addr,
&timing[lane]))
die("Receive enable calibration failed\n");
if (mincoarse > timing[lane].coarse)
mincoarse = timing[lane].coarse;
}
printk(BIOS_DEBUG, "Found min coarse value = %d\n", mincoarse);
printk(BIOS_DEBUG, "Receive enable, final timings:\n");
/* Normalise coarse */
for (lane = 0; lane < 8; lane++) {
if (timing[lane].coarse == 0)
reg8 = 0;
else
reg8 = timing[lane].coarse - mincoarse;
printk(BIOS_DEBUG, "ch %d lane %d: coarse offset: %d;"
"medium: %d; tap: %d\n",
channel, lane, reg8, timing[lane].medium,
timing[lane].tap);
MCHBAR16(0x400 * channel + 0x5fa) &=
~(3 << (lane * 2)) | (reg8 << (lane * 2));
}
/* simply use timing[0] to program mincoarse */
timing[0].coarse = mincoarse;
program_timing(&timing[0], channel, 0);
}
}

View File

@ -345,6 +345,7 @@ u32 decode_igd_gtt_size(u32 gsm);
u8 decode_pciebar(u32 *const base, u32 *const len); u8 decode_pciebar(u32 *const base, u32 *const len);
void sdram_initialize(int boot_path, const u8 *spd_map); void sdram_initialize(int boot_path, const u8 *spd_map);
void raminit_ddr2(struct sysinfo *); void raminit_ddr2(struct sysinfo *);
void rcven(const struct sysinfo *);
struct acpi_rsdp; struct acpi_rsdp;
#ifndef __SIMPLE_DEVICE__ #ifndef __SIMPLE_DEVICE__