cbfs: Reflow cbfs.c and cbfs.h to 96-character line lengths

Doing this all in one go keeps the files consistent and should make
future refactoring easier.

Signed-off-by: Julius Werner <jwerner@chromium.org>
Change-Id: I4a701d24fc9ccd68dce8789aab15fd21964a55f9
Reviewed-on: https://review.coreboot.org/c/coreboot/+/49330
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
Julius Werner 2020-12-29 17:33:30 -08:00
parent abc69712c2
commit 723e3b10af
2 changed files with 76 additions and 90 deletions

View File

@ -17,35 +17,36 @@
void *cbfs_boot_map_optionrom(uint16_t vendor, uint16_t device);
/* Return mapping of option ROM with revision number. Returns NULL on error. */
void *cbfs_boot_map_optionrom_revision(uint16_t vendor, uint16_t device, uint8_t rev);
/* Locate file by name and optional type. Return 0 on success. < 0 on error. */
int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type);
/* Map file into memory, returning a pointer to the mapping or NULL on error.
If |size_out| is not NULL, it will pass out the size of the mapped file.
NOTE: Since this may return a direct pointer to memory-mapped hardware,
compressed files are NOT transparently decompressed (unlike cbfs_load()). */
void *cbfs_map(const char *name, size_t *size_out);
/* Like cbfs_map(), except that it will always read from the read-only CBFS
("COREBOOT" FMAP region), even when CONFIG(VBOOT) is enabled. */
void *cbfs_ro_map(const char *name, size_t *size_out);
/* Removes a previously allocated CBFS mapping. Should try to unmap mappings in
strict LIFO order where possible, since mapping backends often don't support
more complicated cases. */
int cbfs_unmap(void *mapping);
/* Locate file in a specific region of fmap. Return 0 on success. < 0 on error*/
int cbfs_locate_file_in_region(struct cbfsf *fh, const char *region_name,
const char *name, uint32_t *type);
/* Load a file from CBFS into a buffer. Returns amount of loaded bytes on
success or 0 on error. File will get decompressed as necessary. Same
decompression requirements as cbfs_load_and_decompress(). */
/* Map file into memory, returning a pointer to the mapping or NULL on error. If |size_out| is
not NULL, it will pass out the size of the mapped file.
NOTE: Since this may return a direct pointer to memory-mapped hardware, compressed files are
NOT transparently decompressed (unlike cbfs_load()). */
void *cbfs_map(const char *name, size_t *size_out);
/* Like cbfs_map(), except that it will always read from the read-only CBFS (the "COREBOOT" FMAP
region), even when CONFIG(VBOOT) is enabled. */
void *cbfs_ro_map(const char *name, size_t *size_out);
/* Removes a previously allocated CBFS mapping. Should try to unmap mappings in strict LIFO
order where possible, since mapping backends often don't support more complicated cases. */
int cbfs_unmap(void *mapping);
/* Load a file from CBFS into a buffer. Returns amount of loaded bytes on success or 0 on error.
File will get decompressed as necessary. */
size_t cbfs_load(const char *name, void *buf, size_t buf_size);
/* Like cbfs_load(), except that it will always read from the read-only CBFS
("COREBOOT" FMAP region), even when CONFIG(VBOOT) is enabled. */
/* Like cbfs_load(), except that it will always read from the read-only CBFS (the "COREBOOT"
FMAP region), even when CONFIG(VBOOT) is enabled. */
size_t cbfs_ro_load(const char *name, void *buf, size_t buf_size);
/* Load |in_size| bytes from |rdev| at |offset| to the |buffer_size| bytes
* large |buffer|, decompressing it according to |compression| in the process.
* Returns the decompressed file size, or 0 on error.
* LZMA files will be mapped for decompression. LZ4 files will be decompressed
* in-place with the buffer size requirements outlined in compression.h. */
/* Load |in_size| bytes from |rdev| at |offset| to the |buffer_size| bytes large |buffer|,
decompressing it according to |compression| in the process. Returns the decompressed file
size, or 0 on error. LZMA files will be mapped for decompression. LZ4 files will be
decompressed in-place with the buffer size requirements outlined in compression.h. */
size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset,
size_t in_size, void *buffer, size_t buffer_size, uint32_t compression);
@ -53,10 +54,9 @@ size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset,
int cbfs_prog_stage_load(struct prog *prog);
/*
* Data structure that represents "a" CBFS boot device, with optional metadata
* cache. Generally we only have one of these, or two (RO and RW) when
* CONFIG(VBOOT) is set. The region device stored here must always be a
* subregion of boot_device_ro().
* Data structure that represents "a" CBFS boot device, with optional metadata cache. Generally
* we only have one of these, or two (RO and RW) when CONFIG(VBOOT) is set. The region device
* stored here must always be a subregion of boot_device_ro().
*/
struct cbfs_boot_device {
struct region_device rdev;
@ -68,18 +68,17 @@ struct cbfs_boot_device {
void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id);
/*
* Retrieves the currently active CBFS boot device. If |force_ro| is set, will
* always return the read-only CBFS instead (this only makes a difference when
* CONFIG(VBOOT) is enabled). May perform certain CBFS initialization tasks.
* Returns NULL on error (e.g. boot device IO error).
* Retrieves the currently active CBFS boot device. If |force_ro| is set, will always return the
* read-only CBFS instead (this only makes a difference when CONFIG(VBOOT) is enabled). May
* perform certain CBFS initialization tasks. Returns NULL on error (e.g. boot device IO error).
*/
const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro);
/*
* Builds the mcache (if |cbd->mcache| is set) and verifies |metadata_hash| (if
* it is not NULL). If CB_CBFS_CACHE_FULL is returned, the mcache is incomplete
* but still valid and the metadata hash was still verified. Should be called
* once per *boot* (not once per stage) before the first CBFS access.
* Builds the mcache (if |cbd->mcache| is set) and verifies |metadata_hash| (if it is not NULL).
* If CB_CBFS_CACHE_FULL is returned, the mcache is incomplete but still valid and the metadata
* hash was still verified. Should be called once per *boot* (not once per stage) before the
* first CBFS access.
*/
cb_err_t cbfs_init_boot_device(const struct cbfs_boot_device *cbd,
struct vb2_hash *metadata_hash);

View File

@ -29,7 +29,7 @@ cb_err_t cbfs_boot_lookup(const char *name, bool force_ro,
cb_err_t err = CB_CBFS_CACHE_FULL;
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size)
err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size,
name, mdata, &data_offset);
name, mdata, &data_offset);
if (err == CB_CBFS_CACHE_FULL) {
struct vb2_hash *metadata_hash = NULL;
if (CONFIG(TOCTOU_SAFETY)) {
@ -37,21 +37,17 @@ cb_err_t cbfs_boot_lookup(const char *name, bool force_ro,
dead_code();
if (!cbd->mcache_size)
die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n");
/* We can only reach this for the RW CBFS -- an mcache
overflow in the RO CBFS would have been caught when
building the mcache in cbfs_get_boot_device().
(Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */
/* We can only reach this for the RW CBFS -- an mcache overflow in the
RO CBFS would have been caught when building the mcache in cbfs_get
boot_device(). (Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */
assert(cbd == vboot_get_cbfs_boot_device());
/* TODO: set metadata_hash to RW metadata hash here. */
}
err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset,
metadata_hash);
err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset, metadata_hash);
}
if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro &&
err == CB_CBFS_NOT_FOUND) {
printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n",
name);
if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro && err == CB_CBFS_NOT_FOUND) {
printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n", name);
return cbfs_boot_lookup(name, true, mdata, rdev);
}
if (err) {
@ -60,8 +56,7 @@ cb_err_t cbfs_boot_lookup(const char *name, bool force_ro,
else if (err == CB_CBFS_HASH_MISMATCH)
printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n");
else
printk(BIOS_ERR,
"CBFS ERROR: error %d when looking up '%s'\n",
printk(BIOS_ERR, "CBFS ERROR: error %d when looking up '%s'\n",
err, name);
return err;
}
@ -82,8 +77,7 @@ int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type)
return -1;
size_t msize = be32toh(fh->mdata.h.offset);
if (rdev_chain(&fh->metadata, &addrspace_32bit.rdev,
(uintptr_t)&fh->mdata, msize))
if (rdev_chain(&fh->metadata, &addrspace_32bit.rdev, (uintptr_t)&fh->mdata, msize))
return -1;
if (type) {
@ -122,8 +116,8 @@ void *cbfs_ro_map(const char *name, size_t *size_out)
int cbfs_unmap(void *mapping)
{
/* This works because munmap() only works on the root rdev and never
cares about which chained subregion something was mapped from. */
/* This works because munmap() only works on the root rdev and never cares about which
chained subregion something was mapped from. */
return rdev_munmap(boot_device_ro(), mapping);
}
@ -133,8 +127,7 @@ int cbfs_locate_file_in_region(struct cbfsf *fh, const char *region_name,
struct region_device rdev;
int ret = 0;
if (fmap_locate_area_as_rdev(region_name, &rdev)) {
LOG("%s region not found while looking for %s\n",
region_name, name);
LOG("%s region not found while looking for %s\n", region_name, name);
return -1;
}
@ -189,14 +182,13 @@ static inline bool cbfs_lzma_enabled(void)
return false;
if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE))
return false;
if ((ENV_ROMSTAGE || ENV_POSTCAR)
&& !CONFIG(COMPRESS_RAMSTAGE))
if ((ENV_ROMSTAGE || ENV_POSTCAR) && !CONFIG(COMPRESS_RAMSTAGE))
return false;
return true;
}
size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset,
size_t in_size, void *buffer, size_t buffer_size, uint32_t compression)
size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset, size_t in_size,
void *buffer, size_t buffer_size, uint32_t compression)
{
size_t out_size;
void *map;
@ -213,8 +205,8 @@ size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset,
if (!cbfs_lz4_enabled())
return 0;
/* cbfs_stage_load_and_decompress() takes care of in-place
lz4 decompression by setting up the rdev to be in memory. */
/* cbfs_stage_load_and_decompress() takes care of in-place LZ4 decompression by
setting up the rdev to be in memory. */
map = rdev_mmap(rdev, offset, in_size);
if (map == NULL)
return 0;
@ -248,33 +240,31 @@ size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset,
}
}
static size_t cbfs_stage_load_and_decompress(const struct region_device *rdev,
size_t offset, size_t in_size, void *buffer, size_t buffer_size,
uint32_t compression)
static size_t cbfs_stage_load_and_decompress(const struct region_device *rdev, size_t offset,
size_t in_size, void *buffer, size_t buffer_size, uint32_t compression)
{
struct region_device rdev_src;
if (compression == CBFS_COMPRESS_LZ4) {
if (!cbfs_lz4_enabled())
return 0;
/* Load the compressed image to the end of the available memory
* area for in-place decompression. It is the responsibility of
* the caller to ensure that buffer_size is large enough
* (see compression.h, guaranteed by cbfstool for stages). */
/* Load the compressed image to the end of the available memory area for
in-place decompression. It is the responsibility of the caller to ensure that
buffer_size is large enough (see compression.h, guaranteed by cbfstool for
stages). */
void *compr_start = buffer + buffer_size - in_size;
if (rdev_readat(rdev, compr_start, offset, in_size) != in_size)
return 0;
/* Create a region device backed by memory. */
rdev_chain(&rdev_src, &addrspace_32bit.rdev,
(uintptr_t)compr_start, in_size);
rdev_chain(&rdev_src, &addrspace_32bit.rdev, (uintptr_t)compr_start, in_size);
return cbfs_load_and_decompress(&rdev_src, 0, in_size, buffer,
buffer_size, compression);
return cbfs_load_and_decompress(&rdev_src, 0, in_size, buffer, buffer_size,
compression);
}
/* All other algorithms can use the generic implementation. */
return cbfs_load_and_decompress(rdev, offset, in_size, buffer,
buffer_size, compression);
return cbfs_load_and_decompress(rdev, offset, in_size, buffer, buffer_size,
compression);
}
static inline int tohex4(unsigned int c)
@ -317,8 +307,7 @@ void *cbfs_boot_map_optionrom_revision(uint16_t vendor, uint16_t device, uint8_t
return cbfs_map(name, NULL);
}
static size_t _cbfs_load(const char *name, void *buf, size_t buf_size,
bool force_ro)
static size_t _cbfs_load(const char *name, void *buf, size_t buf_size, bool force_ro)
{
struct region_device rdev;
union cbfs_mdata mdata;
@ -390,7 +379,7 @@ int cbfs_prog_stage_load(struct prog *pstage)
}
fsize = cbfs_stage_load_and_decompress(fh, foffset, fsize, load,
stage.memlen, stage.compression);
stage.memlen, stage.compression);
if (!fsize)
return -1;
@ -422,8 +411,7 @@ void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id)
} else if (ENV_ROMSTAGE_OR_BEFORE) {
u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) *
CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100;
boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary,
CBFS_MCACHE_ALIGNMENT);
boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary, CBFS_MCACHE_ALIGNMENT);
if (id == CBMEM_ID_CBFS_RO_MCACHE) {
cbd->mcache = _cbfs_mcache;
cbd->mcache_size = boundary - _cbfs_mcache;
@ -435,20 +423,19 @@ void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id)
}
cb_err_t cbfs_init_boot_device(const struct cbfs_boot_device *cbd,
struct vb2_hash *metadata_hash)
struct vb2_hash *mdata_hash)
{
/* If we have an mcache, mcache_build() will also check mdata hash. */
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0)
return cbfs_mcache_build(&cbd->rdev, cbd->mcache,
cbd->mcache_size, metadata_hash);
return cbfs_mcache_build(&cbd->rdev, cbd->mcache, cbd->mcache_size, mdata_hash);
/* No mcache and no verification means we have nothing special to do. */
if (!CONFIG(CBFS_VERIFICATION) || !metadata_hash)
if (!CONFIG(CBFS_VERIFICATION) || !mdata_hash)
return CB_SUCCESS;
/* Verification only: use cbfs_walk() without a walker() function to
just run through the CBFS once, will return NOT_FOUND by default. */
cb_err_t err = cbfs_walk(&cbd->rdev, NULL, NULL, metadata_hash, 0);
/* Verification only: use cbfs_walk() without a walker() function to just run through
the CBFS once, will return NOT_FOUND by default. */
cb_err_t err = cbfs_walk(&cbd->rdev, NULL, NULL, mdata_hash, 0);
if (err == CB_CBFS_NOT_FOUND)
err = CB_SUCCESS;
return err;
@ -458,22 +445,22 @@ const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro)
{
static struct cbfs_boot_device ro;
/* Ensure we always init RO mcache, even if first file is from RW.
/* Ensure we always init RO mcache, even if the first file is from the RW CBFS.
Otherwise it may not be available when needed in later stages. */
if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev))
cbfs_get_boot_device(true);
if (!force_ro) {
const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device();
/* This will return NULL if vboot isn't enabled, didn't run yet
or decided to boot into recovery mode. */
/* This will return NULL if vboot isn't enabled, didn't run yet or decided to
boot into recovery mode. */
if (rw)
return rw;
}
/* In rare cases post-RAM stages may run this before cbmem_initialize(),
so we can't lock in the result of find_mcache() on the first try and
should keep trying every time until an mcache is found. */
/* In rare cases post-RAM stages may run this before cbmem_initialize(), so we can't
lock in the result of find_mcache() on the first try and should keep trying every
time until an mcache is found. */
cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE);
if (region_device_sz(&ro.rdev))