soc/amd/cezanne: Port ACPI p-state and c-state entries from picasso
Add generate_cpu_entries to device operations. Add support to generate cpu p-state and c-state SSDT entries. BUG=b:184151560 TEST=Dump and verify SSDT entry for CPU p-states and c-states. Change-Id: I77d8078b94fb661dc045b4184955c8cbec373d12 Signed-off-by: Jason Glenesk <jason.glenesk@amd.corp-partner.google.com> Signed-off-by: Mathew King <mathewk@chromium.org> Reviewed-on: https://review.coreboot.org/c/coreboot/+/52036 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Raul Rangel <rrangel@chromium.org> Reviewed-by: Marshall Dawson <marshalldawson3rd@gmail.com>
This commit is contained in:
parent
40df8aa84b
commit
79542fa36f
|
@ -216,6 +216,14 @@ config DISABLE_KEYBOARD_RESET_PIN
|
|||
functionality isn't disabled, configuring it as an output and driving
|
||||
it as 0 will cause a reset.
|
||||
|
||||
config ACPI_SSDT_PSD_INDEPENDENT
|
||||
bool "Allow core p-state independent transitions"
|
||||
default y
|
||||
help
|
||||
AMD recommends the ACPI _PSD object to be configured to cause
|
||||
cores to transition between p-states independently. A vendor may
|
||||
choose to generate _PSD object to allow cores to transition together.
|
||||
|
||||
menu "PSP Configuration Options"
|
||||
|
||||
config AMD_FWM_POSITION_INDEX
|
||||
|
|
|
@ -3,15 +3,20 @@
|
|||
/* ACPI - create the Fixed ACPI Description Tables (FADT) */
|
||||
|
||||
#include <acpi/acpi.h>
|
||||
#include <acpi/acpigen.h>
|
||||
#include <amdblocks/acpi.h>
|
||||
#include <amdblocks/cpu.h>
|
||||
#include <amdblocks/acpimmio.h>
|
||||
#include <amdblocks/ioapic.h>
|
||||
#include <arch/ioapic.h>
|
||||
#include <arch/smp/mpspec.h>
|
||||
#include <console/console.h>
|
||||
#include <cpu/amd/cpuid.h>
|
||||
#include <cpu/amd/msr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <soc/acpi.h>
|
||||
#include <soc/iomap.h>
|
||||
#include <soc/msr.h>
|
||||
#include <types.h>
|
||||
#include "chip.h"
|
||||
|
||||
|
@ -121,3 +126,224 @@ void acpi_fill_fadt(acpi_fadt_t *fadt)
|
|||
fadt->x_gpe0_blk.addrl = ACPI_GPE0_BLK;
|
||||
fadt->x_gpe0_blk.addrh = 0x0;
|
||||
}
|
||||
|
||||
static uint32_t get_pstate_core_freq(msr_t pstate_def)
|
||||
{
|
||||
uint32_t core_freq, core_freq_mul, core_freq_div;
|
||||
bool valid_freq_divisor;
|
||||
|
||||
/* Core frequency multiplier */
|
||||
core_freq_mul = pstate_def.lo & PSTATE_DEF_LO_FREQ_MUL_MASK;
|
||||
|
||||
/* Core frequency divisor ID */
|
||||
core_freq_div =
|
||||
(pstate_def.lo & PSTATE_DEF_LO_FREQ_DIV_MASK) >> PSTATE_DEF_LO_FREQ_DIV_SHIFT;
|
||||
|
||||
if (core_freq_div == 0) {
|
||||
return 0;
|
||||
} else if ((core_freq_div >= PSTATE_DEF_LO_FREQ_DIV_MIN)
|
||||
&& (core_freq_div <= PSTATE_DEF_LO_EIGHTH_STEP_MAX)) {
|
||||
/* Allow 1/8 integer steps for this range */
|
||||
valid_freq_divisor = 1;
|
||||
} else if ((core_freq_div > PSTATE_DEF_LO_EIGHTH_STEP_MAX)
|
||||
&& (core_freq_div <= PSTATE_DEF_LO_FREQ_DIV_MAX) && !(core_freq_div & 0x1)) {
|
||||
/* Only allow 1/4 integer steps for this range */
|
||||
valid_freq_divisor = 1;
|
||||
} else {
|
||||
valid_freq_divisor = 0;
|
||||
}
|
||||
|
||||
if (valid_freq_divisor) {
|
||||
/* 25 * core_freq_mul / (core_freq_div / 8) */
|
||||
core_freq =
|
||||
((PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul * 8) / (core_freq_div));
|
||||
} else {
|
||||
printk(BIOS_WARNING, "Undefined core_freq_div %x used. Force to 1.\n",
|
||||
core_freq_div);
|
||||
core_freq = (PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul);
|
||||
}
|
||||
return core_freq;
|
||||
}
|
||||
|
||||
static uint32_t get_pstate_core_power(msr_t pstate_def)
|
||||
{
|
||||
uint32_t voltage_in_uvolts, core_vid, current_value_amps, current_divisor, power_in_mw;
|
||||
|
||||
/* Core voltage ID */
|
||||
core_vid =
|
||||
(pstate_def.lo & PSTATE_DEF_LO_CORE_VID_MASK) >> PSTATE_DEF_LO_CORE_VID_SHIFT;
|
||||
|
||||
/* Current value in amps */
|
||||
current_value_amps =
|
||||
(pstate_def.lo & PSTATE_DEF_LO_CUR_VAL_MASK) >> PSTATE_DEF_LO_CUR_VAL_SHIFT;
|
||||
|
||||
/* Current divisor */
|
||||
current_divisor =
|
||||
(pstate_def.lo & PSTATE_DEF_LO_CUR_DIV_MASK) >> PSTATE_DEF_LO_CUR_DIV_SHIFT;
|
||||
|
||||
/* Voltage */
|
||||
if ((core_vid >= 0xF8) && (core_vid <= 0xFF)) {
|
||||
/* Voltage off for VID codes 0xF8 to 0xFF */
|
||||
voltage_in_uvolts = 0;
|
||||
} else {
|
||||
voltage_in_uvolts =
|
||||
SERIAL_VID_MAX_MICROVOLTS - (SERIAL_VID_DECODE_MICROVOLTS * core_vid);
|
||||
}
|
||||
|
||||
/* Power in mW */
|
||||
power_in_mw = (voltage_in_uvolts) / 1000 * current_value_amps;
|
||||
|
||||
switch (current_divisor) {
|
||||
case 0:
|
||||
break;
|
||||
case 1:
|
||||
power_in_mw = power_in_mw / 10L;
|
||||
break;
|
||||
case 2:
|
||||
power_in_mw = power_in_mw / 100L;
|
||||
break;
|
||||
case 3:
|
||||
/* current_divisor is set to an undefined value.*/
|
||||
printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n");
|
||||
power_in_mw = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
return power_in_mw;
|
||||
}
|
||||
|
||||
/*
|
||||
* Populate structure describing enabled p-states and return count of enabled p-states.
|
||||
*/
|
||||
static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values,
|
||||
struct acpi_xpss_sw_pstate *pstate_xpss_values)
|
||||
{
|
||||
msr_t pstate_def;
|
||||
size_t pstate_count, pstate;
|
||||
uint32_t pstate_enable, max_pstate;
|
||||
|
||||
pstate_count = 0;
|
||||
max_pstate = (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT;
|
||||
|
||||
for (pstate = 0; pstate <= max_pstate; pstate++) {
|
||||
pstate_def = rdmsr(PSTATE_0_MSR + pstate);
|
||||
|
||||
pstate_enable = (pstate_def.hi & PSTATE_DEF_HI_ENABLE_MASK)
|
||||
>> PSTATE_DEF_HI_ENABLE_SHIFT;
|
||||
if (!pstate_enable)
|
||||
continue;
|
||||
|
||||
pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_def);
|
||||
pstate_values[pstate_count].power = get_pstate_core_power(pstate_def);
|
||||
pstate_values[pstate_count].transition_latency = 0;
|
||||
pstate_values[pstate_count].bus_master_latency = 0;
|
||||
pstate_values[pstate_count].control_value = pstate;
|
||||
pstate_values[pstate_count].status_value = pstate;
|
||||
|
||||
pstate_xpss_values[pstate_count].core_freq =
|
||||
(uint64_t)pstate_values[pstate_count].core_freq;
|
||||
pstate_xpss_values[pstate_count].power =
|
||||
(uint64_t)pstate_values[pstate_count].power;
|
||||
pstate_xpss_values[pstate_count].transition_latency = 0;
|
||||
pstate_xpss_values[pstate_count].bus_master_latency = 0;
|
||||
pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate;
|
||||
pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate;
|
||||
pstate_count++;
|
||||
}
|
||||
|
||||
return pstate_count;
|
||||
}
|
||||
|
||||
void generate_cpu_entries(const struct device *device)
|
||||
{
|
||||
int logical_cores;
|
||||
size_t pstate_count, cpu, proc_blk_len;
|
||||
struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} };
|
||||
struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} };
|
||||
uint32_t threads_per_core, proc_blk_addr;
|
||||
uint32_t cstate_base_address =
|
||||
rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK;
|
||||
|
||||
const acpi_addr_t perf_ctrl = {
|
||||
.space_id = ACPI_ADDRESS_SPACE_FIXED,
|
||||
.bit_width = 64,
|
||||
.addrl = PS_CTL_REG,
|
||||
};
|
||||
const acpi_addr_t perf_sts = {
|
||||
.space_id = ACPI_ADDRESS_SPACE_FIXED,
|
||||
.bit_width = 64,
|
||||
.addrl = PS_STS_REG,
|
||||
};
|
||||
|
||||
acpi_cstate_t cstate_info[] = {
|
||||
[0] = {
|
||||
.ctype = 1,
|
||||
.latency = 1,
|
||||
.power = 0,
|
||||
.resource = {
|
||||
.space_id = ACPI_ADDRESS_SPACE_FIXED,
|
||||
.bit_width = 2,
|
||||
.bit_offset = 2,
|
||||
.addrl = 0,
|
||||
.addrh = 0,
|
||||
},
|
||||
},
|
||||
[1] = {
|
||||
.ctype = 2,
|
||||
.latency = 0x12,
|
||||
.power = 0,
|
||||
.resource = {
|
||||
.space_id = ACPI_ADDRESS_SPACE_IO,
|
||||
.bit_width = 8,
|
||||
.bit_offset = 0,
|
||||
.addrl = cstate_base_address + 1,
|
||||
.addrh = 0,
|
||||
.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
threads_per_core = ((cpuid_ebx(CPUID_EBX_CORE_ID) & CPUID_EBX_THREADS_MASK)
|
||||
>> CPUID_EBX_THREADS_SHIFT)
|
||||
+ 1;
|
||||
pstate_count = get_pstate_info(pstate_values, pstate_xpss_values);
|
||||
logical_cores = get_cpu_count();
|
||||
|
||||
for (cpu = 0; cpu < logical_cores; cpu++) {
|
||||
|
||||
if (cpu == 0) {
|
||||
/* BSP values for \_SB.Pxxx */
|
||||
proc_blk_len = 6;
|
||||
proc_blk_addr = ACPI_GPE0_BLK;
|
||||
} else {
|
||||
/* AP values for \_SB.Pxxx */
|
||||
proc_blk_addr = 0;
|
||||
proc_blk_len = 0;
|
||||
}
|
||||
|
||||
acpigen_write_processor(cpu, proc_blk_addr, proc_blk_len);
|
||||
|
||||
acpigen_write_pct_package(&perf_ctrl, &perf_sts);
|
||||
|
||||
acpigen_write_pss_object(pstate_values, pstate_count);
|
||||
|
||||
acpigen_write_xpss_object(pstate_xpss_values, pstate_count);
|
||||
|
||||
if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT))
|
||||
acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core,
|
||||
HW_ALL);
|
||||
else
|
||||
acpigen_write_PSD_package(0, logical_cores, SW_ALL);
|
||||
|
||||
acpigen_write_PPC(0);
|
||||
|
||||
acpigen_write_CST_package(cstate_info, ARRAY_SIZE(cstate_info));
|
||||
|
||||
acpigen_write_CSD_package(cpu / threads_per_core, threads_per_core,
|
||||
CSD_HW_ALL, 0);
|
||||
|
||||
acpigen_pop_len();
|
||||
}
|
||||
|
||||
acpigen_write_processor_package("PPKG", 0, logical_cores);
|
||||
}
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <fsp/api.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/data_fabric.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/southbridge.h>
|
||||
|
@ -19,6 +20,7 @@ struct device_operations cpu_bus_ops = {
|
|||
.read_resources = noop_read_resources,
|
||||
.set_resources = noop_set_resources,
|
||||
.init = mp_cpu_bus_init,
|
||||
.acpi_fill_ssdt = generate_cpu_entries,
|
||||
};
|
||||
|
||||
static const char *soc_acpi_name(const struct device *dev)
|
||||
|
|
Loading…
Reference in New Issue