nb/intel/gm45: Add remaining raminit code to support DDR2

Add the remaining DDR2 code to program the registers for memory
timings, ODT, RCOMP, and refresh mode; and perform receive-enable
calibration.

TEST: DDR2 systems boot
- Tested on a Dell Latitude E6400
- Tested on a Compal JHL90
TEST: Ensure DDR3 systems still boot
- Tested on a Thinkpad X200

Change-Id: I6d9a1853fea9e29171d7c2f9ffe7086685c9efad
Signed-off-by: Nico Huber <nico.h@gmx.de>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/34834
Reviewed-by: Angel Pons <th3fanbus@gmail.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
Nico Huber 2019-08-11 19:53:56 +02:00 committed by Felix Held
parent d131183200
commit 87b5fa7c9d
3 changed files with 156 additions and 54 deletions

View File

@ -76,6 +76,15 @@ typedef enum { /* as in DDR3 spd */
CHIP_CAP_16G = 6, CHIP_CAP_16G = 6,
} chip_capacity_t; } chip_capacity_t;
typedef enum { /* as in DDR2 spd */
REFRESH_15_625 = 0,
REFRESH_3_9 = 1,
REFRESH_7_8 = 2,
REFRESH_31_25 = 3,
REFRESH_62_5 = 4,
REFRESH_125 = 5,
} refresh_rate_t;
typedef struct { typedef struct {
unsigned int CAS; unsigned int CAS;
fsb_clock_t fsb_clock; fsb_clock_t fsb_clock;
@ -97,6 +106,7 @@ typedef struct {
0xa - 0xf: raw card type A - F */ 0xa - 0xf: raw card type A - F */
chip_width_t chip_width; chip_width_t chip_width;
chip_capacity_t chip_capacity; chip_capacity_t chip_capacity;
refresh_rate_t refresh;
unsigned int page_size; /* of whole DIMM in Bytes (4096 or 8192) */ unsigned int page_size; /* of whole DIMM in Bytes (4096 or 8192) */
unsigned int banks; unsigned int banks;
unsigned int ranks; unsigned int ranks;
@ -411,7 +421,7 @@ u32 raminit_get_rank_addr(unsigned int channel, unsigned int rank);
void raminit_rcomp_calibration(stepping_t stepping); void raminit_rcomp_calibration(stepping_t stepping);
void raminit_reset_readwrite_pointers(void); void raminit_reset_readwrite_pointers(void);
void raminit_receive_enable_calibration(const timings_t *, const dimminfo_t *); void raminit_receive_enable_calibration(int ddr_type, const timings_t *, const dimminfo_t *);
void raminit_write_training(const mem_clock_t, const dimminfo_t *, int s3resume); void raminit_write_training(const mem_clock_t, const dimminfo_t *, int s3resume);
void raminit_read_training(const dimminfo_t *, int s3resume); void raminit_read_training(const dimminfo_t *, int s3resume);

View File

@ -349,6 +349,7 @@ typedef struct {
unsigned int tWR; unsigned int tWR;
unsigned int page_size; unsigned int page_size;
unsigned int raw_card; unsigned int raw_card;
unsigned int refresh;
} channel[2]; } channel[2];
} spdinfo_t; } spdinfo_t;
/** /**
@ -434,6 +435,7 @@ static void collect_ddr2_dimm(struct spd_dimminfo *const di, const int smb_addr)
di->tWR = smbus_read_byte(smb_addr, 36) << 6; /* given in 1/4ns */ di->tWR = smbus_read_byte(smb_addr, 36) << 6; /* given in 1/4ns */
di->raw_card = 0; /* Use same path as for DDR3 type A. */ di->raw_card = 0; /* Use same path as for DDR3 type A. */
di->refresh = smbus_read_byte(smb_addr, 12);
} }
/* /*
* This function collects RAM characteristics from SPD, assuming that RAM * This function collects RAM characteristics from SPD, assuming that RAM
@ -490,6 +492,7 @@ static void collect_ddr3(sysinfo_t *const sysinfo, spdinfo_t *const config)
config->channel[cur].tWR = smbus_read_byte(smb_addr, 17) * 32; config->channel[cur].tWR = smbus_read_byte(smb_addr, 17) * 32;
config->channel[cur].raw_card = smbus_read_byte(smb_addr, 62) & 0x1f; config->channel[cur].raw_card = smbus_read_byte(smb_addr, 62) & 0x1f;
config->channel[cur].refresh = REFRESH_7_8;
} }
cur++; cur++;
mask >>= 2; mask >>= 2;
@ -785,6 +788,7 @@ static void collect_dimm_config(sysinfo_t *const sysinfo)
FOR_EACH_CHANNEL(i) { FOR_EACH_CHANNEL(i) {
sysinfo->dimms[i].card_type = sysinfo->dimms[i].card_type =
(spdinfo.dimm_mask & (1 << (i * 2))) ? spdinfo.channel[i].raw_card + 0xa : 0; (spdinfo.dimm_mask & (1 << (i * 2))) ? spdinfo.channel[i].raw_card + 0xa : 0;
sysinfo->dimms[i].refresh = spdinfo.channel[i].refresh;
} }
/* Find common memory clock and CAS. */ /* Find common memory clock and CAS. */
@ -817,9 +821,6 @@ static void collect_dimm_config(sysinfo_t *const sysinfo)
sysinfo->selected_timings.channel_mode = CHANNEL_MODE_DUAL_INTERLEAVED; sysinfo->selected_timings.channel_mode = CHANNEL_MODE_DUAL_INTERLEAVED;
else else
sysinfo->selected_timings.channel_mode = CHANNEL_MODE_SINGLE; sysinfo->selected_timings.channel_mode = CHANNEL_MODE_SINGLE;
if (sysinfo->spd_type == DDR2)
die("DDR2 support not complete yet\n");
} }
static void reset_on_bad_warmboot(void) static void reset_on_bad_warmboot(void)
@ -983,10 +984,10 @@ static void configure_dram_control_mode(const timings_t *const timings, const di
cxdrc &= ~CxDRC0_RANKEN_MASK; cxdrc &= ~CxDRC0_RANKEN_MASK;
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
cxdrc |= CxDRC0_RANKEN(r); cxdrc |= CxDRC0_RANKEN(r);
cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) | if (dimms[ch].refresh == REFRESH_3_9)
/* Always 7.8us for DDR3: */ cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) | CxDRC0_RMS_39US;
/* FIXME DDR2: SPD+12? */ else
CxDRC0_RMS_78US; cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) | CxDRC0_RMS_78US;
mchbar_write32(mchbar, cxdrc); mchbar_write32(mchbar, cxdrc);
mchbar = CxDRC1_MCHBAR(ch); mchbar = CxDRC1_MCHBAR(ch);
@ -1009,30 +1010,41 @@ static void configure_dram_control_mode(const timings_t *const timings, const di
} }
} }
static void rcomp_initialization(const stepping_t stepping, const int sff) static void rcomp_initialization(const int spd_type, const stepping_t stepping, const int sff)
{ {
/* Program RCOMP codes. */ /* Program RCOMP codes. */
if (sff) if (sff)
die("SFF platform unsupported in RCOMP initialization.\n"); die("SFF platform unsupported in RCOMP initialization.\n");
/* Values are for DDR3. */
mchbar_clrbits8(0x6ac, 0x0f); if (spd_type == DDR2) {
mchbar_write8(0x6b0, 0x55); unsigned int o;
mchbar_clrbits8(0x6ec, 0x0f); for (o = 0; o <= 0x200; o += 0x40) {
mchbar_write8(0x6f0, 0x66); mchbar_clrsetbits8(0x6ac + o, 0x0f, 0x0a);
mchbar_clrbits8(0x72c, 0x0f); mchbar_write8(0x6b0 + o, 0x55);
mchbar_write8(0x730, 0x66); }
mchbar_clrbits8(0x76c, 0x0f); /* ODT multiplier bits. */
mchbar_write8(0x770, 0x66); mchbar_clrsetbits32(0x04d0, 7 << 3 | 7 << 0, 1 << 3 | 1 << 0);
mchbar_clrbits8(0x7ac, 0x0f); } else {
mchbar_write8(0x7b0, 0x66); /* Values are for DDR3. */
mchbar_clrbits8(0x7ec, 0x0f); mchbar_clrbits8(0x6ac, 0x0f);
mchbar_write8(0x7f0, 0x66); mchbar_write8(0x6b0, 0x55);
mchbar_clrbits8(0x86c, 0x0f); mchbar_clrbits8(0x6ec, 0x0f);
mchbar_write8(0x870, 0x55); mchbar_write8(0x6f0, 0x66);
mchbar_clrbits8(0x8ac, 0x0f); mchbar_clrbits8(0x72c, 0x0f);
mchbar_write8(0x8b0, 0x66); mchbar_write8(0x730, 0x66);
/* ODT multiplier bits. */ mchbar_clrbits8(0x76c, 0x0f);
mchbar_clrsetbits32(0x04d0, 7 << 3 | 7 << 0, 2 << 3 | 2 << 0); mchbar_write8(0x770, 0x66);
mchbar_clrbits8(0x7ac, 0x0f);
mchbar_write8(0x7b0, 0x66);
mchbar_clrbits8(0x7ec, 0x0f);
mchbar_write8(0x7f0, 0x66);
mchbar_clrbits8(0x86c, 0x0f);
mchbar_write8(0x870, 0x55);
mchbar_clrbits8(0x8ac, 0x0f);
mchbar_write8(0x8b0, 0x66);
/* ODT multiplier bits. */
mchbar_clrsetbits32(0x04d0, 7 << 3 | 7 << 0, 2 << 3 | 2 << 0);
}
/* Perform RCOMP calibration for DDR3. */ /* Perform RCOMP calibration for DDR3. */
raminit_rcomp_calibration(stepping); raminit_rcomp_calibration(stepping);
@ -1057,44 +1069,64 @@ static void rcomp_initialization(const stepping_t stepping, const int sff)
mchbar_setbits32(0x400, 1 << 1); mchbar_setbits32(0x400, 1 << 1);
} }
static void dram_powerup(const int resume) static void dram_powerup(const int spd_type, const int stepping, const int resume)
{ {
u32 tmp;
udelay(200); udelay(200);
mchbar_clrsetbits32(CLKCFG_MCHBAR, 1 << 3, 3 << 21); tmp = mchbar_read32(CLKCFG_MCHBAR);
if (!resume) { tmp &= ~(3 << 21 | 1 << 3);
if (spd_type == DDR2 && stepping < STEPPING_B0)
tmp |= 2 << 21 | 1 << 3;
else
tmp |= 3 << 21;
mchbar_write32(CLKCFG_MCHBAR, tmp);
if (spd_type == DDR3 && !resume) {
mchbar_setbits32(0x1434, 1 << 10); mchbar_setbits32(0x1434, 1 << 10);
udelay(1); udelay(1);
} }
mchbar_setbits32(0x1434, 1 << 6); mchbar_setbits32(0x1434, 1 << 6);
if (!resume) { if (spd_type == DDR3 && !resume) {
udelay(1); udelay(1);
mchbar_setbits32(0x1434, 1 << 9); mchbar_setbits32(0x1434, 1 << 9);
mchbar_clrbits32(0x1434, 1 << 10); mchbar_clrbits32(0x1434, 1 << 10);
udelay(500); udelay(500);
} }
} }
static void dram_program_timings(const timings_t *const timings)
static void dram_program_timings(const int spd_type, const timings_t *const timings)
{ {
/* Values are for DDR3. */ /* Values are for DDR3. */
const int burst_length = 8; const int burst_length = 8;
const int tWTR = 4, tRTP = 1; const int tWTR = (spd_type == DDR2) ? 3 : 4, tRTP = 1;
int i; int i;
FOR_EACH_CHANNEL(i) { FOR_EACH_CHANNEL(i) {
u32 reg = mchbar_read32(CxDRT0_MCHBAR(i)); u32 reg = mchbar_read32(CxDRT0_MCHBAR(i));
const int btb_wtp = timings->tWL + burst_length/2 + timings->tWR; const int btb_wtp = timings->tWL + burst_length/2 + timings->tWR;
const int btb_wtr = timings->tWL + burst_length/2 + tWTR; const int btb_wtr =
((spd_type == DDR2) ? timings->CAS - 1 : timings->tWL)
+ burst_length/2 + tWTR;
reg = (reg & ~(CxDRT0_BtB_WtP_MASK | CxDRT0_BtB_WtR_MASK)) | reg = (reg & ~(CxDRT0_BtB_WtP_MASK | CxDRT0_BtB_WtR_MASK)) |
((btb_wtp << CxDRT0_BtB_WtP_SHIFT) & CxDRT0_BtB_WtP_MASK) | ((btb_wtp << CxDRT0_BtB_WtP_SHIFT) & CxDRT0_BtB_WtP_MASK) |
((btb_wtr << CxDRT0_BtB_WtR_SHIFT) & CxDRT0_BtB_WtR_MASK); ((btb_wtr << CxDRT0_BtB_WtR_SHIFT) & CxDRT0_BtB_WtR_MASK);
if (timings->mem_clock != MEM_CLOCK_1067MT) { if (spd_type == DDR2) {
reg = (reg & ~(0x7 << 15)) | (2 << 15);
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0xf << 10)) | (2 << 10);
else
reg = (reg & ~(0xf << 10)) | (3 << 10);
reg = (reg & ~(0x7 << 5)) | (3 << 5);
} else if (timings->mem_clock != MEM_CLOCK_1067MT) {
reg = (reg & ~(0x7 << 15)) | ((9 - timings->CAS) << 15); reg = (reg & ~(0x7 << 15)) | ((9 - timings->CAS) << 15);
reg = (reg & ~(0xf << 10)) | ((timings->CAS - 3) << 10); reg = (reg & ~(0xf << 10)) | ((timings->CAS - 3) << 10);
reg = (reg & ~(0x7 << 5)) | (3 << 5);
} else { } else {
reg = (reg & ~(0x7 << 15)) | ((10 - timings->CAS) << 15); reg = (reg & ~(0x7 << 15)) | ((10 - timings->CAS) << 15);
reg = (reg & ~(0xf << 10)) | ((timings->CAS - 4) << 10); reg = (reg & ~(0xf << 10)) | ((timings->CAS - 4) << 10);
reg = (reg & ~(0x7 << 5)) | (3 << 5);
} }
reg = (reg & ~(0x7 << 5)) | (3 << 5);
reg = (reg & ~(0x7 << 0)) | (1 << 0); reg = (reg & ~(0x7 << 0)) | (1 << 0);
mchbar_write32(CxDRT0_MCHBAR(i), reg); mchbar_write32(CxDRT0_MCHBAR(i), reg);
@ -1108,7 +1140,10 @@ static void dram_program_timings(const timings_t *const timings)
reg = mchbar_read32(CxDRT2_MCHBAR(i)); reg = mchbar_read32(CxDRT2_MCHBAR(i));
reg = (reg & ~(0x1f << 17)) | ((timings->tFAW & 0x1f) << 17); reg = (reg & ~(0x1f << 17)) | ((timings->tFAW & 0x1f) << 17);
if (timings->mem_clock != MEM_CLOCK_1067MT) { if (spd_type == DDR2) {
reg = (reg & ~(0x7 << 12)) | (0x1 << 12);
reg = (reg & ~(0xf << 6)) | (0x1 << 6);
} else if (timings->mem_clock != MEM_CLOCK_1067MT) {
reg = (reg & ~(0x7 << 12)) | (0x2 << 12); reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
reg = (reg & ~(0xf << 6)) | (0x9 << 6); reg = (reg & ~(0xf << 6)) | (0x9 << 6);
} else { } else {
@ -1119,7 +1154,10 @@ static void dram_program_timings(const timings_t *const timings)
mchbar_write32(CxDRT2_MCHBAR(i), reg); mchbar_write32(CxDRT2_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT3_MCHBAR(i)); reg = mchbar_read32(CxDRT3_MCHBAR(i));
reg |= 0x3 << 28; if (spd_type == DDR2)
reg &= ~(0x3 << 28);
else
reg |= (0x3 << 28);
reg = (reg & ~(0x03 << 26)); reg = (reg & ~(0x03 << 26));
reg = (reg & ~(0x07 << 23)) | (((timings->CAS - 3) & 0x07) << 23); reg = (reg & ~(0x07 << 23)) | (((timings->CAS - 3) & 0x07) << 23);
reg = (reg & ~(0xff << 13)) | ((timings->tRFC & 0xff) << 13); reg = (reg & ~(0xff << 13)) | ((timings->tRFC & 0xff) << 13);
@ -1146,16 +1184,26 @@ static void dram_program_timings(const timings_t *const timings)
if (timings->mem_clock == MEM_CLOCK_1067MT) if (timings->mem_clock == MEM_CLOCK_1067MT)
reg = (reg & ~(0xf << 28)) | (0x8 << 28); reg = (reg & ~(0xf << 28)) | (0x8 << 28);
reg = (reg & ~(0x00f << 22)) | ((burst_length/2 + timings->CAS + 2) << 22); reg = (reg & ~(0x00f << 22)) | ((burst_length/2 + timings->CAS + 2) << 22);
reg = (reg & ~(0x3ff << 12)) | (0x190 << 12); if (spd_type == DDR2) {
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0x1ff << 12)) | (0x21 << 12);
else
reg = (reg & ~(0x1ff << 12)) | (0x28 << 12);
} else {
reg = (reg & ~(0x1ff << 12)) | (0x190 << 12);
}
reg = (reg & ~(0x00f << 4)) | ((timings->CAS - 2) << 4); reg = (reg & ~(0x00f << 4)) | ((timings->CAS - 2) << 4);
reg = (reg & ~(0x003 << 2)) | (0x001 << 2); reg = (reg & ~(0x003 << 2)) | (0x001 << 2);
reg = (reg & ~(0x003 << 0)); reg = (reg & ~(0x003 << 0));
mchbar_write32(CxDRT5_MCHBAR(i), reg); mchbar_write32(CxDRT5_MCHBAR(i), reg);
reg = mchbar_read32(CxDRT6_MCHBAR(i)); reg = mchbar_read32(CxDRT6_MCHBAR(i));
/* FIXME DDR2: SPD+12? */ if (spd_type == DDR2) {
reg = (reg & ~(0xffff << 16)) | (0x066a << 16); /* always 7.8us refresh rate for DDR3 */ reg &= ~(1 << 2);
reg |= (1 << 2); } else {
reg = (reg & ~(0xffff << 16)) | (0x066a << 16); /* always 7.8us refresh rate for DDR3 */
reg |= (1 << 2);
}
mchbar_write32(CxDRT6_MCHBAR(i), reg); mchbar_write32(CxDRT6_MCHBAR(i), reg);
} }
} }
@ -1180,9 +1228,8 @@ static void dram_program_banks(const dimminfo_t *const dimms)
} }
} }
static void odt_setup(const timings_t *const timings, const int sff) static void ddr3_odt_setup(const timings_t *const timings, const int sff)
{ {
/* Values are for DDR3. */
int ch; int ch;
FOR_EACH_CHANNEL(ch) { FOR_EACH_CHANNEL(ch) {
@ -1224,6 +1271,45 @@ static void odt_setup(const timings_t *const timings, const int sff)
} }
} }
static void ddr2_odt_setup(const timings_t *const timings, const int sff)
{
int ch;
FOR_EACH_CHANNEL(ch) {
u32 reg = mchbar_read32(CxODT_HIGH(ch));
if (sff && (timings->mem_clock == MEM_CLOCK_667MT))
reg &= ~(0x3 << (61 - 32));
else
reg |= 0x3 << (61 - 32);
reg = (reg & ~(0x3 << (52 - 32))) | (1 << (52 - 32));
reg = (reg & ~(0x7 << (48 - 32))) | ((timings->CAS - 2) << (48 - 32));
reg = (reg & ~(0xf << (44 - 32))) | (8 << (44 - 32));
reg = (reg & ~(0xf << (40 - 32))) | (7 << (40 - 32));
if (timings->mem_clock == MEM_CLOCK_667MT) {
reg = (reg & ~(0xf << (36 - 32))) | (4 << (36 - 32));
reg = (reg & ~(0xf << (32 - 32))) | (4 << (32 - 32));
} else {
reg = (reg & ~(0xf << (36 - 32))) | (5 << (36 - 32));
reg = (reg & ~(0xf << (32 - 32))) | (5 << (32 - 32));
}
mchbar_write32(CxODT_HIGH(ch), reg);
reg = mchbar_read32(CxODT_LOW(ch));
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0x7 << 28)) | (2 << 28);
else
reg = (reg & ~(0x7 << 28)) | (3 << 28);
reg = (reg & ~(0x3 << 22)) | (1 << 22);
if (timings->mem_clock == MEM_CLOCK_667MT)
reg = (reg & ~(0x7 << 12)) | ((timings->tWL - 1) << 12);
else
reg = (reg & ~(0x7 << 12)) | ((timings->tWL - 2) << 12);
reg = (reg & ~(0x7 << 4)) | ((timings->tWL - 1) << 4);
reg = (reg & ~(0x7 << 0));
mchbar_write32(CxODT_LOW(ch), reg);
}
}
static void misc_settings(const timings_t *const timings, static void misc_settings(const timings_t *const timings,
const stepping_t stepping) const stepping_t stepping)
{ {
@ -2055,12 +2141,12 @@ void raminit(sysinfo_t *const sysinfo, const int s3resume)
configure_dram_control_mode(timings, dimms); configure_dram_control_mode(timings, dimms);
/* Initialize RCOMP. */ /* Initialize RCOMP. */
rcomp_initialization(sysinfo->stepping, sysinfo->sff); rcomp_initialization(sysinfo->spd_type, sysinfo->stepping, sysinfo->sff);
/* Power-up DRAM. */ /* Power-up DRAM. */
dram_powerup(s3resume); dram_powerup(sysinfo->spd_type, sysinfo->stepping, s3resume);
/* Program DRAM timings. */ /* Program DRAM timings. */
dram_program_timings(timings); dram_program_timings(sysinfo->spd_type, timings);
/* Program number of banks. */ /* Program number of banks. */
dram_program_banks(dimms); dram_program_banks(dimms);
/* Enable DRAM clock pairs for populated DIMMs. */ /* Enable DRAM clock pairs for populated DIMMs. */
@ -2068,7 +2154,10 @@ void raminit(sysinfo_t *const sysinfo, const int s3resume)
mchbar_setbits32(CxDCLKDIS_MCHBAR(ch), CxDCLKDIS_ENABLE); mchbar_setbits32(CxDCLKDIS_MCHBAR(ch), CxDCLKDIS_ENABLE);
/* Enable On-Die Termination. */ /* Enable On-Die Termination. */
odt_setup(timings, sysinfo->sff); if (sysinfo->spd_type == DDR2)
ddr2_odt_setup(timings, sysinfo->sff);
else
ddr3_odt_setup(timings, sysinfo->sff);
/* Miscellaneous settings. */ /* Miscellaneous settings. */
misc_settings(timings, sysinfo->stepping); misc_settings(timings, sysinfo->stepping);
/* Program clock crossing registers. */ /* Program clock crossing registers. */
@ -2107,7 +2196,7 @@ void raminit(sysinfo_t *const sysinfo, const int s3resume)
ddr3_calibrate_zq(); ddr3_calibrate_zq();
/* Perform receive-enable calibration. */ /* Perform receive-enable calibration. */
raminit_receive_enable_calibration(timings, dimms); raminit_receive_enable_calibration(sysinfo->spd_type, timings, dimms);
/* Lend clock values from receive-enable calibration. */ /* Lend clock values from receive-enable calibration. */
mchbar_clrsetbits32(CxDRT5_MCHBAR(0), 0xf0, mchbar_clrsetbits32(CxDRT5_MCHBAR(0), 0xf0,
(((mchbar_read32(CxDRT3_MCHBAR(0)) >> 7) - 1) & 0xf) << 4); (((mchbar_read32(CxDRT3_MCHBAR(0)) >> 7) - 1) & 0xf) << 4);

View File

@ -185,7 +185,8 @@ static void find_preamble(const int channel, const int group,
} }
} }
static void receive_enable_calibration(const timings_t *const timings, static void receive_enable_calibration(const int ddr_type,
const timings_t *const timings,
const dimminfo_t *const dimms) const dimminfo_t *const dimms)
{ {
/* Override group to byte-lane mapping for raw card type F DIMMS. */ /* Override group to byte-lane mapping for raw card type F DIMMS. */
@ -200,7 +201,8 @@ static void receive_enable_calibration(const timings_t *const timings,
}; };
const unsigned int t_bound = const unsigned int t_bound =
(timings->mem_clock == MEM_CLOCK_1067MT) ? 9 : 12; (timings->mem_clock == MEM_CLOCK_1067MT) ? 9
: (ddr_type == DDR3) ? 12 : 15;
const unsigned int p_bound = const unsigned int p_bound =
(timings->mem_clock == MEM_CLOCK_1067MT) ? 8 : 1; (timings->mem_clock == MEM_CLOCK_1067MT) ? 8 : 1;
@ -259,7 +261,8 @@ static void receive_enable_calibration(const timings_t *const timings,
} }
} }
void raminit_receive_enable_calibration(const timings_t *const timings, void raminit_receive_enable_calibration(const int ddr_type,
const timings_t *const timings,
const dimminfo_t *const dimms) const dimminfo_t *const dimms)
{ {
int ch; int ch;
@ -284,7 +287,7 @@ void raminit_receive_enable_calibration(const timings_t *const timings,
mchbar_clrsetbits32(0x14f0, 3 << 9, 1 << 9); mchbar_clrsetbits32(0x14f0, 3 << 9, 1 << 9);
mchbar_clrsetbits32(0x15f0, 3 << 9, 1 << 9); mchbar_clrsetbits32(0x15f0, 3 << 9, 1 << 9);
receive_enable_calibration(timings, dimms); receive_enable_calibration(ddr_type, timings, dimms);
mchbar_clrbits32(0x12a4, 1 << 31); mchbar_clrbits32(0x12a4, 1 << 31);
mchbar_clrbits32(0x13a4, 1 << 31); mchbar_clrbits32(0x13a4, 1 << 31);