- Update e7501 northbridge.c to work in the new structure.
git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1710 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
parent
8abb054c0e
commit
720a8f57ef
|
@ -9,113 +9,8 @@
|
|||
#include <string.h>
|
||||
#include <bitops.h>
|
||||
#include "chip.h"
|
||||
#if 0
|
||||
struct mem_range *sizeram(void)
|
||||
{
|
||||
static struct mem_range mem[4];
|
||||
/* the units of tolm are 64 KB */
|
||||
/* the units of drb16 are 64 MB */
|
||||
uint16_t tolm, remapbase, remaplimit, drb16;
|
||||
uint16_t tolm_r, remapbase_r, remaplimit_r;
|
||||
uint8_t drb;
|
||||
int remap_high;
|
||||
device_t dev;
|
||||
|
||||
dev = dev_find_slot(0, 0); // d0f0
|
||||
if (!dev) {
|
||||
printk_err("Cannot find PCI: 0:0\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Calculate and report the top of low memory and
|
||||
* any remapping.
|
||||
*/
|
||||
/* Test if the remap memory high option is set */
|
||||
remap_high = 0;
|
||||
// if(get_option(&remap_high, "remap_memory_high")){
|
||||
// remap_high = 0;
|
||||
// }
|
||||
printk_debug("remap_high is %d\n", remap_high);
|
||||
/* get out the value of the highest DRB. This tells the end of
|
||||
* physical memory. The units are ticks of 64 MB i.e. 1 means
|
||||
* 64 MB.
|
||||
*/
|
||||
drb = pci_read_config8(dev, 0x67);
|
||||
drb16 = (uint16_t)drb;
|
||||
if(remap_high && (drb16 > 0x08)) {
|
||||
/* We only come here if we have at least 512MB of memory,
|
||||
* so it is safe to hard code tolm.
|
||||
* 0x2000 means 512MB
|
||||
*/
|
||||
|
||||
tolm = 0x2000;
|
||||
/* i.e 0x40 * 0x40 is 0x1000 which is 4 GB */
|
||||
if(drb16 > 0x0040) {
|
||||
/* There is more than 4GB of memory put
|
||||
* the remap window at the end of ram.
|
||||
*/
|
||||
remapbase = drb16;
|
||||
remaplimit = remapbase + 0x38;
|
||||
}
|
||||
else {
|
||||
remapbase = 0x0040;
|
||||
remaplimit = remapbase + (drb16-8);
|
||||
}
|
||||
}
|
||||
else {
|
||||
tolm = (uint16_t)((dev_root.resource[1].base >> 16)&0x0f800);
|
||||
if((tolm>>8) >= (drb16<<2)) {
|
||||
tolm = (drb16<<10);
|
||||
remapbase = 0x3ff;
|
||||
remaplimit = 0;
|
||||
}
|
||||
else {
|
||||
remapbase = drb16;
|
||||
remaplimit = remapbase + ((0x0040-(tolm>>10))-1);
|
||||
}
|
||||
}
|
||||
/* Write the ram configruation registers,
|
||||
* preserving the reserved bits.
|
||||
*/
|
||||
tolm_r = pci_read_config16(dev, 0xc4);
|
||||
tolm |= (tolm_r & 0x7ff);
|
||||
pci_write_config16(dev, 0xc4, tolm);
|
||||
remapbase_r = pci_read_config16(dev, 0xc6);
|
||||
remapbase |= (remapbase_r & 0xfc00);
|
||||
pci_write_config16(dev, 0xc6, remapbase);
|
||||
remaplimit_r = pci_read_config16(dev, 0xc8);
|
||||
remaplimit |= (remaplimit_r & 0xfc00);
|
||||
pci_write_config16(dev, 0xc8, remaplimit);
|
||||
|
||||
#if 0
|
||||
printk_debug("mem info tolm = %x, drb = %x, pci_memory_base = %x, remap = %x-%x\n",tolm,drb,pci_memory_base,remapbase,remaplimit);
|
||||
#endif
|
||||
|
||||
mem[0].basek = 0;
|
||||
mem[0].sizek = 640;
|
||||
mem[1].basek = 768;
|
||||
/* Convert size in 64K bytes to size in K bytes */
|
||||
mem[1].sizek = (tolm << 6) - mem[1].basek;
|
||||
mem[2].basek = 0;
|
||||
mem[2].sizek = 0;
|
||||
if ((drb << 16) > (tolm << 6)) {
|
||||
/* We don't need to consider the remap window
|
||||
* here because we put it immediately after the
|
||||
* rest of ram.
|
||||
* All we must do is calculate the amount
|
||||
* of unused memory and report it at 4GB.
|
||||
*/
|
||||
mem[2].basek = 4096*1024;
|
||||
mem[2].sizek = (drb << 16) - (tolm << 6);
|
||||
}
|
||||
mem[3].basek = 0;
|
||||
mem[3].sizek = 0;
|
||||
|
||||
return mem;
|
||||
}
|
||||
#endif
|
||||
|
||||
#define BRIDGE_IO_MASK (IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH)
|
||||
#define BRIDGE_IO_MASK (IORESOURCE_IO | IORESOURCE_MEM)
|
||||
|
||||
static void pci_domain_read_resources(device_t dev)
|
||||
{
|
||||
|
@ -130,21 +25,12 @@ static void pci_domain_read_resources(device_t dev)
|
|||
compute_allocate_resource(&dev->link[0], resource,
|
||||
IORESOURCE_IO, IORESOURCE_IO);
|
||||
|
||||
/* Initialize the system wide prefetchable memory resources constraints */
|
||||
resource = new_resource(dev, 1);
|
||||
resource->limit = 0xfcffffffffULL;
|
||||
resource->flags = IORESOURCE_MEM | IORESOURCE_PREFETCH;
|
||||
compute_allocate_resource(&dev->link[0], resource,
|
||||
IORESOURCE_MEM | IORESOURCE_PREFETCH,
|
||||
IORESOURCE_MEM | IORESOURCE_PREFETCH);
|
||||
|
||||
/* Initialize the system wide memory resources constraints */
|
||||
resource = new_resource(dev, 2);
|
||||
resource->limit = 0xfcffffffffULL;
|
||||
resource = new_resource(dev, 1);
|
||||
resource->limit = 0xffffffffULL;
|
||||
resource->flags = IORESOURCE_MEM;
|
||||
compute_allocate_resource(&dev->link[0], resource,
|
||||
IORESOURCE_MEM | IORESOURCE_PREFETCH,
|
||||
IORESOURCE_MEM);
|
||||
IORESOURCE_MEM, IORESOURCE_MEM);
|
||||
}
|
||||
|
||||
static void ram_resource(device_t dev, unsigned long index,
|
||||
|
@ -164,72 +50,14 @@ static void ram_resource(device_t dev, unsigned long index,
|
|||
|
||||
static void pci_domain_set_resources(device_t dev)
|
||||
{
|
||||
struct resource *io, *mem1, *mem2;
|
||||
struct resource *resource, *last;
|
||||
unsigned long mmio_basek;
|
||||
device_t mc_dev;
|
||||
uint32_t pci_tolm;
|
||||
int idx;
|
||||
uint8_t drb;
|
||||
unsigned basek, sizek;
|
||||
device_t dev_memctrl;
|
||||
|
||||
#if 0
|
||||
/* Place the IO devices somewhere safe */
|
||||
io = find_resource(dev, 0);
|
||||
io->base = DEVICE_IO_START;
|
||||
#endif
|
||||
#if 1
|
||||
/* Now reallocate the pci resources memory with the
|
||||
* highest addresses I can manage.
|
||||
*/
|
||||
mem1 = find_resource(dev, 1);
|
||||
mem2 = find_resource(dev, 2);
|
||||
|
||||
#if 1
|
||||
printk_debug("base1: 0x%08Lx limit1: 0x%08Lx size: 0x%08Lx align: %d\n",
|
||||
mem1->base, mem1->limit, mem1->size, mem1->align);
|
||||
printk_debug("base2: 0x%08Lx limit2: 0x%08Lx size: 0x%08Lx align: %d\n",
|
||||
mem2->base, mem2->limit, mem2->size, mem2->align);
|
||||
#endif
|
||||
|
||||
/* See if both resources have roughly the same limits */
|
||||
if (((mem1->limit <= 0xffffffff) && (mem2->limit <= 0xffffffff)) ||
|
||||
((mem1->limit > 0xffffffff) && (mem2->limit > 0xffffffff)))
|
||||
{
|
||||
/* If so place the one with the most stringent alignment first
|
||||
*/
|
||||
if (mem2->align > mem1->align) {
|
||||
struct resource *tmp;
|
||||
tmp = mem1;
|
||||
mem1 = mem2;
|
||||
mem2 = tmp;
|
||||
}
|
||||
/* Now place the memory as high up as it will go */
|
||||
mem2->base = resource_max(mem2);
|
||||
mem1->limit = mem2->base - 1;
|
||||
mem1->base = resource_max(mem1);
|
||||
}
|
||||
else {
|
||||
/* Place the resources as high up as they will go */
|
||||
mem2->base = resource_max(mem2);
|
||||
mem1->base = resource_max(mem1);
|
||||
}
|
||||
|
||||
#if 1
|
||||
printk_debug("base1: 0x%08Lx limit1: 0x%08Lx size: 0x%08Lx align: %d\n",
|
||||
mem1->base, mem1->limit, mem1->size, mem1->align);
|
||||
printk_debug("base2: 0x%08Lx limit2: 0x%08Lx size: 0x%08Lx align: %d\n",
|
||||
mem2->base, mem2->limit, mem2->size, mem2->align);
|
||||
#endif
|
||||
#endif
|
||||
pci_tolm = 0xffffffffUL;
|
||||
last = &dev->resource[dev->resources];
|
||||
for(resource = &dev->resource[0]; resource < last; resource++)
|
||||
{
|
||||
#if 1
|
||||
resource->flags |= IORESOURCE_ASSIGNED;
|
||||
resource->flags &= ~IORESOURCE_STORED;
|
||||
#endif
|
||||
compute_allocate_resource(&dev->link[0], resource,
|
||||
BRIDGE_IO_MASK, resource->flags & BRIDGE_IO_MASK);
|
||||
|
||||
|
@ -243,43 +71,77 @@ static void pci_domain_set_resources(device_t dev)
|
|||
}
|
||||
}
|
||||
|
||||
#warning "FIXME handle interleaved nodes"
|
||||
mmio_basek = pci_tolm >> 10;
|
||||
/* Round mmio_basek to something the processor can support */
|
||||
mmio_basek &= ~((1 << 6) -1);
|
||||
mc_dev = dev->link[0].children;
|
||||
if (mc_dev) {
|
||||
/* Figure out which areas are/should be occupied by RAM.
|
||||
* This is all computed in kilobytes and converted to/from
|
||||
* the memory controller right at the edges.
|
||||
* Having different variables in different units is
|
||||
* too confusing to get right. Kilobytes are good up to
|
||||
* 4 Terabytes of RAM...
|
||||
*/
|
||||
uint16_t tolm_r, remapbase_r, remaplimit_r;
|
||||
unsigned long tomk, tolmk;
|
||||
unsigned long remapbasek, remaplimitk;
|
||||
int idx;
|
||||
|
||||
#if 1
|
||||
#warning "FIXME improve mtrr.c so we don't use up all of the mtrrs with a 64M MMIO hole"
|
||||
/* Round the mmio hold to 64M */
|
||||
mmio_basek &= ~((64*1024) - 1);
|
||||
#endif
|
||||
/* Get the value of the highest DRB. This tells the end of
|
||||
* the physical memory. The units are ticks of 64MB
|
||||
* i.e. 1 means 64MB.
|
||||
*/
|
||||
tomk = ((unsigned long)pci_read_config8(mc_dev, 0x67)) << 16;
|
||||
/* Compute the top of Low memory */
|
||||
tolmk = pci_tolm >> 10;
|
||||
if (tolmk >= tomk) {
|
||||
/* The PCI hole does not overlap memory
|
||||
* we won't use the remap window.
|
||||
*/
|
||||
tolmk = tomk;
|
||||
remapbasek = 0x3ff << 16;
|
||||
remaplimitk = 0 << 16;
|
||||
}
|
||||
else {
|
||||
/* The PCI memory hole overlaps memory
|
||||
* setup the remap window.
|
||||
*/
|
||||
/* Find the bottom of the remap window
|
||||
* is it above 4G?
|
||||
*/
|
||||
remapbasek = 4*1024*1024;
|
||||
if (tomk > remapbasek) {
|
||||
remapbasek = tomk;
|
||||
}
|
||||
/* Find the limit of the remap window */
|
||||
remaplimitk = (remapbasek + (4*1024*1024 - tolmk) - (1 << 16));
|
||||
}
|
||||
/* Write the ram configuration registers,
|
||||
* preserving the reserved bits.
|
||||
*/
|
||||
tolm_r = pci_read_config16(mc_dev, 0xc4);
|
||||
tolm_r = ((tolmk >> 17) << 11) | (tolm_r & 0x7ff);
|
||||
pci_write_config16(mc_dev, 0xc4, tolm_r);
|
||||
|
||||
dev_memctrl = dev_find_slot(0, 0); // d0f0
|
||||
drb = pci_read_config8(dev_memctrl, 0x67);
|
||||
|
||||
idx = 10;
|
||||
|
||||
basek = 0;
|
||||
sizek = 640;
|
||||
ram_resource(dev, idx++, basek, sizek);
|
||||
|
||||
basek = 768;
|
||||
sizek = mmio_basek - basek;
|
||||
ram_resource(dev, idx++, basek, sizek);
|
||||
|
||||
if ((drb << 16) > mmio_basek) {
|
||||
/* We don't need to consider the remap window
|
||||
* here because we put it immediately after the
|
||||
* rest of ram.
|
||||
* All we must do is calculate the amount
|
||||
* of unused memory and report it at 4GB.
|
||||
*/
|
||||
basek = 4096*1024;
|
||||
sizek = (drb << 16) - mmio_basek;
|
||||
ram_resource(dev, idx++, basek, sizek);
|
||||
remapbase_r = pci_read_config16(mc_dev, 0xc6);
|
||||
remapbase_r = (remapbasek >> 16) | (remapbase_r & 0xfc00);
|
||||
pci_write_config16(mc_dev, 0xc6, remapbase_r);
|
||||
|
||||
remaplimit_r = pci_read_config16(mc_dev, 0xc8);
|
||||
remaplimit_r = (remaplimitk >> 16) | (remaplimit_r & 0xfc00);
|
||||
pci_write_config16(mc_dev, 0xc8, rempaplimit_r);
|
||||
|
||||
/* Report the memory regions */
|
||||
idx = 10;
|
||||
ram_resource(dev, idx++, 0, 640);
|
||||
ram_resource(dev, idx++, 768, tolmk - 768);
|
||||
if (tomk > 4*1024*1024) {
|
||||
ram_resource(dev, idx++, 4096*1024, tomk - 4*1024*1024);
|
||||
}
|
||||
if (remaplimitk >= remapbasek) {
|
||||
ram_resource(dev, idx++, ramapbasek,
|
||||
(reamplimitk + 64*1024) = remapbasek);
|
||||
}
|
||||
}
|
||||
|
||||
assign_resources(&dev->link[0]);
|
||||
assign_resources(&dev->link[0]);
|
||||
}
|
||||
|
||||
static unsigned int pci_domain_scan_bus(device_t dev, unsigned int max)
|
||||
|
@ -296,56 +158,6 @@ static struct device_operations pci_domain_ops = {
|
|||
.scan_bus = pci_domain_scan_bus,
|
||||
};
|
||||
|
||||
static unsigned int cpu_bus_scan(device_t dev, unsigned int max)
|
||||
{
|
||||
struct bus *cpu_bus;
|
||||
unsigned reg;
|
||||
int i;
|
||||
|
||||
/* Find which cpus are present */
|
||||
cpu_bus = &dev->link[0];
|
||||
for(i = 0; i < 7; i+=6) {
|
||||
device_t dev, cpu;
|
||||
struct device_path cpu_path;
|
||||
#if 0
|
||||
//How to identify Intel CPU
|
||||
/* Find the cpu's memory controller */
|
||||
dev = dev_find_slot(0, PCI_DEVFN(0x18 + i, 0));
|
||||
#endif
|
||||
|
||||
/* Build the cpu device path */
|
||||
cpu_path.type = DEVICE_PATH_APIC;
|
||||
cpu_path.u.apic.apic_id = i;
|
||||
|
||||
/* See if I can find the cpu */
|
||||
cpu = find_dev_path(cpu_bus, &cpu_path);
|
||||
#if 0
|
||||
/* Enable the cpu if I have the processor */
|
||||
if (dev && dev->enabled) {
|
||||
if (!cpu) {
|
||||
cpu = alloc_dev(cpu_bus, &cpu_path);
|
||||
}
|
||||
if (cpu) {
|
||||
cpu->enabled = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Disable the cpu if I don't have the processor */
|
||||
if (cpu && (!dev || !dev->enabled)) {
|
||||
cpu->enabled = 0;
|
||||
}
|
||||
#else
|
||||
cpu->enabled = 1;
|
||||
#endif
|
||||
/* Report what I have done */
|
||||
if (cpu) {
|
||||
printk_debug("CPU: %s %s\n",
|
||||
dev_path(cpu), cpu->enabled?"enabled":"disabled");
|
||||
}
|
||||
}
|
||||
return max;
|
||||
}
|
||||
|
||||
static void cpu_bus_init(device_t dev)
|
||||
{
|
||||
initialize_cpus(&dev->link[0]);
|
||||
|
@ -360,7 +172,7 @@ static struct device_operations cpu_bus_ops = {
|
|||
.set_resources = cpu_bus_noop,
|
||||
.enable_resources = cpu_bus_noop,
|
||||
.init = cpu_bus_init,
|
||||
.scan_bus = cpu_bus_scan,
|
||||
.scan_bus = cpu_bus_noop,
|
||||
};
|
||||
|
||||
static void enable_dev(struct device *dev)
|
||||
|
|
Loading…
Reference in New Issue