Migrate fsp_206ax to SMM_MODULES

This gets rid of ugly tseg_relocate for fsp_bd82x6x.

This is adaptation of a3e41c0896

Change-Id: I4e80e6e98d3a6da3e3e480e9368fae1b3ed67cd6
Signed-off-by: Vladimir Serbinenko <phcoder@gmail.com>
Reviewed-on: http://review.coreboot.org/10353
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This commit is contained in:
Vladimir Serbinenko 2015-05-28 21:03:51 +02:00
parent 456f495d4e
commit 7f46420f4c
10 changed files with 385 additions and 192 deletions

View File

@ -37,6 +37,7 @@ config CPU_SPECIFIC_OPTIONS
select SSE2
select UDELAY_LAPIC
select SMM_TSEG
select SMM_MODULES
select SUPPORT_CPU_UCODE_IN_CBFS if HAVE_FSP_BIN
select PARALLEL_CPU_INIT
select TSC_SYNC_MFENCE

View File

@ -13,3 +13,5 @@ ifneq ($(wildcard $(shell readlink -f "$(top)/$(CONFIG_MICROCODE_INCLUDE_PATH)")
CPPFLAGS_common += -I$(CONFIG_MICROCODE_INCLUDE_PATH)
endif
endif
ramstage-$(CONFIG_HAVE_SMI_HANDLER) += smmrelocate.c

View File

@ -106,6 +106,7 @@ void intel_model_206ax_finalize_smm(void);
/* Configure power limits for turbo mode */
void set_power_limits(u8 power_limit_1_time);
int cpu_config_tdp_levels(void);
void smm_relocate(void);
#endif
#endif

View File

@ -0,0 +1,333 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 ChromeOS Authors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <types.h>
#include <string.h>
#include <device/device.h>
#include <device/pci.h>
#include <cpu/cpu.h>
#include <cpu/x86/cache.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/mtrr.h>
#include <cpu/x86/smm.h>
#include <console/console.h>
#include <northbridge/intel/fsp_sandybridge/northbridge.h>
#include <southbridge/intel/fsp_bd82x6x/pch.h>
#include "model_206ax.h"
#define EMRRphysBase_MSR 0x1f4
#define EMRRphysMask_MSR 0x1f5
#define UNCORE_EMRRphysBase_MSR 0x2f4
#define UNCORE_EMRRphysMask_MSR 0x2f5
#define CORE_THREAD_COUNT_MSR 0x35
#define SMRR_SUPPORTED (1<<11)
#define EMRR_SUPPORTED (1<<12)
struct smm_relocation_params {
u32 smram_base;
u32 smram_size;
u32 ied_base;
u32 ied_size;
msr_t smrr_base;
msr_t smrr_mask;
msr_t emrr_base;
msr_t emrr_mask;
msr_t uncore_emrr_base;
msr_t uncore_emrr_mask;
};
/* This gets filled in and used during relocation. */
static struct smm_relocation_params smm_reloc_params;
static inline void write_smrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->smrr_base.lo, relo_params->smrr_mask.lo);
wrmsr(SMRRphysBase_MSR, relo_params->smrr_base);
wrmsr(SMRRphysMask_MSR, relo_params->smrr_mask);
}
static inline void write_emrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG, "Writing EMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->emrr_base.lo, relo_params->emrr_mask.lo);
wrmsr(EMRRphysBase_MSR, relo_params->emrr_base);
wrmsr(EMRRphysMask_MSR, relo_params->emrr_mask);
}
static inline void write_uncore_emrr(struct smm_relocation_params *relo_params)
{
printk(BIOS_DEBUG,
"Writing UNCORE_EMRR. base = 0x%08x, mask=0x%08x\n",
relo_params->uncore_emrr_base.lo,
relo_params->uncore_emrr_mask.lo);
wrmsr(UNCORE_EMRRphysBase_MSR, relo_params->uncore_emrr_base);
wrmsr(UNCORE_EMRRphysMask_MSR, relo_params->uncore_emrr_mask);
}
/* The relocation work is actually performed in SMM context, but the code
* resides in the ramstage module. This occurs by trampolining from the default
* SMRAM entry point to here. */
static void asmlinkage cpu_smm_do_relocation(void *arg)
{
em64t101_smm_state_save_area_t *save_state;
msr_t mtrr_cap;
struct smm_relocation_params *relo_params;
const struct smm_module_params *p;
const struct smm_runtime *runtime;
int cpu;
p = arg;
runtime = p->runtime;
relo_params = p->arg;
cpu = p->cpu;
if (cpu >= CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
return;
}
printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu);
/* All threads need to set IEDBASE and SMBASE in the save state area.
* Since one thread runs at a time during the relocation the save state
* is the same for all cpus. */
save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE -
runtime->save_state_size);
/* The relocated handler runs with all CPUs concurrently. Therefore
* stagger the entry points adjusting SMBASE downwards by save state
* size * CPU num. */
save_state->smbase = relo_params->smram_base -
cpu * runtime->save_state_size;
save_state->iedbase = relo_params->ied_base;
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x @ %p\n",
save_state->smbase, save_state->iedbase, save_state);
/* Write EMRR and SMRR MSRs based on indicated support. */
mtrr_cap = rdmsr(MTRRcap_MSR);
if (mtrr_cap.lo & SMRR_SUPPORTED)
write_smrr(relo_params);
if (mtrr_cap.lo & EMRR_SUPPORTED) {
write_emrr(relo_params);
/* UNCORE_EMRR msrs are package level. Therefore, only
* configure these MSRs on the BSP. */
if (cpu == 0)
write_uncore_emrr(relo_params);
}
southbridge_clear_smi_status();
}
static u32 northbridge_get_base_reg(device_t dev, int reg)
{
u32 value;
value = pci_read_config32(dev, reg);
/* Base registers are at 1MiB granularity. */
value &= ~((1 << 20) - 1);
return value;
}
static void fill_in_relocation_params(device_t dev,
struct smm_relocation_params *params)
{
u32 tseg_size;
u32 tsegmb;
u32 bgsm;
u32 emrr_base;
u32 emrr_size;
int phys_bits;
/* All range registers are aligned to 4KiB */
const u32 rmask = ~((1 << 12) - 1);
/* Some of the range registers are dependent on the number of physical
* address bits supported. */
phys_bits = cpuid_eax(0x80000008) & 0xff;
/* The range bounded by the TSEGMB and BGSM registers encompasses the
* SMRAM range as well as the IED range. However, the SMRAM available
* to the handler is 4MiB since the IEDRAM lives TSEGMB + 4MiB.
*/
tsegmb = northbridge_get_base_reg(dev, TSEG);
bgsm = northbridge_get_base_reg(dev, BGSM);
tseg_size = bgsm - tsegmb;
params->smram_base = tsegmb;
params->smram_size = 4 << 20;
params->ied_base = tsegmb + params->smram_size;
params->ied_size = tseg_size - params->smram_size;
/* SMRR has 32-bits of valid address aligned to 4KiB. */
params->smrr_base.lo = (params->smram_base & rmask) | MTRR_TYPE_WRBACK;
params->smrr_base.hi = 0;
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRRphysMaskValid;
params->smrr_mask.hi = 0;
/* The EMRR and UNCORE_EMRR are at IEDBASE + 2MiB */
emrr_base = (params->ied_base + (2 << 20)) & rmask;
emrr_size = params->ied_size - (2 << 20);
/* EMRR has 46 bits of valid address aligned to 4KiB. It's dependent
* on the number of physical address bits supported. */
params->emrr_base.lo = emrr_base | MTRR_TYPE_WRBACK;
params->emrr_base.hi = 0;
params->emrr_mask.lo = (~(emrr_size - 1) & rmask) | MTRRphysMaskValid;
params->emrr_mask.hi = (1 << (phys_bits - 32)) - 1;
/* UNCORE_EMRR has 39 bits of valid address aligned to 4KiB. */
params->uncore_emrr_base.lo = emrr_base;
params->uncore_emrr_base.hi = 0;
params->uncore_emrr_mask.lo = (~(emrr_size - 1) & rmask) |
MTRRphysMaskValid;
params->uncore_emrr_mask.hi = (1 << (39 - 32)) - 1;
}
static int install_relocation_handler(int num_cpus,
struct smm_relocation_params *relo_params)
{
/* The default SMM entry happens serially at the default location.
* Therefore, there is only 1 concurrent save state area. Set the
* stack size to the save state size, and call into the
* do_relocation handler. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = 1,
.handler = &cpu_smm_do_relocation,
.handler_arg = (void *)relo_params,
};
return smm_setup_relocation_handler(&smm_params);
}
static void setup_ied_area(struct smm_relocation_params *params)
{
char *ied_base;
struct ied_header ied = {
.signature = "INTEL RSVD",
.size = params->ied_size,
.reserved = {0},
};
ied_base = (void *)params->ied_base;
/* Place IED header at IEDBASE. */
memcpy(ied_base, &ied, sizeof(ied));
/* Zero out 32KiB at IEDBASE + 1MiB */
memset(ied_base + (1 << 20), 0, (32 << 10));
}
static int install_permanent_handler(int num_cpus,
struct smm_relocation_params *relo_params)
{
/* There are num_cpus concurrent stacks and num_cpus concurrent save
* state areas. Lastly, set the stack size to the save state size. */
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
struct smm_loader_params smm_params = {
.per_cpu_stack_size = save_state_size,
.num_concurrent_stacks = num_cpus,
.per_cpu_save_state_size = save_state_size,
.num_concurrent_save_states = num_cpus,
};
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
relo_params->smram_base);
return smm_load_module((void *)relo_params->smram_base,
relo_params->smram_size, &smm_params);
}
static int cpu_smm_setup(void)
{
device_t dev;
int num_cpus;
msr_t msr;
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
dev = dev_find_slot(0, PCI_DEVFN(0, 0));
fill_in_relocation_params(dev, &smm_reloc_params);
setup_ied_area(&smm_reloc_params);
msr = rdmsr(CORE_THREAD_COUNT_MSR);
num_cpus = msr.lo & 0xffff;
if (num_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_CRIT,
"Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n",
num_cpus, CONFIG_MAX_CPUS);
}
if (install_relocation_handler(num_cpus, &smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Relocation handler install failed.\n");
return -1;
}
if (install_permanent_handler(num_cpus, &smm_reloc_params)) {
printk(BIOS_CRIT, "SMM Permanent handler install failed.\n");
return -1;
}
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
/* TODO(adurbin): Is this really needed? */
wbinvd();
return 0;
}
void smm_init(void)
{
/* Return early if CPU SMM setup failed. */
if (cpu_smm_setup())
return;
southbridge_smm_init();
/* Initiate first SMI to kick off SMM-context relocation. Note: this
* SMI being triggered here queues up an SMI in the APs which are in
* wait-for-SIPI state. Once an AP gets an SIPI it will service the SMI
* at the SMM_DEFAULT_BASE before jumping to startup vector. */
southbridge_trigger_smi();
printk(BIOS_DEBUG, "Relocation complete.\n");
/* Lock down the SMRAM space. */
smm_lock();
}
void smm_lock(void)
{
/* LOCK the SMM memory window and enable normal SMM.
* After running this function, only a full reset can
* make the SMM registers writable again.
*/
printk(BIOS_DEBUG, "Locking SMM.\n");
pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM,
D_LCK | G_SMRAME | C_BASE_SEG);
}

View File

@ -36,8 +36,6 @@
#include "../../../southbridge/intel/i82801dx/i82801dx.h"
#elif CONFIG_SOUTHBRIDGE_INTEL_SCH
#include "../../../southbridge/intel/sch/sch.h"
#elif CONFIG_SOUTHBRIDGE_INTEL_FSP_BD82X6X
#include "../../../southbridge/intel/fsp_bd82x6x/pch.h"
#elif CONFIG_SOUTHBRIDGE_INTEL_I82801IX
#include "../../../southbridge/intel/i82801ix/i82801ix.h"
#else
@ -45,15 +43,7 @@
#endif
#if CONFIG_SMM_TSEG
#if CONFIG_NORTHBRIDGE_INTEL_FSP_SANDYBRIDGE || CONFIG_NORTHBRIDGE_INTEL_FSP_IVYBRIDGE
#include <northbridge/intel/fsp_sandybridge/northbridge.h>
#define TSEG_BAR (DEFAULT_PCIEXBAR | TSEG)
#else
#error "Northbridge must define TSEG_BAR."
#endif
#include <cpu/x86/mtrr.h>
#error "Don't use this file with TSEG."
#endif /* CONFIG_SMM_TSEG */

View File

@ -102,6 +102,7 @@
#define TOM 0xa0
#define TOUUD 0xa8 /* Top of Upper Usable DRAM */
#define BGSM 0xb4 /* Base GTT Stolen Memory */
#define TSEG 0xb8 /* TSEG base */
#define TOLUD 0xbc /* Top of Low Used Memory */

View File

@ -42,7 +42,6 @@
#define NMI_OFF 0
#define ENABLE_ACPI_MODE_IN_COREBOOT 0
#define TEST_SMM_FLASH_LOCKDOWN 0
typedef struct southbridge_intel_fsp_bd82x6x_config config_t;
@ -405,58 +404,20 @@ static void enable_hpet(void)
RCBA32(HPTC) = reg32;
}
#if CONFIG_HAVE_SMI_HANDLER
static void pch_lock_smm(struct device *dev)
static void pch_set_acpi_mode(void)
{
#if TEST_SMM_FLASH_LOCKDOWN
u8 reg8;
#endif
if (!acpi_is_wakeup_s3()) {
if (!acpi_is_wakeup_s3() && CONFIG_HAVE_SMI_HANDLER) {
#if ENABLE_ACPI_MODE_IN_COREBOOT
printk(BIOS_DEBUG, "Enabling ACPI via APMC:\n");
outb(0xe1, 0xb2); // Enable ACPI mode
outb(APM_CNT_ACPI_ENABLE, APM_CNT); // Enable ACPI mode
printk(BIOS_DEBUG, "done.\n");
#else
printk(BIOS_DEBUG, "Disabling ACPI via APMC:\n");
outb(0x1e, 0xb2); // Disable ACPI mode
outb(APM_CNT_ACPI_DISABLE, APM_CNT); // Disable ACPI mode
printk(BIOS_DEBUG, "done.\n");
#endif
}
/* Don't allow evil boot loaders, kernels, or
* userspace applications to deceive us:
*/
smm_lock();
#if TEST_SMM_FLASH_LOCKDOWN
/* Now try this: */
printk(BIOS_DEBUG, "Locking BIOS to RO... ");
reg8 = pci_read_config8(dev, 0xdc); /* BIOS_CNTL */
printk(BIOS_DEBUG, " BLE: %s; BWE: %s\n", (reg8&2)?"on":"off",
(reg8&1)?"rw":"ro");
reg8 &= ~(1 << 0); /* clear BIOSWE */
pci_write_config8(dev, 0xdc, reg8);
reg8 |= (1 << 1); /* set BLE */
pci_write_config8(dev, 0xdc, reg8);
printk(BIOS_DEBUG, "ok.\n");
reg8 = pci_read_config8(dev, 0xdc); /* BIOS_CNTL */
printk(BIOS_DEBUG, " BLE: %s; BWE: %s\n", (reg8&2)?"on":"off",
(reg8&1)?"rw":"ro");
printk(BIOS_DEBUG, "Writing:\n");
*(volatile u8 *)0xfff00000 = 0x00;
printk(BIOS_DEBUG, "Testing:\n");
reg8 |= (1 << 0); /* set BIOSWE */
pci_write_config8(dev, 0xdc, reg8);
reg8 = pci_read_config8(dev, 0xdc); /* BIOS_CNTL */
printk(BIOS_DEBUG, " BLE: %s; BWE: %s\n", (reg8&2)?"on":"off",
(reg8&1)?"rw":"ro");
printk(BIOS_DEBUG, "Done.\n");
#endif
}
#endif
static void pch_disable_smm_only_flashing(struct device *dev)
{
@ -541,9 +502,7 @@ static void lpc_init(struct device *dev)
pch_disable_smm_only_flashing(dev);
#if CONFIG_HAVE_SMI_HANDLER
pch_lock_smm(dev);
#endif
pch_set_acpi_mode();
pch_fixups(dev);
}

View File

@ -64,6 +64,11 @@ void intel_pch_finalize_smm(void);
#if !defined(__ASSEMBLER__) && !defined(__ROMCC__)
#if !defined(__PRE_RAM__) && !defined(__SMM__)
#include "chip.h"
/* These helpers are for performing SMM relocation. */
void southbridge_smm_init(void);
void southbridge_trigger_smi(void);
void southbridge_clear_smi_status(void);
int pch_silicon_revision(void);
int pch_silicon_type(void);
int pch_silicon_supported(int type, int rev);

View File

@ -29,13 +29,6 @@
#include <string.h>
#include "pch.h"
#if CONFIG_NORTHBRIDGE_INTEL_FSP_SANDYBRIDGE || CONFIG_NORTHBRIDGE_INTEL_FSP_IVYBRIDGE
#include "northbridge/intel/fsp_sandybridge/northbridge.h"
#endif
extern unsigned char _binary_smm_start;
extern unsigned char _binary_smm_size;
/* While we read PMBASE dynamically in case it changed, let's
* initialize it with a sane value
*/
@ -231,15 +224,18 @@ static void smi_set_eos(void)
outb(reg8, pmbase + SMI_EN);
}
extern uint8_t smm_relocation_start, smm_relocation_end;
static void smm_relocate(void)
void southbridge_smm_init(void)
{
u32 smi_en;
u16 pm1_en;
u32 gpe0_en;
printk(BIOS_DEBUG, "Initializing SMM handler...");
#if CONFIG_ELOG
/* Log events from chipset before clearing */
pch_log_state();
#endif
printk(BIOS_DEBUG, "Initializing southbridge SMI...");
pmbase = pci_read_config32(dev_find_slot(0, PCI_DEVFN(0x1f, 0)),
PMBASE) & 0xff80;
@ -252,10 +248,6 @@ static void smm_relocate(void)
return;
}
/* copy the SMM relocation code */
memcpy((void *)0x38000, &smm_relocation_start,
&smm_relocation_end - &smm_relocation_start);
printk(BIOS_DEBUG, "\n");
dump_smi_status(reset_smi_status());
dump_pm1_status(reset_pm1_status());
@ -304,7 +296,10 @@ static void smm_relocate(void)
smi_en |= EOS | GBL_SMI_EN;
outl(smi_en, pmbase + SMI_EN);
}
void southbridge_trigger_smi(void)
{
/**
* There are several methods of raising a controlled SMI# via
* software, among them:
@ -323,76 +318,16 @@ static void smm_relocate(void)
outb(0x00, 0xb2);
}
static int smm_handler_copied = 0;
static void smm_install(void)
void southbridge_clear_smi_status(void)
{
device_t dev = dev_find_slot(0, PCI_DEVFN(0, 0));
u32 smm_base = 0xa0000;
struct ied_header ied = {
.signature = "INTEL RSVD",
.size = IED_SIZE,
.reserved = {0},
};
/* The first CPU running this gets to copy the SMM handler. But not all
* of them.
*/
if (smm_handler_copied)
return;
smm_handler_copied = 1;
/* enable the SMM memory window */
pci_write_config8(dev, SMRAM, D_OPEN | G_SMRAME | C_BASE_SEG);
#if CONFIG_SMM_TSEG
smm_base = pci_read_config32(dev, TSEG) & ~1;
#endif
/* copy the real SMM handler */
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n", smm_base);
memcpy((void *)smm_base, &_binary_smm_start, (size_t)&_binary_smm_size);
/* copy the IED header into place */
if (CONFIG_SMM_TSEG_SIZE > IED_SIZE) {
/* Top of TSEG region */
smm_base += CONFIG_SMM_TSEG_SIZE - IED_SIZE;
printk(BIOS_DEBUG, "Installing IED header to 0x%08x\n",
smm_base);
memcpy((void *)smm_base, &ied, sizeof(ied));
}
wbinvd();
/* close the SMM memory window and enable normal SMM */
pci_write_config8(dev, SMRAM, G_SMRAME | C_BASE_SEG);
}
void smm_init(void)
{
#if CONFIG_ELOG
/* Log events from chipset before clearing */
pch_log_state();
#endif
/* Put SMM code to 0xa0000 */
smm_install();
/* Put relocation code to 0x38000 and relocate SMBASE */
smm_relocate();
/* We're done. Make sure SMIs can happen! */
smi_set_eos();
}
void smm_lock(void)
{
/* LOCK the SMM memory window and enable normal SMM.
* After running this function, only a full reset can
* make the SMM registers writable again.
*/
printk(BIOS_DEBUG, "Locking SMM.\n");
pci_write_config8(dev_find_slot(0, PCI_DEVFN(0, 0)), SMRAM,
D_LCK | G_SMRAME | C_BASE_SEG);
/* Clear SMI status */
reset_smi_status();
/* Clear PM1 status */
reset_pm1_status();
/* Set EOS bit so other SMIs can occur. */
smi_set_eos();
}
void smm_setup_structures(void *gnvs, void *tcg, void *smi1)

View File

@ -51,28 +51,12 @@ static u8 smm_initialized = 0;
/* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located
* by coreboot.
*/
static global_nvs_t *gnvs = (global_nvs_t *)0x0;
static global_nvs_t *gnvs;
global_nvs_t *smm_get_gnvs(void)
{
return gnvs;
}
#if CONFIG_SMM_TSEG
static u32 tseg_base = 0;
u32 smi_get_tseg_base(void)
{
if (!tseg_base)
tseg_base = pcie_read_config32(PCI_DEV(0, 0, 0), TSEG) & ~1;
return tseg_base;
}
void tseg_relocate(void **ptr)
{
/* Adjust pointer with TSEG base */
if (*ptr && *ptr < (void*)smi_get_tseg_base())
*ptr = (void *)(((u8*)*ptr) + smi_get_tseg_base());
}
#endif
/**
* @brief read and clear PM1_STS
* @return PM1_STS register
@ -323,7 +307,7 @@ static void southbridge_gate_memory_reset(void)
outl(reg32, gpiobase + GP_LVL2);
}
static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_sleep(void)
{
u8 reg8;
u32 reg32;
@ -338,8 +322,6 @@ static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *stat
outb(tmp70, 0x70);
outb(tmp72, 0x72);
void (*mainboard_sleep)(u8 slp_typ) = mainboard_smi_sleep;
/* First, disable further SMIs */
reg8 = inb(pmbase + SMI_EN);
reg8 &= ~SLP_SMI_EN;
@ -351,8 +333,7 @@ static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *stat
slp_typ = (reg32 >> 10) & 7;
/* Do any mainboard sleep handling */
tseg_relocate((void **)&mainboard_sleep);
mainboard_sleep(slp_typ-2);
mainboard_smi_sleep(slp_typ-2);
#if CONFIG_ELOG_GSMI
/* Log S3, S4, and S5 entry */
@ -428,13 +409,11 @@ static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *stat
static em64t101_smm_state_save_area_t *smi_apmc_find_state_save(u8 cmd)
{
em64t101_smm_state_save_area_t *state;
u32 base = smi_get_tseg_base() + 0x8000 + 0x7d00;
int node;
/* Check all nodes looking for the one that issued the IO */
for (node = 0; node < CONFIG_MAX_CPUS; node++) {
state = (em64t101_smm_state_save_area_t *)
(base - (node * 0x400));
state = smm_get_save_state(node);
/* Check for Synchronous IO (bit0==1) */
if (!(state->io_misc_info & (1 << 0)))
@ -481,11 +460,10 @@ static void southbridge_smi_gsmi(void)
}
#endif
static void southbridge_smi_apmc(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_apmc(void)
{
u32 pmctrl;
u8 reg8;
int (*mainboard_apmc)(u8 apmc) = mainboard_smi_apmc;
em64t101_smm_state_save_area_t *state;
/* Emulate B2 register as the FADT / Linux expects it */
@ -538,11 +516,10 @@ static void southbridge_smi_apmc(unsigned int node, smm_state_save_area_t *state
#endif
}
tseg_relocate((void **)&mainboard_apmc);
mainboard_apmc(reg8);
mainboard_smi_apmc(reg8);
}
static void southbridge_smi_pm1(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_pm1(void)
{
u16 pm1_sts;
@ -563,7 +540,7 @@ static void southbridge_smi_pm1(unsigned int node, smm_state_save_area_t *state_
}
}
static void southbridge_smi_gpe0(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_gpe0(void)
{
u32 gpe0_sts;
@ -571,17 +548,15 @@ static void southbridge_smi_gpe0(unsigned int node, smm_state_save_area_t *state
dump_gpe0_status(gpe0_sts);
}
static void southbridge_smi_gpi(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_gpi(void)
{
void (*mainboard_gpi)(u32 gpi_sts) = mainboard_smi_gpi;
u16 reg16;
reg16 = inw(pmbase + ALT_GP_SMI_STS);
outw(reg16, pmbase + ALT_GP_SMI_STS);
reg16 &= inw(pmbase + ALT_GP_SMI_EN);
tseg_relocate((void **)&mainboard_gpi);
mainboard_gpi(reg16);
mainboard_smi_gpi(reg16);
if (reg16)
printk(BIOS_DEBUG, "GPI (mask %04x)\n",reg16);
@ -589,7 +564,7 @@ static void southbridge_smi_gpi(unsigned int node, smm_state_save_area_t *state_
outw(reg16, pmbase + ALT_GP_SMI_STS);
}
static void southbridge_smi_mc(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_mc(void)
{
u32 reg32;
@ -604,7 +579,7 @@ static void southbridge_smi_mc(unsigned int node, smm_state_save_area_t *state_s
static void southbridge_smi_tco(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_tco(void)
{
u32 tco_sts;
@ -641,7 +616,7 @@ static void southbridge_smi_tco(unsigned int node, smm_state_save_area_t *state_
}
}
static void southbridge_smi_periodic(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_periodic(void)
{
u32 reg32;
@ -654,7 +629,7 @@ static void southbridge_smi_periodic(unsigned int node, smm_state_save_area_t *s
printk(BIOS_DEBUG, "Periodic SMI.\n");
}
static void southbridge_smi_monitor(unsigned int node, smm_state_save_area_t *state_save)
static void southbridge_smi_monitor(void)
{
#define IOTRAP(x) (trap_sts & (1 << x))
u32 trap_sts, trap_cycle;
@ -708,8 +683,7 @@ static void southbridge_smi_monitor(unsigned int node, smm_state_save_area_t *st
#undef IOTRAP
}
typedef void (*smi_handler_t)(unsigned int node,
smm_state_save_area_t *state_save);
typedef void (*smi_handler_t)(void);
static smi_handler_t southbridge_smi[32] = {
NULL, // [0] reserved
@ -753,7 +727,7 @@ static smi_handler_t southbridge_smi[32] = {
* @param state_save
*/
void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save)
void southbridge_smi_handler(void)
{
int i, dump = 0;
u32 smi_sts;
@ -770,15 +744,7 @@ void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_sav
for (i = 0; i < 31; i++) {
if (smi_sts & (1 << i)) {
if (southbridge_smi[i]) {
#if CONFIG_SMM_TSEG
smi_handler_t handler = (smi_handler_t)
((u8*)southbridge_smi[i] +
smi_get_tseg_base());
if (handler)
handler(node, state_save);
#else
southbridge_smi[i](node, state_save);
#endif
southbridge_smi[i]();
} else {
printk(BIOS_DEBUG, "SMI_STS[%d] occured, but no "
"handler available.\n", i);