x86: use car_(get|set)_var accessors for apic timer

The timer_fsb variable was not correctly being accessed in the
presence of cache-as-ram. The cache-as-ram backing store could
be torn down but then udelay() could be called causing hangs from
accessing variables that have unknown values.

Instead change the timer_fsb variable to g_timer_fsb and obtain
the value through a local access method that does the correct things
to obtain the correct value.

Change-Id: Ia3e30808498cbe4a7f6f116c17a8cf1240a807a3
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/5411
Reviewed-by: Patrick Georgi <patrick@georgi-clan.de>
Tested-by: build bot (Jenkins)
This commit is contained in:
Aaron Durbin 2014-03-28 08:40:59 -05:00 committed by Kyösti Mälkki
parent deb2cb27e9
commit 905bfb05dc
1 changed files with 22 additions and 8 deletions

View File

@ -34,14 +34,17 @@
*/
#if CONFIG_UDELAY_LAPIC_FIXED_FSB
static const u32 timer_fsb = CONFIG_UDELAY_LAPIC_FIXED_FSB;
static inline u32 get_timer_fsb(void)
{
return CONFIG_UDELAY_LAPIC_FIXED_FSB;
}
static int set_timer_fsb(void)
{
return 0;
}
#else
static u32 timer_fsb CAR_GLOBAL = 0;
static u32 g_timer_fsb CAR_GLOBAL;
static int set_timer_fsb(void)
{
@ -56,25 +59,30 @@ static int set_timer_fsb(void)
switch (c.x86_model) {
case 0xe: /* Core Solo/Duo */
case 0x1c: /* Atom */
timer_fsb = core_fsb[rdmsr(MSR_FSB_FREQ).lo & 7];
car_set_var(g_timer_fsb, core_fsb[rdmsr(MSR_FSB_FREQ).lo & 7]);
break;
case 0xf: /* Core 2 or Xeon */
case 0x17: /* Enhanced Core */
timer_fsb = core2_fsb[rdmsr(MSR_FSB_FREQ).lo & 7];
car_set_var(g_timer_fsb, core2_fsb[rdmsr(MSR_FSB_FREQ).lo & 7]);
break;
case 0x2a: /* SandyBridge BCLK fixed at 100MHz*/
case 0x3a: /* IvyBridge BCLK fixed at 100MHz*/
case 0x3c: /* Haswell BCLK fixed at 100MHz */
case 0x45: /* Haswell-ULT BCLK fixed at 100MHz */
timer_fsb = 100;
car_set_var(g_timer_fsb, 100);
break;
default:
timer_fsb = 200;
car_set_var(g_timer_fsb, 200);
break;
}
return 0;
}
static inline u32 get_timer_fsb(void)
{
return car_get_var(g_timer_fsb);
}
#endif
void init_timer(void)
@ -94,15 +102,18 @@ void init_timer(void)
void udelay(u32 usecs)
{
u32 start, value, ticks;
u32 start, value, ticks, timer_fsb;
if (!thread_yield_microseconds(usecs))
return;
timer_fsb = get_timer_fsb();
if (!timer_fsb || (lapic_read(LAPIC_LVTT) &
(LAPIC_LVT_TIMER_PERIODIC | LAPIC_LVT_MASKED)) !=
(LAPIC_LVT_TIMER_PERIODIC | LAPIC_LVT_MASKED))
(LAPIC_LVT_TIMER_PERIODIC | LAPIC_LVT_MASKED)) {
init_timer();
timer_fsb = get_timer_fsb();
}
/* Calculate the number of ticks to run, our FSB runs at timer_fsb Mhz */
ticks = usecs * timer_fsb;
@ -125,9 +136,11 @@ void timer_monotonic_get(struct mono_time *mt)
{
uint32_t current_tick;
uint32_t usecs_elapsed;
uint32_t timer_fsb;
if (!mono_counter.initialized) {
init_timer();
timer_fsb = get_timer_fsb();
/* An FSB frequency of 200Mhz provides a 20 second polling
* interval between timer_monotonic_get() calls before wrap
* around occurs. */
@ -139,6 +152,7 @@ void timer_monotonic_get(struct mono_time *mt)
mono_counter.initialized = 1;
}
timer_fsb = get_timer_fsb();
current_tick = lapic_read(LAPIC_TMCCT);
/* Note that the APIC timer counts down. */
usecs_elapsed = (mono_counter.last_value - current_tick) / timer_fsb;