commonlib: Add support for rational number approximation
This patch adds a function to calculate best rational approximation for a given fraction and unit tests for it. Change-Id: I2272d9bb31cde54e65721f95662b80754eee50c2 Signed-off-by: Vinod Polimera <quic_vpolimer@quicinc.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/66010 Reviewed-by: Yu-Ping Wu <yupingso@google.com> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
parent
65377eba7f
commit
7528311929
|
@ -21,6 +21,9 @@ ramstage-y += region.c
|
||||||
smm-y += region.c
|
smm-y += region.c
|
||||||
postcar-y += region.c
|
postcar-y += region.c
|
||||||
|
|
||||||
|
romstage-y += rational.c
|
||||||
|
ramstage-y += rational.c
|
||||||
|
|
||||||
ramstage-$(CONFIG_PLATFORM_USES_FSP1_1) += fsp_relocate.c
|
ramstage-$(CONFIG_PLATFORM_USES_FSP1_1) += fsp_relocate.c
|
||||||
ifeq ($(CONFIG_FSP_M_XIP),)
|
ifeq ($(CONFIG_FSP_M_XIP),)
|
||||||
romstage-$(CONFIG_PLATFORM_USES_FSP2_0) += fsp_relocate.c
|
romstage-$(CONFIG_PLATFORM_USES_FSP2_0) += fsp_relocate.c
|
||||||
|
|
|
@ -0,0 +1,22 @@
|
||||||
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||||
|
|
||||||
|
#ifndef _COMMONLIB_RATIONAL_H_
|
||||||
|
#define _COMMONLIB_RATIONAL_H_
|
||||||
|
|
||||||
|
#include <stddef.h>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Calculate the best rational approximation for a given fraction,
|
||||||
|
* with the restriction of maximum numerator and denominator.
|
||||||
|
* For example, to find the approximation of 3.1415 with 5 bit denominator
|
||||||
|
* and 8 bit numerator fields:
|
||||||
|
*
|
||||||
|
* rational_best_approximation(31415, 10000,
|
||||||
|
* (1 << 8) - 1, (1 << 5) - 1, &n, &d);
|
||||||
|
*/
|
||||||
|
void rational_best_approximation(
|
||||||
|
unsigned long numerator, unsigned long denominator,
|
||||||
|
unsigned long max_numerator, unsigned long max_denominator,
|
||||||
|
unsigned long *best_numerator, unsigned long *best_denominator);
|
||||||
|
|
||||||
|
#endif /* _COMMONLIB_RATIONAL_H_ */
|
|
@ -0,0 +1,95 @@
|
||||||
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||||
|
/*
|
||||||
|
* Helper functions for rational numbers.
|
||||||
|
*
|
||||||
|
* Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
|
||||||
|
* Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <commonlib/helpers.h>
|
||||||
|
#include <commonlib/rational.h>
|
||||||
|
#include <limits.h>
|
||||||
|
|
||||||
|
/*
|
||||||
|
* For theoretical background, see:
|
||||||
|
* https://en.wikipedia.org/wiki/Continued_fraction
|
||||||
|
*/
|
||||||
|
void rational_best_approximation(
|
||||||
|
unsigned long numerator, unsigned long denominator,
|
||||||
|
unsigned long max_numerator, unsigned long max_denominator,
|
||||||
|
unsigned long *best_numerator, unsigned long *best_denominator)
|
||||||
|
{
|
||||||
|
/*
|
||||||
|
* n/d is the starting rational, where both n and d will
|
||||||
|
* decrease in each iteration using the Euclidean algorithm.
|
||||||
|
*
|
||||||
|
* dp is the value of d from the prior iteration.
|
||||||
|
*
|
||||||
|
* n2/d2, n1/d1, and n0/d0 are our successively more accurate
|
||||||
|
* approximations of the rational. They are, respectively,
|
||||||
|
* the current, previous, and two prior iterations of it.
|
||||||
|
*
|
||||||
|
* a is current term of the continued fraction.
|
||||||
|
*/
|
||||||
|
unsigned long n, d, n0, d0, n1, d1, n2, d2;
|
||||||
|
n = numerator;
|
||||||
|
d = denominator;
|
||||||
|
n0 = d1 = 0;
|
||||||
|
n1 = d0 = 1;
|
||||||
|
|
||||||
|
for (;;) {
|
||||||
|
unsigned long dp, a;
|
||||||
|
|
||||||
|
if (d == 0)
|
||||||
|
break;
|
||||||
|
/*
|
||||||
|
* Find next term in continued fraction, 'a', via
|
||||||
|
* Euclidean algorithm.
|
||||||
|
*/
|
||||||
|
dp = d;
|
||||||
|
a = n / d;
|
||||||
|
d = n % d;
|
||||||
|
n = dp;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Calculate the current rational approximation (aka
|
||||||
|
* convergent), n2/d2, using the term just found and
|
||||||
|
* the two prior approximations.
|
||||||
|
*/
|
||||||
|
n2 = n0 + a * n1;
|
||||||
|
d2 = d0 + a * d1;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If the current convergent exceeds the maximum, then
|
||||||
|
* return either the previous convergent or the
|
||||||
|
* largest semi-convergent, the final term of which is
|
||||||
|
* found below as 't'.
|
||||||
|
*/
|
||||||
|
if ((n2 > max_numerator) || (d2 > max_denominator)) {
|
||||||
|
unsigned long t = ULONG_MAX;
|
||||||
|
|
||||||
|
if (d1)
|
||||||
|
t = (max_denominator - d0) / d1;
|
||||||
|
if (n1)
|
||||||
|
t = MIN(t, (max_numerator - n0) / n1);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This tests if the semi-convergent is closer than the previous
|
||||||
|
* convergent. If d1 is zero there is no previous convergent as
|
||||||
|
* this is the 1st iteration, so always choose the semi-convergent.
|
||||||
|
*/
|
||||||
|
if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
|
||||||
|
n1 = n0 + t * n1;
|
||||||
|
d1 = d0 + t * d1;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
n0 = n1;
|
||||||
|
n1 = n2;
|
||||||
|
d0 = d1;
|
||||||
|
d1 = d2;
|
||||||
|
}
|
||||||
|
|
||||||
|
*best_numerator = n1;
|
||||||
|
*best_denominator = d1;
|
||||||
|
}
|
|
@ -2,7 +2,11 @@
|
||||||
|
|
||||||
subdirs-y += bsd
|
subdirs-y += bsd
|
||||||
|
|
||||||
|
tests-y += rational-test
|
||||||
tests-y += region-test
|
tests-y += region-test
|
||||||
|
|
||||||
|
rational-test-srcs += tests/commonlib/rational-test.c
|
||||||
|
rational-test-srcs += src/commonlib/rational.c
|
||||||
|
|
||||||
region-test-srcs += tests/commonlib/region-test.c
|
region-test-srcs += tests/commonlib/region-test.c
|
||||||
region-test-srcs += src/commonlib/region.c
|
region-test-srcs += src/commonlib/region.c
|
||||||
|
|
|
@ -0,0 +1,57 @@
|
||||||
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||||
|
|
||||||
|
#include <commonlib/rational.h>
|
||||||
|
#include <tests/test.h>
|
||||||
|
|
||||||
|
struct rational_test_param {
|
||||||
|
unsigned long num, den;
|
||||||
|
unsigned long max_num, max_den;
|
||||||
|
unsigned long exp_num, exp_den;
|
||||||
|
};
|
||||||
|
|
||||||
|
static const struct rational_test_param test_params[] = {
|
||||||
|
/* Exceeds bounds, semi-convergent term > half last term */
|
||||||
|
{ 1230, 10, 100, 20, 100, 1},
|
||||||
|
/* Exceeds bounds, semi-convergent term < half last term */
|
||||||
|
{ 34567, 100, 120, 20, 120, 1},
|
||||||
|
/* Closest to zero */
|
||||||
|
{ 1, 30, 100, 10, 0, 1},
|
||||||
|
/* Closest to smallest non-zero */
|
||||||
|
{ 1, 19, 100, 10, 1, 10},
|
||||||
|
/* Exact answer */
|
||||||
|
{ 1155, 7735, 255, 255, 33, 221},
|
||||||
|
/* Convergent */
|
||||||
|
{ 27, 32, 16, 16, 11, 13},
|
||||||
|
/* Convergent, semiconvergent term half convergent term */
|
||||||
|
{ 67, 54, 17, 18, 5, 4},
|
||||||
|
/* Semiconvergent, semiconvergent term half convergent term */
|
||||||
|
{ 453, 182, 60, 60, 57, 23},
|
||||||
|
/* Semiconvergent, numerator limit */
|
||||||
|
{ 87, 32, 70, 32, 68, 25},
|
||||||
|
/* Semiconvergent, demominator limit */
|
||||||
|
{ 14533, 4626, 15000, 2400, 7433, 2366},
|
||||||
|
};
|
||||||
|
|
||||||
|
static void test_rational(void **state)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
unsigned long num = 0, den = 0;
|
||||||
|
|
||||||
|
for (i = 0; i < ARRAY_SIZE(test_params); i++) {
|
||||||
|
rational_best_approximation(test_params[i].num, test_params[i].den,
|
||||||
|
test_params[i].max_num, test_params[i].max_den,
|
||||||
|
&num, &den);
|
||||||
|
assert_int_equal(num, test_params[i].exp_num);
|
||||||
|
assert_int_equal(den, test_params[i].exp_den);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(void)
|
||||||
|
{
|
||||||
|
const struct CMUnitTest tests[] = {
|
||||||
|
cmocka_unit_test(test_rational),
|
||||||
|
};
|
||||||
|
|
||||||
|
return cmocka_run_group_tests(tests, NULL, NULL);
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue