indent all of nvramtool to make it fit into coreboot's

coding style

Signed-off-by: Stefan Reinauer <stepan@coresystems.de>
Acked-by: Stefan Reinauer <stepan@coresystems.de>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5007 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Stefan Reinauer 2010-01-13 21:00:23 +00:00 committed by Stefan Reinauer
parent 766db7ea09
commit 90b96b68e0
24 changed files with 3252 additions and 3076 deletions

View File

@ -36,22 +36,21 @@
#include "common.h"
#include "cmos_lowlevel.h"
typedef struct
{ unsigned byte_index;
unsigned bit_offset;
}
cmos_bit_op_location_t;
typedef struct {
unsigned byte_index;
unsigned bit_offset;
} cmos_bit_op_location_t;
static unsigned cmos_bit_op_strategy (unsigned bit, unsigned bits_left,
cmos_bit_op_location_t *where);
static unsigned char cmos_read_bits (const cmos_bit_op_location_t *where,
unsigned nr_bits);
static void cmos_write_bits (const cmos_bit_op_location_t *where,
unsigned nr_bits, unsigned char value);
static unsigned char get_bits (unsigned long long value, unsigned bit,
unsigned nr_bits);
static void put_bits (unsigned char value, unsigned bit, unsigned nr_bits,
unsigned long long *result);
static unsigned cmos_bit_op_strategy(unsigned bit, unsigned bits_left,
cmos_bit_op_location_t * where);
static unsigned char cmos_read_bits(const cmos_bit_op_location_t * where,
unsigned nr_bits);
static void cmos_write_bits(const cmos_bit_op_location_t * where,
unsigned nr_bits, unsigned char value);
static unsigned char get_bits(unsigned long long value, unsigned bit,
unsigned nr_bits);
static void put_bits(unsigned char value, unsigned bit, unsigned nr_bits,
unsigned long long *result);
/****************************************************************************
* get_bits
@ -59,9 +58,11 @@ static void put_bits (unsigned char value, unsigned bit, unsigned nr_bits,
* Extract a value 'nr_bits' bits wide starting at bit position 'bit' from
* 'value' and return the result. It is assumed that 'nr_bits' is at most 8.
****************************************************************************/
static inline unsigned char get_bits (unsigned long long value, unsigned bit,
unsigned nr_bits)
{ return (value >> bit) & ((unsigned char) ((1 << nr_bits) - 1)); }
static inline unsigned char get_bits(unsigned long long value, unsigned bit,
unsigned nr_bits)
{
return (value >> bit) & ((unsigned char)((1 << nr_bits) - 1));
}
/****************************************************************************
* put_bits
@ -71,9 +72,12 @@ static inline unsigned char get_bits (unsigned long long value, unsigned bit,
* positions in 'result' where the result is stored are assumed to be
* initially zero.
****************************************************************************/
static inline void put_bits (unsigned char value, unsigned bit,
unsigned nr_bits, unsigned long long *result)
{ *result += ((unsigned long long)(value & ((unsigned char) ((1 << nr_bits) - 1)))) << bit; }
static inline void put_bits(unsigned char value, unsigned bit,
unsigned nr_bits, unsigned long long *result)
{
*result += ((unsigned long long)(value &
((unsigned char)((1 << nr_bits) - 1)))) << bit;
}
/****************************************************************************
* cmos_read
@ -82,43 +86,48 @@ static inline void put_bits (unsigned char value, unsigned bit,
* and return this value. The I/O privilege level of the currently executing
* process must be set appropriately.
****************************************************************************/
unsigned long long cmos_read (const cmos_entry_t *e)
{ cmos_bit_op_location_t where;
unsigned bit = e->bit, length=e->length;
unsigned next_bit, bits_left, nr_bits;
unsigned long long result = 0;
unsigned char value;
unsigned long long cmos_read(const cmos_entry_t * e)
{
cmos_bit_op_location_t where;
unsigned bit = e->bit, length = e->length;
unsigned next_bit, bits_left, nr_bits;
unsigned long long result = 0;
unsigned char value;
assert(!verify_cmos_op(bit, length, e->config));
result = 0;
assert(!verify_cmos_op(bit, length, e->config));
result = 0;
if (e->config == CMOS_ENTRY_STRING)
{ char *newstring = calloc(1, (length+7)/8);
unsigned usize = (8 * sizeof(unsigned long long));
if (e->config == CMOS_ENTRY_STRING) {
char *newstring = calloc(1, (length + 7) / 8);
unsigned usize = (8 * sizeof(unsigned long long));
if(!newstring) { out_of_memory(); }
if (!newstring) {
out_of_memory();
}
for (next_bit = 0, bits_left = length;
bits_left;
next_bit += nr_bits, bits_left -= nr_bits)
{ nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left>usize?usize:bits_left, &where);
value = cmos_read_bits(&where, nr_bits);
put_bits(value, next_bit % usize, nr_bits, &((unsigned long long *)newstring)[next_bit/usize]);
result = (unsigned long)newstring;
}
}
else
{ for (next_bit = 0, bits_left = length;
bits_left;
next_bit += nr_bits, bits_left -= nr_bits)
{ nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left, &where);
value = cmos_read_bits(&where, nr_bits);
put_bits(value, next_bit, nr_bits, &result);
}
}
for (next_bit = 0, bits_left = length;
bits_left; next_bit += nr_bits, bits_left -= nr_bits) {
nr_bits = cmos_bit_op_strategy(bit + next_bit,
bits_left > usize ? usize : bits_left, &where);
value = cmos_read_bits(&where, nr_bits);
put_bits(value, next_bit % usize, nr_bits,
&((unsigned long long *)newstring)[next_bit /
usize]);
result = (unsigned long)newstring;
}
} else {
for (next_bit = 0, bits_left = length;
bits_left; next_bit += nr_bits, bits_left -= nr_bits) {
nr_bits =
cmos_bit_op_strategy(bit + next_bit, bits_left,
&where);
value = cmos_read_bits(&where, nr_bits);
put_bits(value, next_bit, nr_bits, &result);
}
}
return result;
}
return result;
}
/****************************************************************************
* cmos_write
@ -127,34 +136,38 @@ unsigned long long cmos_read (const cmos_entry_t *e)
* The I/O privilege level of the currently executing process must be set
* appropriately.
****************************************************************************/
void cmos_write (const cmos_entry_t *e, unsigned long long value)
{ cmos_bit_op_location_t where;
unsigned bit = e->bit, length=e->length;
unsigned next_bit, bits_left, nr_bits;
void cmos_write(const cmos_entry_t * e, unsigned long long value)
{
cmos_bit_op_location_t where;
unsigned bit = e->bit, length = e->length;
unsigned next_bit, bits_left, nr_bits;
assert(!verify_cmos_op(bit, length, e->config));
assert(!verify_cmos_op(bit, length, e->config));
if (e->config == CMOS_ENTRY_STRING)
{ unsigned long long *data = (unsigned long long *)(unsigned long)value;
unsigned usize = (8 * sizeof(unsigned long long));
if (e->config == CMOS_ENTRY_STRING) {
unsigned long long *data =
(unsigned long long *)(unsigned long)value;
unsigned usize = (8 * sizeof(unsigned long long));
for (next_bit = 0, bits_left = length;
bits_left;
next_bit += nr_bits, bits_left -= nr_bits)
{ nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left>usize?usize:bits_left, &where);
value = data[next_bit/usize];
cmos_write_bits(&where, nr_bits, get_bits(value, next_bit % usize, nr_bits));
}
}
else
{ for (next_bit = 0, bits_left = length;
bits_left;
next_bit += nr_bits, bits_left -= nr_bits)
{ nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left, &where);
cmos_write_bits(&where, nr_bits, get_bits(value, next_bit, nr_bits));
}
}
}
for (next_bit = 0, bits_left = length;
bits_left; next_bit += nr_bits, bits_left -= nr_bits) {
nr_bits = cmos_bit_op_strategy(bit + next_bit,
bits_left > usize ? usize : bits_left,
&where);
value = data[next_bit / usize];
cmos_write_bits(&where, nr_bits,
get_bits(value, next_bit % usize, nr_bits));
}
} else {
for (next_bit = 0, bits_left = length;
bits_left; next_bit += nr_bits, bits_left -= nr_bits) {
nr_bits = cmos_bit_op_strategy(bit + next_bit,
bits_left, &where);
cmos_write_bits(&where, nr_bits,
get_bits(value, next_bit, nr_bits));
}
}
}
/****************************************************************************
* cmos_read_byte
@ -166,23 +179,23 @@ void cmos_write (const cmos_entry_t *e, unsigned long long value)
* Note: the first 14 bytes of nonvolatile RAM provide an interface to the
* real time clock.
****************************************************************************/
unsigned char cmos_read_byte (unsigned index)
{ unsigned short port_0, port_1;
unsigned char cmos_read_byte(unsigned index)
{
unsigned short port_0, port_1;
assert(!verify_cmos_byte_index(index));
assert(!verify_cmos_byte_index(index));
if (index < 128)
{ port_0 = 0x70;
port_1 = 0x71;
}
else
{ port_0 = 0x72;
port_1 = 0x73;
}
if (index < 128) {
port_0 = 0x70;
port_1 = 0x71;
} else {
port_0 = 0x72;
port_1 = 0x73;
}
OUTB(index, port_0);
return INB(port_1);
}
OUTB(index, port_0);
return INB(port_1);
}
/****************************************************************************
* cmos_write_byte
@ -194,23 +207,23 @@ unsigned char cmos_read_byte (unsigned index)
* real time clock. Writing to any of these bytes will therefore
* affect its functioning.
****************************************************************************/
void cmos_write_byte (unsigned index, unsigned char value)
{ unsigned short port_0, port_1;
void cmos_write_byte(unsigned index, unsigned char value)
{
unsigned short port_0, port_1;
assert(!verify_cmos_byte_index(index));
assert(!verify_cmos_byte_index(index));
if (index < 128)
{ port_0 = 0x70;
port_1 = 0x71;
}
else
{ port_0 = 0x72;
port_1 = 0x73;
}
if (index < 128) {
port_0 = 0x70;
port_1 = 0x71;
} else {
port_0 = 0x72;
port_1 = 0x73;
}
OUTB(index, port_0);
OUTB(value, port_1);
}
OUTB(index, port_0);
OUTB(value, port_1);
}
/****************************************************************************
* cmos_read_all
@ -218,15 +231,16 @@ void cmos_write_byte (unsigned index, unsigned char value)
* Read all contents of CMOS memory into array 'data'. The first 14 bytes of
* 'data' are set to zero since this corresponds to the real time clock area.
****************************************************************************/
void cmos_read_all (unsigned char data[])
{ unsigned i;
void cmos_read_all(unsigned char data[])
{
unsigned i;
for (i = 0; i < CMOS_RTC_AREA_SIZE; i++)
data[i] = 0;
for (i = 0; i < CMOS_RTC_AREA_SIZE; i++)
data[i] = 0;
for (; i < CMOS_SIZE; i++)
data[i] = cmos_read_byte(i);
}
for (; i < CMOS_SIZE; i++)
data[i] = cmos_read_byte(i);
}
/****************************************************************************
* cmos_write_all
@ -235,12 +249,13 @@ void cmos_read_all (unsigned char data[])
* bytes of 'data' are ignored since this corresponds to the real time clock
* area.
****************************************************************************/
void cmos_write_all (unsigned char data[])
{ unsigned i;
void cmos_write_all(unsigned char data[])
{
unsigned i;
for (i = CMOS_RTC_AREA_SIZE; i < CMOS_SIZE; i++)
cmos_write_byte(i, data[i]);
}
for (i = CMOS_RTC_AREA_SIZE; i < CMOS_SIZE; i++)
cmos_write_byte(i, data[i]);
}
/****************************************************************************
* set_iopl
@ -251,45 +266,37 @@ void cmos_write_all (unsigned char data[])
* interrupts while executing in user space. Messing with the I/O privilege
* level is therefore somewhat dangerous.
****************************************************************************/
void set_iopl (int level)
{
void set_iopl(int level)
{
#if defined(__FreeBSD__)
static int io_fd = -1;
static int io_fd = -1;
#endif
assert((level >= 0) && (level <= 3));
assert((level >= 0) && (level <= 3));
#if defined(__FreeBSD__)
if (level == 0)
{
if (io_fd != -1)
{
close(io_fd);
io_fd = -1;
}
}
else
{
if (io_fd == -1)
{
io_fd = open("/dev/io", O_RDWR);
if (io_fd < 0)
{
perror("/dev/io");
exit(1);
}
}
}
if (level == 0) {
if (io_fd != -1) {
close(io_fd);
io_fd = -1;
}
} else {
if (io_fd == -1) {
io_fd = open("/dev/io", O_RDWR);
if (io_fd < 0) {
perror("/dev/io");
exit(1);
}
}
}
#else
if (iopl(level))
{ fprintf(stderr,
"%s: iopl() system call failed. You must be root to do "
"this.\n",
prog_name);
exit(1);
}
if (iopl(level)) {
fprintf(stderr, "%s: iopl() system call failed. "
"You must be root to do this.\n", prog_name);
exit(1);
}
#endif
}
}
/****************************************************************************
* verify_cmos_op
@ -300,21 +307,22 @@ void set_iopl (int level)
* wish to read or write. Perform sanity checking on 'bit' and 'length'. If
* no problems were encountered, return OK. Else return an error code.
****************************************************************************/
int verify_cmos_op (unsigned bit, unsigned length, cmos_entry_config_t config)
{ if ((bit >= (8 * CMOS_SIZE)) || ((bit + length) > (8 * CMOS_SIZE)))
return CMOS_AREA_OUT_OF_RANGE;
int verify_cmos_op(unsigned bit, unsigned length, cmos_entry_config_t config)
{
if ((bit >= (8 * CMOS_SIZE)) || ((bit + length) > (8 * CMOS_SIZE)))
return CMOS_AREA_OUT_OF_RANGE;
if (bit < (8 * CMOS_RTC_AREA_SIZE))
return CMOS_AREA_OVERLAPS_RTC;
if (bit < (8 * CMOS_RTC_AREA_SIZE))
return CMOS_AREA_OVERLAPS_RTC;
if (config == CMOS_ENTRY_STRING)
return OK;
if (config == CMOS_ENTRY_STRING)
return OK;
if (length > (8 * sizeof(unsigned long long)))
return CMOS_AREA_TOO_WIDE;
if (length > (8 * sizeof(unsigned long long)))
return CMOS_AREA_TOO_WIDE;
return OK;
}
return OK;
}
/****************************************************************************
* cmos_bit_op_strategy
@ -322,15 +330,16 @@ int verify_cmos_op (unsigned bit, unsigned length, cmos_entry_config_t config)
* Helper function used by cmos_read() and cmos_write() to determine which
* bits to read or write next.
****************************************************************************/
static unsigned cmos_bit_op_strategy (unsigned bit, unsigned bits_left,
cmos_bit_op_location_t *where)
{ unsigned max_bits;
static unsigned cmos_bit_op_strategy(unsigned bit, unsigned bits_left,
cmos_bit_op_location_t * where)
{
unsigned max_bits;
where->byte_index = bit >> 3;
where->bit_offset = bit & 0x07;
max_bits = 8 - where->bit_offset;
return (bits_left > max_bits) ? max_bits : bits_left;
}
where->byte_index = bit >> 3;
where->bit_offset = bit & 0x07;
max_bits = 8 - where->bit_offset;
return (bits_left > max_bits) ? max_bits : bits_left;
}
/****************************************************************************
* cmos_read_bits
@ -338,11 +347,12 @@ static unsigned cmos_bit_op_strategy (unsigned bit, unsigned bits_left,
* Read a chunk of bits from a byte location within CMOS memory. Return the
* value represented by the chunk of bits.
****************************************************************************/
static unsigned char cmos_read_bits (const cmos_bit_op_location_t *where,
unsigned nr_bits)
{ return (cmos_read_byte(where->byte_index) >> where->bit_offset) &
((unsigned char) ((1 << nr_bits) - 1));
}
static unsigned char cmos_read_bits(const cmos_bit_op_location_t * where,
unsigned nr_bits)
{
return (cmos_read_byte(where->byte_index) >> where->bit_offset) &
((unsigned char)((1 << nr_bits) - 1));
}
/****************************************************************************
* cmos_write_bits
@ -350,17 +360,18 @@ static unsigned char cmos_read_bits (const cmos_bit_op_location_t *where,
* Write a chunk of bits (the low order 'nr_bits' bits of 'value') to an area
* within a particular byte of CMOS memory.
****************************************************************************/
static void cmos_write_bits (const cmos_bit_op_location_t *where,
unsigned nr_bits, unsigned char value)
{ unsigned char n, mask;
static void cmos_write_bits(const cmos_bit_op_location_t * where,
unsigned nr_bits, unsigned char value)
{
unsigned char n, mask;
if (nr_bits == 8)
{ cmos_write_byte(where->byte_index, value);
return;
}
if (nr_bits == 8) {
cmos_write_byte(where->byte_index, value);
return;
}
n = cmos_read_byte(where->byte_index);
mask = ((unsigned char) ((1 << nr_bits) - 1)) << where->bit_offset;
n = (n & ~mask) + ((value << where->bit_offset) & mask);
cmos_write_byte(where->byte_index, n);
}
n = cmos_read_byte(where->byte_index);
mask = ((unsigned char)((1 << nr_bits) - 1)) << where->bit_offset;
n = (n & ~mask) + ((value << where->bit_offset) & mask);
cmos_write_byte(where->byte_index, n);
}

View File

@ -38,17 +38,17 @@
#define CMOS_AREA_OVERLAPS_RTC (CMOS_RESULT_START + 1)
#define CMOS_AREA_TOO_WIDE (CMOS_RESULT_START + 2)
unsigned long long cmos_read (const cmos_entry_t *e);
void cmos_write (const cmos_entry_t *e, unsigned long long value);
unsigned char cmos_read_byte (unsigned index);
void cmos_write_byte (unsigned index, unsigned char value);
void cmos_read_all (unsigned char data[]);
void cmos_write_all (unsigned char data[]);
void set_iopl (int level);
int verify_cmos_op (unsigned bit, unsigned length, cmos_entry_config_t config);
unsigned long long cmos_read(const cmos_entry_t * e);
void cmos_write(const cmos_entry_t * e, unsigned long long value);
unsigned char cmos_read_byte(unsigned index);
void cmos_write_byte(unsigned index, unsigned char value);
void cmos_read_all(unsigned char data[]);
void cmos_write_all(unsigned char data[]);
void set_iopl(int level);
int verify_cmos_op(unsigned bit, unsigned length, cmos_entry_config_t config);
#define CMOS_SIZE 256 /* size of CMOS memory in bytes */
#define CMOS_RTC_AREA_SIZE 14 /* first 14 bytes control real time clock */
#define CMOS_SIZE 256 /* size of CMOS memory in bytes */
#define CMOS_RTC_AREA_SIZE 14 /* first 14 bytes control real time clock */
/****************************************************************************
* verify_cmos_byte_index
@ -56,7 +56,9 @@ int verify_cmos_op (unsigned bit, unsigned length, cmos_entry_config_t config);
* Return 1 if 'index' does NOT specify a valid CMOS memory location. Else
* return 0.
****************************************************************************/
static inline int verify_cmos_byte_index (unsigned index)
{ return (index < CMOS_RTC_AREA_SIZE) || (index >= CMOS_SIZE); }
static inline int verify_cmos_byte_index(unsigned index)
{
return (index < CMOS_RTC_AREA_SIZE) || (index >= CMOS_SIZE);
}
#endif /* NVRAMTOOL_CMOS_LOWLEVEL_H */
#endif /* NVRAMTOOL_CMOS_LOWLEVEL_H */

View File

@ -32,26 +32,27 @@
#include "cmos_ops.h"
#include "cmos_lowlevel.h"
static int prepare_cmos_op_common (const cmos_entry_t *e);
static int prepare_cmos_op_common(const cmos_entry_t * e);
/****************************************************************************
* prepare_cmos_op_common
*
* Perform a few checks common to both reads and writes.
****************************************************************************/
static int prepare_cmos_op_common (const cmos_entry_t *e)
{ int result;
static int prepare_cmos_op_common(const cmos_entry_t * e)
{
int result;
if (e->config == CMOS_ENTRY_RESERVED)
/* Access to reserved parameters is not permitted. */
return CMOS_OP_RESERVED;
if (e->config == CMOS_ENTRY_RESERVED)
/* Access to reserved parameters is not permitted. */
return CMOS_OP_RESERVED;
if ((result = verify_cmos_op(e->bit, e->length, e->config)) != OK)
return result;
if ((result = verify_cmos_op(e->bit, e->length, e->config)) != OK)
return result;
assert(e->length > 0);
return OK;
}
assert(e->length > 0);
return OK;
}
/****************************************************************************
* prepare_cmos_read
@ -60,24 +61,25 @@ static int prepare_cmos_op_common (const cmos_entry_t *e)
* sanity checking on 'e'. If a problem was found with e, return an error
* code. Else return OK.
****************************************************************************/
int prepare_cmos_read (const cmos_entry_t *e)
{ int result;
int prepare_cmos_read(const cmos_entry_t * e)
{
int result;
if ((result = prepare_cmos_op_common(e)) != OK)
return result;
if ((result = prepare_cmos_op_common(e)) != OK)
return result;
switch (e->config)
{ case CMOS_ENTRY_ENUM:
case CMOS_ENTRY_HEX:
case CMOS_ENTRY_STRING:
break;
switch (e->config) {
case CMOS_ENTRY_ENUM:
case CMOS_ENTRY_HEX:
case CMOS_ENTRY_STRING:
break;
default:
BUG();
}
default:
BUG();
}
return OK;
}
return OK;
}
/****************************************************************************
* prepare_cmos_write
@ -87,79 +89,78 @@ int prepare_cmos_read (const cmos_entry_t *e)
* checking on 'value_str'. On error, return an error code. Else store the
* numeric equivalent of 'value_str' in '*value' and return OK.
****************************************************************************/
int prepare_cmos_write (const cmos_entry_t *e, const char value_str[],
unsigned long long *value)
{ const cmos_enum_t *q;
unsigned long long out;
const char *p;
char *memory;
int negative, result, found_one;
int prepare_cmos_write(const cmos_entry_t * e, const char value_str[],
unsigned long long *value)
{
const cmos_enum_t *q;
unsigned long long out;
const char *p;
char *memory;
int negative, result, found_one;
if ((result = prepare_cmos_op_common(e)) != OK)
return result;
if ((result = prepare_cmos_op_common(e)) != OK)
return result;
switch (e->config)
{ case CMOS_ENTRY_ENUM:
/* Make sure the user's input corresponds to a valid option. */
for (q = first_cmos_enum_id(e->config_id), found_one = 0;
q != NULL;
q = next_cmos_enum_id(q))
{ found_one = 1;
switch (e->config) {
case CMOS_ENTRY_ENUM:
/* Make sure the user's input corresponds to a valid option. */
for (q = first_cmos_enum_id(e->config_id), found_one = 0;
q != NULL; q = next_cmos_enum_id(q)) {
found_one = 1;
if (!strncmp(q->text, value_str, CMOS_MAX_TEXT_LENGTH))
break;
}
if (!strncmp(q->text, value_str, CMOS_MAX_TEXT_LENGTH))
break;
}
if (!found_one)
return CMOS_OP_NO_MATCHING_ENUM;
if (!found_one)
return CMOS_OP_NO_MATCHING_ENUM;
if (q == NULL)
return CMOS_OP_BAD_ENUM_VALUE;
if (q == NULL)
return CMOS_OP_BAD_ENUM_VALUE;
out = q->value;
break;
out = q->value;
break;
case CMOS_ENTRY_HEX:
/* See if the first character of 'value_str' (excluding any initial
* whitespace) is a minus sign.
*/
for (p = value_str; isspace(*p); p++);
negative = (*p == '-');
case CMOS_ENTRY_HEX:
/* See if the first character of 'value_str' (excluding
* any initial whitespace) is a minus sign.
*/
for (p = value_str; isspace(*p); p++) ;
negative = (*p == '-');
out = strtoull(value_str, (char **) &p, 0);
out = strtoull(value_str, (char **)&p, 0);
if (*p)
return CMOS_OP_INVALID_INT;
if (*p)
return CMOS_OP_INVALID_INT;
/* If we get this far, the user specified a valid integer. However
* we do not currently support the use of negative numbers as CMOS
* parameter values.
*/
if (negative)
return CMOS_OP_NEGATIVE_INT;
/* If we get this far, the user specified a valid integer.
* However we do not currently support the use of negative
* numbers as CMOS parameter values.
*/
if (negative)
return CMOS_OP_NEGATIVE_INT;
break;
break;
case CMOS_ENTRY_STRING:
if (e->length < (8 * strlen(value_str)))
return CMOS_OP_VALUE_TOO_WIDE;
memory = malloc(e->length / 8);
memset(memory, 0, e->length / 8);
strcpy(memory, value_str);
out = (unsigned long)memory;
break;
case CMOS_ENTRY_STRING:
if (e->length < (8 * strlen(value_str)))
return CMOS_OP_VALUE_TOO_WIDE;
memory = malloc(e->length / 8);
memset(memory, 0, e->length / 8);
strcpy(memory, value_str);
out = (unsigned long)memory;
break;
default:
BUG();
}
default:
BUG();
}
if ((e->length < (8 * sizeof(*value))) &&
(out >= (1ull << e->length)))
return CMOS_OP_VALUE_TOO_WIDE;
if ((e->length < (8 * sizeof(*value))) && (out >= (1ull << e->length)))
return CMOS_OP_VALUE_TOO_WIDE;
*value = out;
return OK;
}
*value = out;
return OK;
}
/****************************************************************************
* cmos_checksum_read
@ -167,14 +168,15 @@ int prepare_cmos_write (const cmos_entry_t *e, const char value_str[],
* Read the checksum for the coreboot parameters stored in CMOS and return
* this value.
****************************************************************************/
uint16_t cmos_checksum_read (void)
{ uint16_t lo, hi;
uint16_t cmos_checksum_read(void)
{
uint16_t lo, hi;
/* The checksum is stored in a big-endian format. */
hi = cmos_read_byte(cmos_checksum_index);
lo = cmos_read_byte(cmos_checksum_index + 1);
return (hi << 8) + lo;
}
/* The checksum is stored in a big-endian format. */
hi = cmos_read_byte(cmos_checksum_index);
lo = cmos_read_byte(cmos_checksum_index + 1);
return (hi << 8) + lo;
}
/****************************************************************************
* cmos_checksum_write
@ -182,15 +184,16 @@ uint16_t cmos_checksum_read (void)
* Set the checksum for the coreboot parameters stored in CMOS to
* 'checksum'.
****************************************************************************/
void cmos_checksum_write (uint16_t checksum)
{ unsigned char lo, hi;
void cmos_checksum_write(uint16_t checksum)
{
unsigned char lo, hi;
/* The checksum is stored in a big-endian format. */
hi = (unsigned char) (checksum >> 8);
lo = (unsigned char) (checksum & 0x00ff);
cmos_write_byte(cmos_checksum_index, hi);
cmos_write_byte(cmos_checksum_index + 1, lo);
}
/* The checksum is stored in a big-endian format. */
hi = (unsigned char)(checksum >> 8);
lo = (unsigned char)(checksum & 0x00ff);
cmos_write_byte(cmos_checksum_index, hi);
cmos_write_byte(cmos_checksum_index + 1, lo);
}
/****************************************************************************
* cmos_checksum_compute
@ -198,16 +201,17 @@ void cmos_checksum_write (uint16_t checksum)
* Compute a checksum for the coreboot parameter values currently stored in
* CMOS and return this checksum.
****************************************************************************/
uint16_t cmos_checksum_compute (void)
{ unsigned i, sum;
uint16_t cmos_checksum_compute(void)
{
unsigned i, sum;
sum = 0;
sum = 0;
for (i = cmos_checksum_start; i <= cmos_checksum_end; i++)
sum += cmos_read_byte(i);
for (i = cmos_checksum_start; i <= cmos_checksum_end; i++)
sum += cmos_read_byte(i);
return ~((uint16_t) (sum & 0xffff));
}
return ~((uint16_t) (sum & 0xffff));
}
/****************************************************************************
* cmos_checksum_verify
@ -215,17 +219,18 @@ uint16_t cmos_checksum_compute (void)
* Verify that the coreboot CMOS checksum is valid. If checksum is not
* valid then print warning message and exit.
****************************************************************************/
void cmos_checksum_verify (void)
{ uint16_t computed, actual;
void cmos_checksum_verify(void)
{
uint16_t computed, actual;
set_iopl(3);
computed = cmos_checksum_compute();
actual = cmos_checksum_read();
set_iopl(0);
set_iopl(3);
computed = cmos_checksum_compute();
actual = cmos_checksum_read();
set_iopl(0);
if (computed != actual)
{ fprintf(stderr, "%s: Warning: Coreboot CMOS checksum is bad.\n",
prog_name);
exit(1);
}
}
if (computed != actual) {
fprintf(stderr, "%s: Warning: Coreboot CMOS checksum is bad.\n",
prog_name);
exit(1);
}
}

View File

@ -41,12 +41,12 @@
#define CMOS_OP_VALUE_TOO_WIDE (CMOS_OP_RESULT_START + 4)
#define CMOS_OP_NO_MATCHING_ENUM (CMOS_OP_RESULT_START + 5)
int prepare_cmos_read (const cmos_entry_t *e);
int prepare_cmos_write (const cmos_entry_t *e, const char value_str[],
unsigned long long *value);
uint16_t cmos_checksum_read (void);
void cmos_checksum_write (uint16_t checksum);
uint16_t cmos_checksum_compute (void);
void cmos_checksum_verify (void);
int prepare_cmos_read(const cmos_entry_t * e);
int prepare_cmos_write(const cmos_entry_t * e, const char value_str[],
unsigned long long *value);
uint16_t cmos_checksum_read(void);
void cmos_checksum_write(uint16_t checksum);
uint16_t cmos_checksum_compute(void);
void cmos_checksum_verify(void);
#endif /* CMOS_OPS_H */
#endif /* CMOS_OPS_H */

View File

@ -42,27 +42,29 @@ const char prog_version[] = "2.1";
* Get a line of input from file 'f'. Store result in 'line' which is an
* array of 'line_buf_size' bytes.
****************************************************************************/
int get_line_from_file (FILE *f, char line[], int line_buf_size)
{ if (fgets(line, line_buf_size, f) == NULL)
return LINE_EOF;
int get_line_from_file(FILE * f, char line[], int line_buf_size)
{
if (fgets(line, line_buf_size, f) == NULL)
return LINE_EOF;
/* If the file contains a line that is too long, then it's best to let the
* user know right away rather than passing back a truncated result that
* will lead to problems later on.
*/
return (strlen(line) == ((size_t) (line_buf_size - 1))) ?
LINE_TOO_LONG : OK;
}
/* If the file contains a line that is too long, then it's best
* to let the user know right away rather than passing back a
* truncated result that will lead to problems later on.
*/
return (strlen(line) == ((size_t) (line_buf_size - 1))) ?
LINE_TOO_LONG : OK;
}
/****************************************************************************
* out_of_memory
*
* We ran out of memory. Print an error message and die.
****************************************************************************/
void out_of_memory (void)
{ fprintf(stderr, "%s: Out of memory.\n", prog_name);
exit(1);
}
void out_of_memory(void)
{
fprintf(stderr, "%s: Out of memory.\n", prog_name);
exit(1);
}
/****************************************************************************
* usage
@ -70,36 +72,37 @@ void out_of_memory (void)
* Write a usage message to 'outfile'. If 'outfile' is 'stderr' then exit
* with a value of 1. Otherwise exit with a value of 0.
****************************************************************************/
void usage (FILE *outfile)
{ fprintf(outfile,
"Usage: %s [-y LAYOUT_FILE | -t] PARAMETER ...\n\n"
" Read/write coreboot parameters or show info from "
"coreboot table.\n\n"
" -y LAYOUT_FILE: Use CMOS layout specified by "
"LAYOUT_FILE.\n"
" -t: Use CMOS layout specified by CMOS option "
"table.\n"
" [-n] -r NAME: Show parameter NAME. If -n is given, "
"show value only.\n"
" -e NAME: Show all possible values for parameter "
"NAME.\n"
" -a: Show names and values for all "
"parameters.\n"
" -w NAME=VALUE: Set parameter NAME to VALUE.\n"
" -p INPUT_FILE: Set parameters according to INPUT_FILE.\n"
" -i: Same as -p but file contents taken from "
"standard input.\n"
" -c [VALUE]: Show CMOS checksum or set checksum to "
"VALUE.\n"
" -l [ARG]: Show coreboot table info for ARG, or "
"all ARG choices.\n"
" -d: Show low-level dump of coreboot table.\n"
" -Y: Show CMOS layout info.\n"
" -b OUTPUT_FILE: Dump CMOS memory contents to file.\n"
" -B INPUT_FILE: Write file contents to CMOS memory.\n"
" -x: Show hex dump of CMOS memory.\n"
" -X DUMPFILE: Show hex dump of CMOS dumpfile.\n"
" -v: Show version info for this program.\n"
" -h: Show this message.\n", prog_name);
exit(outfile == stderr);
}
void usage(FILE * outfile)
{
fprintf(outfile,
"Usage: %s [-y LAYOUT_FILE | -t] PARAMETER ...\n\n"
" Read/write coreboot parameters or show info from "
"coreboot table.\n\n"
" -y LAYOUT_FILE: Use CMOS layout specified by "
"LAYOUT_FILE.\n"
" -t: Use CMOS layout specified by CMOS option "
"table.\n"
" [-n] -r NAME: Show parameter NAME. If -n is given, "
"show value only.\n"
" -e NAME: Show all possible values for parameter "
"NAME.\n"
" -a: Show names and values for all "
"parameters.\n"
" -w NAME=VALUE: Set parameter NAME to VALUE.\n"
" -p INPUT_FILE: Set parameters according to INPUT_FILE.\n"
" -i: Same as -p but file contents taken from "
"standard input.\n"
" -c [VALUE]: Show CMOS checksum or set checksum to "
"VALUE.\n"
" -l [ARG]: Show coreboot table info for ARG, or "
"all ARG choices.\n"
" -d: Show low-level dump of coreboot table.\n"
" -Y: Show CMOS layout info.\n"
" -b OUTPUT_FILE: Dump CMOS memory contents to file.\n"
" -B INPUT_FILE: Write file contents to CMOS memory.\n"
" -x: Show hex dump of CMOS memory.\n"
" -X DUMPFILE: Show hex dump of CMOS dumpfile.\n"
" -v: Show version info for this program.\n"
" -h: Show this message.\n", prog_name);
exit(outfile == stderr);
}

View File

@ -77,7 +77,7 @@
#define CMOS_RESULT_START 0x30000
#define CMOS_OP_RESULT_START 0x40000
#define OK 0 /* 0 is used universally to indicate success. */
#define OK 0 /* 0 is used universally to indicate success. */
#define LINE_EOF (COMMON_RESULT_START + 0)
#define LINE_TOO_LONG (COMMON_RESULT_START + 1)
@ -88,8 +88,8 @@ extern const char prog_name[];
/* version of this program */
extern const char prog_version[];
int get_line_from_file (FILE *f, char line[], int line_buf_size);
void out_of_memory (void);
void usage (FILE *outfile);
int get_line_from_file(FILE * f, char line[], int line_buf_size);
void out_of_memory(void);
void usage(FILE * outfile);
#endif /* COMMON_H */
#endif /* COMMON_H */

View File

@ -13,32 +13,32 @@
unsigned long compute_ip_checksum(void *addr, unsigned long length)
{
uint8_t *ptr;
volatile union {
uint8_t byte[2];
uint16_t word;
} value;
unsigned long sum;
unsigned long i;
/* In the most straight forward way possible,
* compute an ip style checksum.
*/
sum = 0;
ptr = addr;
for(i = 0; i < length; i++) {
unsigned long value;
value = ptr[i];
if (i & 1) {
value <<= 8;
}
/* Add the new value */
sum += value;
/* Wrap around the carry */
if (sum > 0xFFFF) {
sum = (sum + (sum >> 16)) & 0xFFFF;
}
}
value.byte[0] = sum & 0xff;
value.byte[1] = (sum >> 8) & 0xff;
return (~value.word) & 0xFFFF;
uint8_t *ptr;
volatile union {
uint8_t byte[2];
uint16_t word;
} value;
unsigned long sum;
unsigned long i;
/* In the most straight forward way possible,
* compute an ip style checksum.
*/
sum = 0;
ptr = addr;
for (i = 0; i < length; i++) {
unsigned long value;
value = ptr[i];
if (i & 1) {
value <<= 8;
}
/* Add the new value */
sum += value;
/* Wrap around the carry */
if (sum > 0xFFFF) {
sum = (sum + (sum >> 16)) & 0xFFFF;
}
}
value.byte[0] = sum & 0xff;
value.byte[1] = (sum >> 8) & 0xff;
return (~value.word) & 0xFFFF;
}

View File

@ -59,30 +59,27 @@ struct lb_uint64 {
static inline uint64_t unpack_lb64(struct lb_uint64 value)
{
uint64_t result;
result = value.hi;
result = (result << 32) + value.lo;
return result;
uint64_t result;
result = value.hi;
result = (result << 32) + value.lo;
return result;
}
static inline struct lb_uint64 pack_lb64(uint64_t value)
{
struct lb_uint64 result;
result.lo = (value >> 0) & 0xffffffff;
result.hi = (value >> 32) & 0xffffffff;
return result;
struct lb_uint64 result;
result.lo = (value >> 0) & 0xffffffff;
result.hi = (value >> 32) & 0xffffffff;
return result;
}
struct lb_header
{
uint8_t signature[4]; /* LBIO */
uint32_t header_bytes;
uint32_t header_checksum;
uint32_t table_bytes;
uint32_t table_checksum;
uint32_t table_entries;
struct lb_header {
uint8_t signature[4]; /* LBIO */
uint32_t header_bytes;
uint32_t header_checksum;
uint32_t table_bytes;
uint32_t table_checksum;
uint32_t table_entries;
};
/* Every entry in the boot enviroment list will correspond to a boot
@ -92,8 +89,8 @@ struct lb_header
* forward compatibility with records not yet defined.
*/
struct lb_record {
uint32_t tag; /* tag ID */
uint32_t size; /* size of record (in bytes) */
uint32_t tag; /* tag ID */
uint32_t size; /* size of record (in bytes) */
};
#define LB_TAG_UNUSED 0x0000
@ -103,48 +100,48 @@ struct lb_record {
struct lb_memory_range {
struct lb_uint64 start;
struct lb_uint64 size;
uint32_t type;
#define LB_MEM_RAM 1 /* Memory anyone can use */
#define LB_MEM_RESERVED 2 /* Don't use this memory region */
#define LB_MEM_TABLE 16 /* Ram configuration tables are kept in */
uint32_t type;
#define LB_MEM_RAM 1 /* Memory anyone can use */
#define LB_MEM_RESERVED 2 /* Don't use this memory region */
#define LB_MEM_TABLE 16 /* Ram configuration tables are kept in */
};
struct lb_memory {
uint32_t tag;
uint32_t size;
struct lb_memory_range map[0];
uint32_t tag;
uint32_t size;
struct lb_memory_range map[0];
};
#define LB_TAG_HWRPB 0x0002
#define LB_TAG_HWRPB 0x0002
struct lb_hwrpb {
uint32_t tag;
uint32_t size;
uint64_t hwrpb;
uint32_t tag;
uint32_t size;
uint64_t hwrpb;
};
#define LB_TAG_MAINBOARD 0x0003
struct lb_mainboard {
uint32_t tag;
uint32_t size;
uint8_t vendor_idx;
uint8_t part_number_idx;
uint8_t strings[0];
uint32_t tag;
uint32_t size;
uint8_t vendor_idx;
uint8_t part_number_idx;
uint8_t strings[0];
};
#define LB_TAG_VERSION 0x0004
#define LB_TAG_EXTRA_VERSION 0x0005
#define LB_TAG_BUILD 0x0006
#define LB_TAG_COMPILE_TIME 0x0007
#define LB_TAG_COMPILE_BY 0x0008
#define LB_TAG_COMPILE_HOST 0x0009
#define LB_TAG_COMPILE_DOMAIN 0x000a
#define LB_TAG_COMPILER 0x000b
#define LB_TAG_LINKER 0x000c
#define LB_TAG_VERSION 0x0004
#define LB_TAG_EXTRA_VERSION 0x0005
#define LB_TAG_BUILD 0x0006
#define LB_TAG_COMPILE_TIME 0x0007
#define LB_TAG_COMPILE_BY 0x0008
#define LB_TAG_COMPILE_HOST 0x0009
#define LB_TAG_COMPILE_DOMAIN 0x000a
#define LB_TAG_COMPILER 0x000b
#define LB_TAG_LINKER 0x000c
#define LB_TAG_ASSEMBLER 0x000d
struct lb_string {
uint32_t tag;
uint32_t size;
uint8_t string[0];
uint32_t tag;
uint32_t size;
uint8_t string[0];
};
#define LB_TAG_SERIAL 0x000f
#define LB_TAG_CONSOLE 0x0010
@ -159,9 +156,9 @@ struct lb_forward {
#define LB_TAG_CMOS_OPTION_TABLE 200
/* cmos header record */
struct cmos_option_table {
uint32_t tag; /* CMOS definitions table type */
uint32_t size; /* size of the entire table */
uint32_t header_length; /* length of header */
uint32_t tag; /* CMOS definitions table type */
uint32_t size; /* size of the entire table */
uint32_t header_length; /* length of header */
};
/* cmos entry record
@ -173,31 +170,30 @@ struct cmos_option_table {
*/
#define LB_TAG_OPTION 201
struct cmos_entries {
uint32_t tag; /* entry type */
uint32_t size; /* length of this record */
uint32_t bit; /* starting bit from start of image */
uint32_t length; /* length of field in bits */
uint32_t config; /* e=enumeration, h=hex, r=reserved */
uint32_t config_id; /* a number linking to an enumeration record */
uint32_t tag; /* entry type */
uint32_t size; /* length of this record */
uint32_t bit; /* starting bit from start of image */
uint32_t length; /* length of field in bits */
uint32_t config; /* e=enumeration, h=hex, r=reserved */
uint32_t config_id; /* a number linking to an enumeration record */
#define CMOS_MAX_NAME_LENGTH 32
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name of entry in ascii,
variable length int aligned */
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name of entry in ascii,
variable length int aligned */
};
/* cmos enumerations record
This record is variable length. The text field may be
shorter than CMOS_MAX_TEXT_LENGTH.
*/
#define LB_TAG_OPTION_ENUM 202
struct cmos_enums {
uint32_t tag; /* enumeration type */
uint32_t size; /* length of this record */
uint32_t config_id; /* a number identifying the config id */
uint32_t value; /* the value associated with the text */
uint32_t tag; /* enumeration type */
uint32_t size; /* length of this record */
uint32_t config_id; /* a number identifying the config id */
uint32_t value; /* the value associated with the text */
#define CMOS_MAX_TEXT_LENGTH 32
uint8_t text[CMOS_MAX_TEXT_LENGTH]; /* enum description in ascii,
variable length int aligned */
uint8_t text[CMOS_MAX_TEXT_LENGTH]; /* enum description in ascii,
variable length int aligned */
};
/* cmos defaults record
@ -205,16 +201,16 @@ struct cmos_enums {
*/
#define LB_TAG_OPTION_DEFAULTS 203
struct cmos_defaults {
uint32_t tag; /* default type */
uint32_t size; /* length of this record */
uint32_t name_length; /* length of the following name field */
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name identifying the default */
uint32_t tag; /* default type */
uint32_t size; /* length of this record */
uint32_t name_length; /* length of the following name field */
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name identifying the default */
#define CMOS_IMAGE_BUFFER_SIZE 128
uint8_t default_set[CMOS_IMAGE_BUFFER_SIZE]; /* default settings */
uint8_t default_set[CMOS_IMAGE_BUFFER_SIZE]; /* default settings */
};
#define LB_TAG_OPTION_CHECKSUM 204
struct cmos_checksum {
struct cmos_checksum {
uint32_t tag;
uint32_t size;
/* In practice everything is byte aligned, but things are measured
@ -228,6 +224,4 @@ struct cmos_checksum {
#define CHECKSUM_PCBIOS 1
};
#endif /* COREBOOT_TABLES_H */
#endif /* COREBOOT_TABLES_H */

View File

@ -43,11 +43,11 @@
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
static void addrprint (FILE *outfile, uint64_t address, int width);
static void hexprint (FILE *outfile, unsigned char byte);
static void charprint (FILE *outfile, unsigned char byte,
unsigned char nonprintable,
is_printable_fn_t is_printable_fn);
static void addrprint(FILE * outfile, uint64_t address, int width);
static void hexprint(FILE * outfile, unsigned char byte);
static void charprint(FILE * outfile, unsigned char byte,
unsigned char nonprintable,
is_printable_fn_t is_printable_fn);
/*--------------------------------------------------------------------------
* hexdump
@ -65,95 +65,98 @@ static void charprint (FILE *outfile, unsigned char byte,
* format: A structure specifying how the hex dump should be
* formatted.
*--------------------------------------------------------------------------*/
void hexdump (const void *mem, int bytes, uint64_t addrprint_start,
FILE *outfile, const hexdump_format_t *format)
{ int bytes_left, index, i;
const unsigned char *p;
is_printable_fn_t is_printable_fn;
void hexdump(const void *mem, int bytes, uint64_t addrprint_start,
FILE * outfile, const hexdump_format_t * format)
{
int bytes_left, index, i;
const unsigned char *p;
is_printable_fn_t is_printable_fn;
/* Quietly return if the caller asks us to do something unreasonable. */
if ((format->bytes_per_line <= 0) || (bytes < 0))
return;
/* Quietly return if the caller asks us to do something unreasonable. */
if ((format->bytes_per_line <= 0) || (bytes < 0))
return;
is_printable_fn = format->is_printable_fn;
is_printable_fn = format->is_printable_fn;
if (is_printable_fn == NULL)
is_printable_fn = default_is_printable_fn;
if (is_printable_fn == NULL)
is_printable_fn = default_is_printable_fn;
p = (const unsigned char *) mem;
index = 0;
p = (const unsigned char *)mem;
index = 0;
/* Each iteration handles one full line of output. When loop terminates,
* the number of remaining bytes to display (if any) will not be enough to
* fill an entire line.
*/
for (bytes_left = bytes;
bytes_left >= format->bytes_per_line;
bytes_left -= format->bytes_per_line)
{ /* print start address for current line */
fprintf(outfile, format->indent);
addrprint(outfile, addrprint_start + index, format->addrprint_width);
fprintf(outfile, format->sep1);
/* Each iteration handles one full line of output. When loop
* terminates, the number of remaining bytes to display (if any)
* will not be enough to fill an entire line.
*/
for (bytes_left = bytes;
bytes_left >= format->bytes_per_line;
bytes_left -= format->bytes_per_line) {
/* print start address for current line */
fprintf(outfile, format->indent);
addrprint(outfile, addrprint_start + index,
format->addrprint_width);
fprintf(outfile, format->sep1);
/* display the bytes in hex */
for (i = 0; ; )
{ hexprint(outfile, p[index++]);
/* display the bytes in hex */
for (i = 0;;) {
hexprint(outfile, p[index++]);
if (++i >= format->bytes_per_line)
break;
if (++i >= format->bytes_per_line)
break;
fprintf(outfile, format->sep2);
}
fprintf(outfile, format->sep2);
}
index -= format->bytes_per_line;
fprintf(outfile, format->sep3);
index -= format->bytes_per_line;
fprintf(outfile, format->sep3);
/* display the bytes as characters */
for (i = 0; i < format->bytes_per_line; i++)
charprint(outfile, p[index++], format->nonprintable,
is_printable_fn);
/* display the bytes as characters */
for (i = 0; i < format->bytes_per_line; i++)
charprint(outfile, p[index++], format->nonprintable,
is_printable_fn);
fprintf(outfile, "\n");
}
fprintf(outfile, "\n");
}
if (bytes_left == 0)
return;
if (bytes_left == 0)
return;
/* print start address for last line */
fprintf(outfile, format->indent);
addrprint(outfile, addrprint_start + index, format->addrprint_width);
fprintf(outfile, format->sep1);
/* print start address for last line */
fprintf(outfile, format->indent);
addrprint(outfile, addrprint_start + index, format->addrprint_width);
fprintf(outfile, format->sep1);
/* display bytes for last line in hex */
for (i = 0; i < bytes_left; i++)
{ hexprint(outfile, p[index++]);
fprintf(outfile, format->sep2);
}
/* display bytes for last line in hex */
for (i = 0; i < bytes_left; i++) {
hexprint(outfile, p[index++]);
fprintf(outfile, format->sep2);
}
index -= bytes_left;
index -= bytes_left;
/* pad the rest of the hex byte area with spaces */
for (; ; )
{ fprintf(outfile, " ");
/* pad the rest of the hex byte area with spaces */
for (;;) {
fprintf(outfile, " ");
if (++i >= format->bytes_per_line)
break;
if (++i >= format->bytes_per_line)
break;
fprintf(outfile, format->sep2);
}
fprintf(outfile, format->sep2);
}
fprintf(outfile, format->sep3);
fprintf(outfile, format->sep3);
/* display bytes for last line as characters */
for (i = 0; i < bytes_left; i++)
charprint(outfile, p[index++], format->nonprintable, is_printable_fn);
/* display bytes for last line as characters */
for (i = 0; i < bytes_left; i++)
charprint(outfile, p[index++], format->nonprintable,
is_printable_fn);
/* pad the rest of the character area with spaces */
for (; i < format->bytes_per_line; i++)
fprintf(outfile, " ");
/* pad the rest of the character area with spaces */
for (; i < format->bytes_per_line; i++)
fprintf(outfile, " ");
fprintf(outfile, "\n");
}
fprintf(outfile, "\n");
}
/*--------------------------------------------------------------------------
* default_is_printable_fn
@ -169,8 +172,10 @@ void hexdump (const void *mem, int bytes, uint64_t addrprint_start,
* return value:
* Return 1 if the input character is printable. Otherwise return 0.
*--------------------------------------------------------------------------*/
int default_is_printable_fn (unsigned char c)
{ return (c >= 0x20) && (c <= 0x7e); }
int default_is_printable_fn(unsigned char c)
{
return (c >= 0x20) && (c <= 0x7e);
}
/*--------------------------------------------------------------------------
* addrprint
@ -183,32 +188,33 @@ int default_is_printable_fn (unsigned char c)
* width: The number of bytes wide the address should be displayed as.
* Must be a value from 1 to 8.
*--------------------------------------------------------------------------*/
static void addrprint (FILE *outfile, uint64_t address, int width)
{ char s[17];
int i;
static void addrprint(FILE * outfile, uint64_t address, int width)
{
char s[17];
int i;
/* force the user's input to be valid */
if (width < 1)
width = 1;
else if (width > 8)
width = 8;
/* force the user's input to be valid */
if (width < 1)
width = 1;
else if (width > 8)
width = 8;
/* convert address to string */
sprintf(s, "%016llx", (unsigned long long) address);
/* convert address to string */
sprintf(s, "%016llx", (unsigned long long)address);
/* write it out, with colons separating consecutive 16-bit chunks of the
* address
*/
for (i = 16 - (2 * width); ; )
{ fprintf(outfile, "%c", s[i]);
/* write it out, with colons separating consecutive 16-bit
* chunks of the address
*/
for (i = 16 - (2 * width);;) {
fprintf(outfile, "%c", s[i]);
if (++i >= 16)
break;
if (++i >= 16)
break;
if ((i % 4) == 0)
fprintf(outfile, ":");
}
}
if ((i % 4) == 0)
fprintf(outfile, ":");
}
}
/*--------------------------------------------------------------------------
* hexprint
@ -219,14 +225,15 @@ static void addrprint (FILE *outfile, uint64_t address, int width)
* outfile: the place where the output should be written
* byte: the byte to display
*--------------------------------------------------------------------------*/
static void hexprint (FILE *outfile, unsigned char byte)
{ static const char tbl[] =
{ '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
static void hexprint(FILE * outfile, unsigned char byte)
{
static const char tbl[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
fprintf(outfile, "%c%c", tbl[byte >> 4], tbl[byte & 0x0f]);
}
fprintf(outfile, "%c%c", tbl[byte >> 4], tbl[byte & 0x0f]);
}
/*--------------------------------------------------------------------------
* charprint
@ -241,7 +248,9 @@ static void hexprint (FILE *outfile, unsigned char byte)
* is_printable_fn: a function that returns a boolean value indicating
* whether a given character is printable
*--------------------------------------------------------------------------*/
static void charprint (FILE *outfile, unsigned char byte,
unsigned char nonprintable,
is_printable_fn_t is_printable_fn)
{ fprintf(outfile, "%c", is_printable_fn(byte) ? byte : nonprintable); }
static void charprint(FILE * outfile, unsigned char byte,
unsigned char nonprintable,
is_printable_fn_t is_printable_fn)
{
fprintf(outfile, "%c", is_printable_fn(byte) ? byte : nonprintable);
}

View File

@ -81,17 +81,16 @@ typedef int (*is_printable_fn_t) (unsigned char c);
* printable. A value of NULL will cause
* default_is_printable_fn to be used.
*--------------------------------------------------------------------------*/
typedef struct
{ int bytes_per_line;
int addrprint_width;
const char *indent;
const char *sep1;
const char *sep2;
const char *sep3;
unsigned char nonprintable;
is_printable_fn_t is_printable_fn;
}
hexdump_format_t;
typedef struct {
int bytes_per_line;
int addrprint_width;
const char *indent;
const char *sep1;
const char *sep2;
const char *sep3;
unsigned char nonprintable;
is_printable_fn_t is_printable_fn;
} hexdump_format_t;
/*--------------------------------------------------------------------------
* hexdump
@ -109,8 +108,8 @@ hexdump_format_t;
* format: A structure specifying how the hex dump should be
* formatted.
*--------------------------------------------------------------------------*/
void hexdump (const void *mem, int bytes, uint64_t addrprint_start,
FILE *outfile, const hexdump_format_t *format);
void hexdump(const void *mem, int bytes, uint64_t addrprint_start,
FILE * outfile, const hexdump_format_t * format);
/*--------------------------------------------------------------------------
* default_is_printable_fn
@ -126,6 +125,6 @@ void hexdump (const void *mem, int bytes, uint64_t addrprint_start,
* return value:
* Return 1 if the input character is printable. Otherwise return 0.
*--------------------------------------------------------------------------*/
int default_is_printable_fn (unsigned char c);
int default_is_printable_fn(unsigned char c);
#endif /* _HEXDUMP_H */
#endif /* _HEXDUMP_H */

View File

@ -35,38 +35,35 @@
#include "cmos_lowlevel.h"
#include "reg_expr.h"
static int get_input_file_line (FILE *f, char line[], int line_buf_size);
static unsigned long long try_prepare_cmos_write (const cmos_entry_t *e,
const char value_str[]);
static int get_input_file_line(FILE * f, char line[], int line_buf_size);
static unsigned long long try_prepare_cmos_write(const cmos_entry_t * e,
const char value_str[]);
/* matches either a blank line or a comment line */
static const char blank_or_comment_regex[] =
/* a blank line */
"(^[[:space:]]+$)"
"|" /* or ... */
/* a line consisting of: optional whitespace followed by */
"(^[[:space:]]*"
/* a '#' character and optionally, additional characters */
"#.*$)";
/* a blank line */
"(^[[:space:]]+$)" "|" /* or ... */
/* a line consisting of: optional whitespace followed by */
"(^[[:space:]]*"
/* a '#' character and optionally, additional characters */
"#.*$)";
/* matches an assignment line */
const char assignment_regex[] =
/* optional whitespace */
"^[[:space:]]*"
/* followed by a coreboot parameter name */
"([^[:space:]]+)"
/* followed by optional whitespace */
"[[:space:]]*"
/* followed by an '=' character */
"="
/* followed by optional whitespace */
"[[:space:]]*"
/* followed by a value that may contain embedded whitespace */
"([^[:space:]]+([[:space:]]+[^[:space:]]+)*)+"
/* followed by optional whitespace */
"[[:space:]]*$";
/* optional whitespace */
"^[[:space:]]*"
/* followed by a coreboot parameter name */
"([^[:space:]]+)"
/* followed by optional whitespace */
"[[:space:]]*"
/* followed by an '=' character */
"="
/* followed by optional whitespace */
"[[:space:]]*"
/* followed by a value that may contain embedded whitespace */
"([^[:space:]]+([[:space:]]+[^[:space:]]+)*)+"
/* followed by optional whitespace */
"[[:space:]]*$";
static int line_num;
@ -77,77 +74,77 @@ static int line_num;
* write operations. Perform sanity checking on all write operations and
* exit with an error message if there is a problem.
****************************************************************************/
cmos_write_t * process_input_file (FILE *f)
{
static const int LINE_BUF_SIZE = 256;
static const size_t N_MATCHES = 4;
char line[LINE_BUF_SIZE];
const char *name, *value;
cmos_write_t *list, *item, **p;
regex_t blank_or_comment, assignment;
regmatch_t match[N_MATCHES];
const cmos_entry_t *e;
cmos_write_t *process_input_file(FILE * f)
{
static const int LINE_BUF_SIZE = 256;
static const size_t N_MATCHES = 4;
char line[LINE_BUF_SIZE];
const char *name, *value;
cmos_write_t *list, *item, **p;
regex_t blank_or_comment, assignment;
regmatch_t match[N_MATCHES];
const cmos_entry_t *e;
list = NULL;
p = &list;
list = NULL;
p = &list;
compile_reg_exprs(REG_EXTENDED | REG_NEWLINE, 2, blank_or_comment_regex,
&blank_or_comment, assignment_regex, &assignment);
compile_reg_exprs(REG_EXTENDED | REG_NEWLINE, 2, blank_or_comment_regex,
&blank_or_comment, assignment_regex, &assignment);
/* each iteration processes one line from input file */
for (line_num = 1;
get_input_file_line(f, line, LINE_BUF_SIZE) == OK;
line_num++)
{ /* skip comments and blank lines */
if (!regexec(&blank_or_comment, line, 0, NULL, 0))
continue;
/* each iteration processes one line from input file */
for (line_num = 1; get_input_file_line(f, line, LINE_BUF_SIZE) == OK; line_num++) { /* skip comments and blank lines */
if (!regexec(&blank_or_comment, line, 0, NULL, 0))
continue;
/* Is this a valid assignment line? If not, then it's a syntax
* error.
*/
if (regexec(&assignment, line, N_MATCHES, match, 0))
{ fprintf(stderr, "%s: Syntax error on line %d of input file.\n",
prog_name, line_num);
exit(1);
}
/* Is this a valid assignment line? If not, then it's a syntax
* error.
*/
if (regexec(&assignment, line, N_MATCHES, match, 0)) {
fprintf(stderr,
"%s: Syntax error on line %d of input file.\n",
prog_name, line_num);
exit(1);
}
/* OK, we found an assignment. Break the line into substrings
* representing the lefthand and righthand sides of the assignment.
*/
line[match[1].rm_eo] = '\0';
line[match[2].rm_eo] = '\0';
name = &line[match[1].rm_so];
value = &line[match[2].rm_so];
/* OK, we found an assignment. Break the line into substrings
* representing the lefthand and righthand sides of the assignment.
*/
line[match[1].rm_eo] = '\0';
line[match[2].rm_eo] = '\0';
name = &line[match[1].rm_so];
value = &line[match[2].rm_so];
/* now look up the coreboot parameter name */
if (is_checksum_name(name) || (e = find_cmos_entry(name)) == NULL)
{ fprintf(stderr, "%s: Error on line %d of input file: CMOS parameter "
"%s not found.\n", prog_name, line_num, name);
exit(1);
}
/* now look up the coreboot parameter name */
if (is_checksum_name(name)
|| (e = find_cmos_entry(name)) == NULL) {
fprintf(stderr,
"%s: Error on line %d of input file: CMOS parameter "
"%s not found.\n", prog_name, line_num, name);
exit(1);
}
/* At this point, we figure out what numeric value needs to be written
* to which location. At the same time, we perform sanity checking on
* the write operation.
*/
/* At this point, we figure out what numeric value needs to be written
* to which location. At the same time, we perform sanity checking on
* the write operation.
*/
if ((item = (cmos_write_t *) malloc(sizeof(*item))) == NULL)
out_of_memory();
if ((item = (cmos_write_t *) malloc(sizeof(*item))) == NULL)
out_of_memory();
item->bit = e->bit;
item->length = e->length;
item->config = e->config;
item->value = try_prepare_cmos_write(e, value);
item->bit = e->bit;
item->length = e->length;
item->config = e->config;
item->value = try_prepare_cmos_write(e, value);
/* Append write operation to pending write list. */
item->next = NULL;
*p = item;
p = &item->next;
}
/* Append write operation to pending write list. */
item->next = NULL;
*p = item;
p = &item->next;
}
free_reg_exprs(2, &blank_or_comment, &assignment);
return list;
}
free_reg_exprs(2, &blank_or_comment, &assignment);
return list;
}
/****************************************************************************
* do_cmos_writes
@ -156,25 +153,26 @@ cmos_write_t * process_input_file (FILE *f)
* all sanity checks. Perform all write operations, destroying the list as
* we go.
****************************************************************************/
void do_cmos_writes (cmos_write_t *list)
{ cmos_write_t *item;
void do_cmos_writes(cmos_write_t * list)
{
cmos_write_t *item;
set_iopl(3);
set_iopl(3);
while (list != NULL)
{ cmos_entry_t e;
item = list;
e.bit = item->bit;
e.length = item->length;
e.config = item->config;
list = item->next;
cmos_write(&e, item->value);
free(item);
}
while (list != NULL) {
cmos_entry_t e;
item = list;
e.bit = item->bit;
e.length = item->length;
e.config = item->config;
list = item->next;
cmos_write(&e, item->value);
free(item);
}
cmos_checksum_write(cmos_checksum_compute());
set_iopl(0);
}
cmos_checksum_write(cmos_checksum_compute());
set_iopl(0);
}
/****************************************************************************
* get_input_file_line
@ -183,27 +181,29 @@ void do_cmos_writes (cmos_write_t *list)
* array of 'line_buf_size' bytes. Return OK on success or an error code on
* error.
****************************************************************************/
static int get_input_file_line (FILE *f, char line[], int line_buf_size)
{ switch (get_line_from_file(f, line, line_buf_size))
{ case OK:
return OK;
static int get_input_file_line(FILE * f, char line[], int line_buf_size)
{
switch (get_line_from_file(f, line, line_buf_size)) {
case OK:
return OK;
case LINE_EOF:
return LINE_EOF;
case LINE_EOF:
return LINE_EOF;
case LINE_TOO_LONG:
fprintf(stderr, "%s: Error on line %d of input file: Maximum line "
"length exceeded. Max is %d characters.\n", prog_name,
line_num, line_buf_size - 2);
break;
case LINE_TOO_LONG:
fprintf(stderr,
"%s: Error on line %d of input file: Maximum line "
"length exceeded. Max is %d characters.\n", prog_name,
line_num, line_buf_size - 2);
break;
default:
BUG();
}
default:
BUG();
}
exit(1);
return 1; /* keep compiler happy */
}
exit(1);
return 1; /* keep compiler happy */
}
/****************************************************************************
* try_prepare_cmos_write
@ -212,73 +212,83 @@ static int get_input_file_line (FILE *f, char line[], int line_buf_size)
* CMOS memory. On success, return the converted value. On error, exit with
* an error message.
****************************************************************************/
static unsigned long long try_prepare_cmos_write (const cmos_entry_t *e,
const char value_str[])
{ unsigned long long value;
static unsigned long long try_prepare_cmos_write(const cmos_entry_t * e,
const char value_str[])
{
unsigned long long value;
switch (prepare_cmos_write(e, value_str, &value))
{ case OK:
return value;
switch (prepare_cmos_write(e, value_str, &value)) {
case OK:
return value;
case CMOS_OP_BAD_ENUM_VALUE:
fprintf(stderr, "%s: Error on line %d of input file: Bad value for "
"parameter %s.", prog_name, line_num, e->name);
break;
case CMOS_OP_BAD_ENUM_VALUE:
fprintf(stderr,
"%s: Error on line %d of input file: Bad value for "
"parameter %s.", prog_name, line_num, e->name);
break;
case CMOS_OP_NEGATIVE_INT:
fprintf(stderr, "%s: Error on line %d of input file: This program "
"does not support assignment of negative numbers to "
"coreboot parameters.", prog_name, line_num);
break;
case CMOS_OP_NEGATIVE_INT:
fprintf(stderr,
"%s: Error on line %d of input file: This program "
"does not support assignment of negative numbers to "
"coreboot parameters.", prog_name, line_num);
break;
case CMOS_OP_INVALID_INT:
fprintf(stderr, "%s: Error on line %d of input file: %s is not a "
"valid integer.", prog_name, line_num, value_str);
break;
case CMOS_OP_INVALID_INT:
fprintf(stderr,
"%s: Error on line %d of input file: %s is not a "
"valid integer.", prog_name, line_num, value_str);
break;
case CMOS_OP_RESERVED:
fprintf(stderr, "%s: Error on line %d of input file: Can not modify "
"reserved coreboot parameter %s.", prog_name, line_num,
e->name);
break;
case CMOS_OP_RESERVED:
fprintf(stderr,
"%s: Error on line %d of input file: Can not modify "
"reserved coreboot parameter %s.", prog_name, line_num,
e->name);
break;
case CMOS_OP_VALUE_TOO_WIDE:
fprintf(stderr, "%s: Error on line %d of input file: Can not write "
"value %s to CMOS parameter %s that is only %d bits wide.",
prog_name, line_num, value_str, e->name, e->length);
break;
case CMOS_OP_VALUE_TOO_WIDE:
fprintf(stderr,
"%s: Error on line %d of input file: Can not write "
"value %s to CMOS parameter %s that is only %d bits wide.",
prog_name, line_num, value_str, e->name, e->length);
break;
case CMOS_OP_NO_MATCHING_ENUM:
fprintf(stderr, "%s: coreboot parameter %s has no matching enums.",
prog_name, e->name);
break;
case CMOS_OP_NO_MATCHING_ENUM:
fprintf(stderr,
"%s: coreboot parameter %s has no matching enums.",
prog_name, e->name);
break;
case CMOS_AREA_OUT_OF_RANGE:
fprintf(stderr, "%s: The CMOS area specified by the layout info for "
"coreboot parameter %s is out of range.", prog_name,
e->name);
break;
case CMOS_AREA_OUT_OF_RANGE:
fprintf(stderr,
"%s: The CMOS area specified by the layout info for "
"coreboot parameter %s is out of range.", prog_name,
e->name);
break;
case CMOS_AREA_OVERLAPS_RTC:
fprintf(stderr, "%s: The CMOS area specified by the layout info for "
"coreboot parameter %s overlaps the realtime clock area.",
prog_name, e->name);
break;
case CMOS_AREA_OVERLAPS_RTC:
fprintf(stderr,
"%s: The CMOS area specified by the layout info for "
"coreboot parameter %s overlaps the realtime clock area.",
prog_name, e->name);
break;
case CMOS_AREA_TOO_WIDE:
fprintf(stderr, "%s: The CMOS area specified by the layout info for "
"coreboot parameter %s is too wide.",
prog_name, e->name);
break;
case CMOS_AREA_TOO_WIDE:
fprintf(stderr,
"%s: The CMOS area specified by the layout info for "
"coreboot parameter %s is too wide.", prog_name,
e->name);
break;
default:
fprintf(stderr,
"%s: Unknown error encountered while attempting to modify "
"coreboot parameter %s.", prog_name, e->name);
break;
}
default:
fprintf(stderr,
"%s: Unknown error encountered while attempting to modify "
"coreboot parameter %s.", prog_name, e->name);
break;
}
fprintf(stderr, " No CMOS writes performed.\n");
exit(1);
return 0; /* keep compiler happy */
}
fprintf(stderr, " No CMOS writes performed.\n");
exit(1);
return 0; /* keep compiler happy */
}

View File

@ -36,22 +36,22 @@
typedef struct cmos_write_t cmos_write_t;
/* This represents a pending CMOS write operation. When changing multiple
* CMOS parameter values, we first represent the changes as a list of pending
* write operations. This allows us to sanity check all write operations
* before any of them are performed.
/* This represents a pending CMOS write operation. When changing
* multiple CMOS parameter values, we first represent the changes as a
* list of pending write operations. This allows us to sanity check all
* write operations before any of them are performed.
*/
struct cmos_write_t
{ unsigned bit;
unsigned length;
cmos_entry_config_t config;
unsigned long long value;
cmos_write_t *next;
};
struct cmos_write_t {
unsigned bit;
unsigned length;
cmos_entry_config_t config;
unsigned long long value;
cmos_write_t *next;
};
cmos_write_t * process_input_file (FILE *f);
void do_cmos_writes (cmos_write_t *list);
cmos_write_t *process_input_file(FILE * f);
void do_cmos_writes(cmos_write_t * list);
extern const char assignment_regex[];
#endif /* INPUT_FILE_H */
#endif /* INPUT_FILE_H */

View File

@ -13,4 +13,4 @@
unsigned long compute_ip_checksum(void *addr, unsigned long length);
#endif /* IP_CHECKSUM_H */
#endif /* IP_CHECKSUM_H */

View File

@ -34,23 +34,23 @@
typedef struct cmos_entry_item_t cmos_entry_item_t;
struct cmos_entry_item_t
{ cmos_entry_t item;
cmos_entry_item_t *next;
};
struct cmos_entry_item_t {
cmos_entry_t item;
cmos_entry_item_t *next;
};
typedef struct cmos_enum_item_t cmos_enum_item_t;
struct cmos_enum_item_t
{ cmos_enum_t item;
cmos_enum_item_t *next;
};
struct cmos_enum_item_t {
cmos_enum_t item;
cmos_enum_item_t *next;
};
static void default_cmos_layout_get_fn (void);
static int areas_overlap (unsigned area_0_start, unsigned area_0_length,
unsigned area_1_start, unsigned area_1_length);
static int entries_overlap (const cmos_entry_t *p, const cmos_entry_t *q);
static const cmos_enum_item_t * find_first_cmos_enum_id (unsigned config_id);
static void default_cmos_layout_get_fn(void);
static int areas_overlap(unsigned area_0_start, unsigned area_0_length,
unsigned area_1_start, unsigned area_1_length);
static int entries_overlap(const cmos_entry_t * p, const cmos_entry_t * q);
static const cmos_enum_item_t *find_first_cmos_enum_id(unsigned config_id);
const char checksum_param_name[] = "check_sum";
@ -99,39 +99,41 @@ static cmos_layout_get_fn_t cmos_layout_get_fn = default_cmos_layout_get_fn;
*
* Return 1 if cmos entries 'p' and 'q' overlap. Else return 0.
****************************************************************************/
static inline int entries_overlap (const cmos_entry_t *p,
const cmos_entry_t *q)
{ return areas_overlap(p->bit, p->length, q->bit, q->length); }
static inline int entries_overlap(const cmos_entry_t * p,
const cmos_entry_t * q)
{
return areas_overlap(p->bit, p->length, q->bit, q->length);
}
/****************************************************************************
* cmos_entry_to_const_item
*
* Return a pointer to the cmos_entry_item_t that 'p' is embedded within.
****************************************************************************/
static inline const cmos_entry_item_t * cmos_entry_to_const_item
(const cmos_entry_t *p)
{ static const cmos_entry_t *pos = &((cmos_entry_item_t *) 0)->item;
unsigned long offset, address;
static inline const cmos_entry_item_t *cmos_entry_to_const_item
(const cmos_entry_t * p) {
static const cmos_entry_t *pos = &((cmos_entry_item_t *) 0)->item;
unsigned long offset, address;
offset = (unsigned long) pos;
address = ((unsigned long) p) - offset;
return (const cmos_entry_item_t *) address;
}
offset = (unsigned long)pos;
address = ((unsigned long)p) - offset;
return (const cmos_entry_item_t *)address;
}
/****************************************************************************
* cmos_enum_to_const_item
*
* Return a pointer to the cmos_enum_item_t that 'p' is embedded within.
****************************************************************************/
static inline const cmos_enum_item_t * cmos_enum_to_const_item
(const cmos_enum_t *p)
{ static const cmos_enum_t *pos = &((cmos_enum_item_t *) 0)->item;
unsigned long offset, address;
static inline const cmos_enum_item_t *cmos_enum_to_const_item
(const cmos_enum_t * p) {
static const cmos_enum_t *pos = &((cmos_enum_item_t *) 0)->item;
unsigned long offset, address;
offset = (unsigned long) pos;
address = ((unsigned long) p) - offset;
return (const cmos_enum_item_t *) address;
}
offset = (unsigned long)pos;
address = ((unsigned long)p) - offset;
return (const cmos_enum_item_t *)address;
}
/****************************************************************************
* register_cmos_layout_get_fn
@ -139,16 +141,20 @@ static inline const cmos_enum_item_t * cmos_enum_to_const_item
* Set 'fn' as the function that will be called to retrieve CMOS layout
* information.
****************************************************************************/
void register_cmos_layout_get_fn (cmos_layout_get_fn_t fn)
{ cmos_layout_get_fn = fn; }
void register_cmos_layout_get_fn(cmos_layout_get_fn_t fn)
{
cmos_layout_get_fn = fn;
}
/****************************************************************************
* get_cmos_layout
*
* Retrieve CMOS layout information and store it in our internal repository.
****************************************************************************/
void get_cmos_layout (void)
{ cmos_layout_get_fn(); }
void get_cmos_layout(void)
{
cmos_layout_get_fn();
}
/****************************************************************************
* add_cmos_entry
@ -158,61 +164,63 @@ void get_cmos_layout (void)
* operation fails because 'e' overlaps an existing CMOS entry, '*conflict'
* will be set to point to the overlapping entry.
****************************************************************************/
int add_cmos_entry (const cmos_entry_t *e, const cmos_entry_t **conflict)
{ cmos_entry_item_t *item, *prev, *new_entry;
int add_cmos_entry(const cmos_entry_t * e, const cmos_entry_t ** conflict)
{
cmos_entry_item_t *item, *prev, *new_entry;
*conflict = NULL;
*conflict = NULL;
if (e->length < 1)
return LAYOUT_ENTRY_BAD_LENGTH;
if (e->length < 1)
return LAYOUT_ENTRY_BAD_LENGTH;
if ((new_entry = (cmos_entry_item_t *) malloc(sizeof(*new_entry))) == NULL)
out_of_memory();
if ((new_entry =
(cmos_entry_item_t *) malloc(sizeof(*new_entry))) == NULL)
out_of_memory();
new_entry->item = *e;
new_entry->item = *e;
if (cmos_entry_list == NULL)
{ new_entry->next = NULL;
cmos_entry_list = new_entry;
return OK;
}
if (cmos_entry_list == NULL) {
new_entry->next = NULL;
cmos_entry_list = new_entry;
return OK;
}
/* Find place in list to insert new entry. List is sorted in ascending
* order.
*/
for (item = cmos_entry_list, prev = NULL;
(item != NULL) && (item->item.bit < e->bit);
prev = item, item = item->next);
/* Find place in list to insert new entry. List is sorted in ascending
* order.
*/
for (item = cmos_entry_list, prev = NULL;
(item != NULL) && (item->item.bit < e->bit);
prev = item, item = item->next) ;
if (prev == NULL)
{ if (entries_overlap(e, &cmos_entry_list->item))
{ *conflict = &cmos_entry_list->item;
goto fail;
}
if (prev == NULL) {
if (entries_overlap(e, &cmos_entry_list->item)) {
*conflict = &cmos_entry_list->item;
goto fail;
}
new_entry->next = cmos_entry_list;
cmos_entry_list = new_entry;
return OK;
}
new_entry->next = cmos_entry_list;
cmos_entry_list = new_entry;
return OK;
}
if (entries_overlap(&prev->item, e))
{ *conflict = &prev->item;
goto fail;
}
if (entries_overlap(&prev->item, e)) {
*conflict = &prev->item;
goto fail;
}
if ((item != NULL) && entries_overlap(e, &item->item))
{ *conflict = &item->item;
goto fail;
}
if ((item != NULL) && entries_overlap(e, &item->item)) {
*conflict = &item->item;
goto fail;
}
new_entry->next = item;
prev->next = new_entry;
return OK;
new_entry->next = item;
prev->next = new_entry;
return OK;
fail:
free(new_entry);
return LAYOUT_ENTRY_OVERLAP;
}
fail:
free(new_entry);
return LAYOUT_ENTRY_OVERLAP;
}
/****************************************************************************
* find_cmos_entry
@ -220,16 +228,17 @@ fail:
* Search for a CMOS entry whose name is 'name'. Return pointer to matching
* entry or NULL if entry not found.
****************************************************************************/
const cmos_entry_t * find_cmos_entry (const char name[])
{ cmos_entry_item_t *item;
const cmos_entry_t *find_cmos_entry(const char name[])
{
cmos_entry_item_t *item;
for (item = cmos_entry_list; item != NULL; item = item->next)
{ if (!strcmp(item->item.name, name))
return &item->item;
}
for (item = cmos_entry_list; item != NULL; item = item->next) {
if (!strcmp(item->item.name, name))
return &item->item;
}
return NULL;
}
return NULL;
}
/****************************************************************************
* first_cmos_entry
@ -237,8 +246,10 @@ const cmos_entry_t * find_cmos_entry (const char name[])
* Return a pointer to the first CMOS entry in our list or NULL if list is
* empty.
****************************************************************************/
const cmos_entry_t * first_cmos_entry (void)
{ return (cmos_entry_list == NULL) ? NULL : &cmos_entry_list->item; }
const cmos_entry_t *first_cmos_entry(void)
{
return (cmos_entry_list == NULL) ? NULL : &cmos_entry_list->item;
}
/****************************************************************************
* next_cmos_entry
@ -246,13 +257,14 @@ const cmos_entry_t * first_cmos_entry (void)
* Return a pointer to next entry in list after 'last' or NULL if no more
* entries.
****************************************************************************/
const cmos_entry_t * next_cmos_entry (const cmos_entry_t *last)
{ const cmos_entry_item_t *last_item, *next_item;
const cmos_entry_t *next_cmos_entry(const cmos_entry_t * last)
{
const cmos_entry_item_t *last_item, *next_item;
last_item = cmos_entry_to_const_item(last);
next_item = last_item->next;
return (next_item == NULL) ? NULL : &next_item->item;
}
last_item = cmos_entry_to_const_item(last);
next_item = last_item->next;
return (next_item == NULL) ? NULL : &next_item->item;
}
/****************************************************************************
* add_cmos_enum
@ -260,73 +272,75 @@ const cmos_entry_t * next_cmos_entry (const cmos_entry_t *last)
* Attempt to add CMOS enum 'e' to our internal repository of layout
* information. Return OK on success or an error code on failure.
****************************************************************************/
int add_cmos_enum (const cmos_enum_t *e)
{ cmos_enum_item_t *item, *prev, *new_enum;
int add_cmos_enum(const cmos_enum_t * e)
{
cmos_enum_item_t *item, *prev, *new_enum;
if ((new_enum = (cmos_enum_item_t *) malloc(sizeof(*new_enum))) == NULL)
out_of_memory();
if ((new_enum = (cmos_enum_item_t *) malloc(sizeof(*new_enum))) == NULL)
out_of_memory();
new_enum->item = *e;
new_enum->item = *e;
if (cmos_enum_list == NULL)
{ new_enum->next = NULL;
cmos_enum_list = new_enum;
return OK;
}
if (cmos_enum_list == NULL) {
new_enum->next = NULL;
cmos_enum_list = new_enum;
return OK;
}
/* The list of enums is sorted in ascending order, first by 'config_id' and
* then by 'value'. Look for the first enum whose 'config_id' field
* matches 'e'.
*/
for (item = cmos_enum_list, prev = NULL;
(item != NULL) && (item->item.config_id < e->config_id);
prev = item, item = item->next);
/* The list of enums is sorted in ascending order, first by
* 'config_id' and then by 'value'. Look for the first enum
* whose 'config_id' field matches 'e'.
*/
for (item = cmos_enum_list, prev = NULL;
(item != NULL) && (item->item.config_id < e->config_id);
prev = item, item = item->next) ;
if (item == NULL)
{ new_enum->next = NULL;
prev->next = new_enum;
return OK;
}
if (item == NULL) {
new_enum->next = NULL;
prev->next = new_enum;
return OK;
}
if (item->item.config_id > e->config_id)
{ new_enum->next = item;
if (item->item.config_id > e->config_id) {
new_enum->next = item;
if (prev == NULL)
cmos_enum_list = new_enum;
else
prev->next = new_enum;
if (prev == NULL)
cmos_enum_list = new_enum;
else
prev->next = new_enum;
return OK;
}
return OK;
}
/* List already contains at least one enum whose 'config_id' matches 'e'.
* Now find proper place to insert 'e' based on 'value'.
*/
while (item->item.value < e->value)
{ prev = item;
item = item->next;
/* List already contains at least one enum whose 'config_id'
* matches 'e'. Now find proper place to insert 'e' based on
* 'value'.
*/
while (item->item.value < e->value) {
prev = item;
item = item->next;
if ((item == NULL) || (item->item.config_id != e->config_id))
{ new_enum->next = item;
prev->next = new_enum;
return OK;
}
}
if ((item == NULL) || (item->item.config_id != e->config_id)) {
new_enum->next = item;
prev->next = new_enum;
return OK;
}
}
if (item->item.value == e->value)
{ free(new_enum);
return LAYOUT_DUPLICATE_ENUM;
}
if (item->item.value == e->value) {
free(new_enum);
return LAYOUT_DUPLICATE_ENUM;
}
new_enum->next = item;
new_enum->next = item;
if (prev == NULL)
cmos_enum_list = new_enum;
else
prev->next = new_enum;
if (prev == NULL)
cmos_enum_list = new_enum;
else
prev->next = new_enum;
return OK;
}
return OK;
}
/****************************************************************************
* find_cmos_enum
@ -334,22 +348,22 @@ int add_cmos_enum (const cmos_enum_t *e)
* Search for an enum that matches 'config_id' and 'value'. If found, return
* a pointer to the mathcing enum. Else return NULL.
****************************************************************************/
const cmos_enum_t * find_cmos_enum (unsigned config_id,
unsigned long long value)
{ const cmos_enum_item_t *item;
const cmos_enum_t *find_cmos_enum(unsigned config_id, unsigned long long value)
{
const cmos_enum_item_t *item;
if ((item = find_first_cmos_enum_id(config_id)) == NULL)
return NULL;
if ((item = find_first_cmos_enum_id(config_id)) == NULL)
return NULL;
while (item->item.value < value)
{ item = item->next;
while (item->item.value < value) {
item = item->next;
if ((item == NULL) || (item->item.config_id != config_id))
return NULL;
}
if ((item == NULL) || (item->item.config_id != config_id))
return NULL;
}
return (item->item.value == value) ? &item->item : NULL;
}
return (item->item.value == value) ? &item->item : NULL;
}
/****************************************************************************
* first_cmos_enum
@ -357,8 +371,10 @@ const cmos_enum_t * find_cmos_enum (unsigned config_id,
* Return a pointer to the first CMOS enum in our list or NULL if list is
* empty.
****************************************************************************/
const cmos_enum_t * first_cmos_enum (void)
{ return (cmos_enum_list == NULL) ? NULL : &cmos_enum_list->item; }
const cmos_enum_t *first_cmos_enum(void)
{
return (cmos_enum_list == NULL) ? NULL : &cmos_enum_list->item;
}
/****************************************************************************
* next_cmos_enum
@ -366,13 +382,14 @@ const cmos_enum_t * first_cmos_enum (void)
* Return a pointer to next enum in list after 'last' or NULL if no more
* enums.
****************************************************************************/
const cmos_enum_t * next_cmos_enum (const cmos_enum_t *last)
{ const cmos_enum_item_t *last_item, *next_item;
const cmos_enum_t *next_cmos_enum(const cmos_enum_t * last)
{
const cmos_enum_item_t *last_item, *next_item;
last_item = cmos_enum_to_const_item(last);
next_item = last_item->next;
return (next_item == NULL) ? NULL : &next_item->item;
}
last_item = cmos_enum_to_const_item(last);
next_item = last_item->next;
return (next_item == NULL) ? NULL : &next_item->item;
}
/****************************************************************************
* first_cmos_enum_id
@ -380,12 +397,13 @@ const cmos_enum_t * next_cmos_enum (const cmos_enum_t *last)
* Return a pointer to the first CMOS enum in our list that matches
* 'config_id' or NULL if there are no matching enums.
****************************************************************************/
const cmos_enum_t * first_cmos_enum_id (unsigned config_id)
{ const cmos_enum_item_t *item;
const cmos_enum_t *first_cmos_enum_id(unsigned config_id)
{
const cmos_enum_item_t *item;
item = find_first_cmos_enum_id(config_id);
return (item == NULL) ? NULL : &item->item;
}
item = find_first_cmos_enum_id(config_id);
return (item == NULL) ? NULL : &item->item;
}
/****************************************************************************
* next_cmos_enum_id
@ -393,13 +411,14 @@ const cmos_enum_t * first_cmos_enum_id (unsigned config_id)
* Return a pointer to next enum in list after 'last' that matches the
* 'config_id' field of 'last' or NULL if there are no more matching enums.
****************************************************************************/
const cmos_enum_t * next_cmos_enum_id (const cmos_enum_t *last)
{ const cmos_enum_item_t *item;
const cmos_enum_t *next_cmos_enum_id(const cmos_enum_t * last)
{
const cmos_enum_item_t *item;
item = cmos_enum_to_const_item(last)->next;
return ((item == NULL) || (item->item.config_id != last->config_id)) ?
NULL : &item->item;
}
item = cmos_enum_to_const_item(last)->next;
return ((item == NULL) || (item->item.config_id != last->config_id)) ?
NULL : &item->item;
}
/****************************************************************************
* is_checksum_name
@ -407,8 +426,10 @@ const cmos_enum_t * next_cmos_enum_id (const cmos_enum_t *last)
* Return 1 if 'name' matches the name of the parameter representing the CMOS
* checksum. Else return 0.
****************************************************************************/
int is_checksum_name (const char name[])
{ return !strcmp(name, checksum_param_name); }
int is_checksum_name(const char name[])
{
return !strcmp(name, checksum_param_name);
}
/****************************************************************************
* checksum_layout_to_bytes
@ -418,45 +439,46 @@ int is_checksum_name (const char name[])
* bit positions to byte positions. Return OK on success or an error code if
* a sanity check fails.
****************************************************************************/
int checksum_layout_to_bytes (cmos_checksum_layout_t *layout)
{ unsigned start, end, index;
int checksum_layout_to_bytes(cmos_checksum_layout_t * layout)
{
unsigned start, end, index;
start = layout->summed_area_start;
end = layout->summed_area_end;
index = layout->checksum_at;
start = layout->summed_area_start;
end = layout->summed_area_end;
index = layout->checksum_at;
if (start % 8)
return LAYOUT_SUMMED_AREA_START_NOT_ALIGNED;
if (start % 8)
return LAYOUT_SUMMED_AREA_START_NOT_ALIGNED;
if ((end % 8) != 7)
return LAYOUT_SUMMED_AREA_END_NOT_ALIGNED;
if ((end % 8) != 7)
return LAYOUT_SUMMED_AREA_END_NOT_ALIGNED;
if (index % 8)
return LAYOUT_CHECKSUM_LOCATION_NOT_ALIGNED;
if (index % 8)
return LAYOUT_CHECKSUM_LOCATION_NOT_ALIGNED;
if (end <= start)
return LAYOUT_INVALID_SUMMED_AREA;
if (end <= start)
return LAYOUT_INVALID_SUMMED_AREA;
/* Convert bit positions to byte positions. */
start /= 8;
end /= 8; /* equivalent to "end = ((end - 7) / 8)" */
index /= 8;
/* Convert bit positions to byte positions. */
start /= 8;
end /= 8; /* equivalent to "end = ((end - 7) / 8)" */
index /= 8;
if (verify_cmos_byte_index(start) || verify_cmos_byte_index(end))
return LAYOUT_SUMMED_AREA_OUT_OF_RANGE;
if (verify_cmos_byte_index(start) || verify_cmos_byte_index(end))
return LAYOUT_SUMMED_AREA_OUT_OF_RANGE;
if (verify_cmos_byte_index(index))
return LAYOUT_CHECKSUM_LOCATION_OUT_OF_RANGE;
if (verify_cmos_byte_index(index))
return LAYOUT_CHECKSUM_LOCATION_OUT_OF_RANGE;
/* checksum occupies 16 bits */
if (areas_overlap(start, end - start + 1, index, index + 1))
return LAYOUT_CHECKSUM_OVERLAPS_SUMMED_AREA;
/* checksum occupies 16 bits */
if (areas_overlap(start, end - start + 1, index, index + 1))
return LAYOUT_CHECKSUM_OVERLAPS_SUMMED_AREA;
layout->summed_area_start = start;
layout->summed_area_end = end;
layout->checksum_at = index;
return OK;
}
layout->summed_area_start = start;
layout->summed_area_end = end;
layout->checksum_at = index;
return OK;
}
/****************************************************************************
* checksum_layout_to_bits
@ -464,11 +486,12 @@ int checksum_layout_to_bytes (cmos_checksum_layout_t *layout)
* On entry, '*layout' contains checksum-related layout information expressed
* in bytes. Convert this information to bit positions.
****************************************************************************/
void checksum_layout_to_bits (cmos_checksum_layout_t *layout)
{ layout->summed_area_start *= 8;
layout->summed_area_end = (layout->summed_area_end * 8) + 7;
layout->checksum_at *= 8;
}
void checksum_layout_to_bits(cmos_checksum_layout_t * layout)
{
layout->summed_area_start *= 8;
layout->summed_area_end = (layout->summed_area_end * 8) + 7;
layout->checksum_at *= 8;
}
/****************************************************************************
* default_cmos_layout_get_fn
@ -477,22 +500,25 @@ void checksum_layout_to_bits (cmos_checksum_layout_t *layout)
* obtaining CMOS layout information was not set before attempting to
* retrieve layout information.
****************************************************************************/
static void default_cmos_layout_get_fn (void)
{ BUG(); }
static void default_cmos_layout_get_fn(void)
{
BUG();
}
/****************************************************************************
* areas_overlap
*
* Return 1 if the two given areas overlap. Else return 0.
****************************************************************************/
static int areas_overlap (unsigned area_0_start, unsigned area_0_length,
unsigned area_1_start, unsigned area_1_length)
{ unsigned area_0_end, area_1_end;
static int areas_overlap(unsigned area_0_start, unsigned area_0_length,
unsigned area_1_start, unsigned area_1_length)
{
unsigned area_0_end, area_1_end;
area_0_end = area_0_start + area_0_length - 1;
area_1_end = area_1_start + area_1_length - 1;
return ((area_1_start <= area_0_end) && (area_0_start <= area_1_end));
}
area_0_end = area_0_start + area_0_length - 1;
area_1_end = area_1_start + area_1_length - 1;
return ((area_1_start <= area_0_end) && (area_0_start <= area_1_end));
}
/****************************************************************************
* find_first_cmos_enum_id
@ -500,13 +526,14 @@ static int areas_overlap (unsigned area_0_start, unsigned area_0_length,
* Return a pointer to the first item in our list of enums that matches
* 'config_id'. Return NULL if there is no matching enum.
****************************************************************************/
static const cmos_enum_item_t * find_first_cmos_enum_id (unsigned config_id)
{ cmos_enum_item_t *item;
static const cmos_enum_item_t *find_first_cmos_enum_id(unsigned config_id)
{
cmos_enum_item_t *item;
for (item = cmos_enum_list;
(item != NULL) && (item->item.config_id < config_id);
item = item->next);
for (item = cmos_enum_list;
(item != NULL) && (item->item.config_id < config_id);
item = item->next) ;
return ((item == NULL) || (item->item.config_id > config_id)) ?
NULL : item;
}
return ((item == NULL) || (item->item.config_id > config_id)) ?
NULL : item;
}

View File

@ -45,44 +45,40 @@
#define LAYOUT_SUMMED_AREA_OUT_OF_RANGE (LAYOUT_RESULT_START + 8)
#define LAYOUT_CHECKSUM_LOCATION_OUT_OF_RANGE (LAYOUT_RESULT_START + 9)
typedef enum
{ CMOS_ENTRY_ENUM,
CMOS_ENTRY_HEX,
CMOS_ENTRY_STRING,
CMOS_ENTRY_RESERVED
}
cmos_entry_config_t;
typedef enum {
CMOS_ENTRY_ENUM,
CMOS_ENTRY_HEX,
CMOS_ENTRY_STRING,
CMOS_ENTRY_RESERVED
} cmos_entry_config_t;
/* This represents a CMOS parameter. */
typedef struct
{ unsigned bit;
unsigned length;
cmos_entry_config_t config;
unsigned config_id;
char name[CMOS_MAX_NAME_LENGTH + 1];
}
cmos_entry_t;
typedef struct {
unsigned bit;
unsigned length;
cmos_entry_config_t config;
unsigned config_id;
char name[CMOS_MAX_NAME_LENGTH + 1];
} cmos_entry_t;
/* This represents a possible value for a CMOS parameter of type
* CMOS_ENTRY_ENUM.
*/
typedef struct
{ unsigned config_id;
unsigned long long value;
char text[CMOS_MAX_TEXT_LENGTH + 1];
}
cmos_enum_t;
typedef struct {
unsigned config_id;
unsigned long long value;
char text[CMOS_MAX_TEXT_LENGTH + 1];
} cmos_enum_t;
/* This represents the location of the CMOS checksum and the area over which
* it is computed. Depending on the context, the values may be represented as
* either bit positions or byte positions.
/* This represents the location of the CMOS checksum and the area over
* which it is computed. Depending on the context, the values may be
* represented as either bit positions or byte positions.
*/
typedef struct
{ unsigned summed_area_start; /* first checksummed location */
unsigned summed_area_end; /* last checksummed location */
unsigned checksum_at; /* location of checksum */
}
cmos_checksum_layout_t;
typedef struct {
unsigned summed_area_start; /* first checksummed location */
unsigned summed_area_end; /* last checksummed location */
unsigned checksum_at; /* location of checksum */
} cmos_checksum_layout_t;
extern const char checksum_param_name[];
@ -94,21 +90,20 @@ extern unsigned cmos_checksum_index;
typedef void (*cmos_layout_get_fn_t) (void);
void register_cmos_layout_get_fn (cmos_layout_get_fn_t fn);
void get_cmos_layout (void);
int add_cmos_entry (const cmos_entry_t *e, const cmos_entry_t **conflict);
const cmos_entry_t * find_cmos_entry (const char name[]);
const cmos_entry_t * first_cmos_entry (void);
const cmos_entry_t * next_cmos_entry (const cmos_entry_t *last);
int add_cmos_enum (const cmos_enum_t *e);
const cmos_enum_t * find_cmos_enum (unsigned config_id,
unsigned long long value);
const cmos_enum_t * first_cmos_enum (void);
const cmos_enum_t * next_cmos_enum (const cmos_enum_t *last);
const cmos_enum_t * first_cmos_enum_id (unsigned config_id);
const cmos_enum_t * next_cmos_enum_id (const cmos_enum_t *last);
int is_checksum_name (const char name[]);
int checksum_layout_to_bytes (cmos_checksum_layout_t *layout);
void checksum_layout_to_bits (cmos_checksum_layout_t *layout);
void register_cmos_layout_get_fn(cmos_layout_get_fn_t fn);
void get_cmos_layout(void);
int add_cmos_entry(const cmos_entry_t * e, const cmos_entry_t ** conflict);
const cmos_entry_t *find_cmos_entry(const char name[]);
const cmos_entry_t *first_cmos_entry(void);
const cmos_entry_t *next_cmos_entry(const cmos_entry_t * last);
int add_cmos_enum(const cmos_enum_t * e);
const cmos_enum_t *find_cmos_enum(unsigned config_id, unsigned long long value);
const cmos_enum_t *first_cmos_enum(void);
const cmos_enum_t *next_cmos_enum(const cmos_enum_t * last);
const cmos_enum_t *first_cmos_enum_id(unsigned config_id);
const cmos_enum_t *next_cmos_enum_id(const cmos_enum_t * last);
int is_checksum_name(const char name[]);
int checksum_layout_to_bytes(cmos_checksum_layout_t * layout);
void checksum_layout_to_bits(cmos_checksum_layout_t * layout);
#endif /* LAYOUT_H */
#endif /* LAYOUT_H */

File diff suppressed because it is too large Load Diff

View File

@ -34,8 +34,8 @@
#include "common.h"
#include "coreboot_tables.h"
void set_layout_filename (const char filename[]);
void get_layout_from_file (void);
void write_cmos_layout (FILE *f);
void set_layout_filename(const char filename[]);
void get_layout_from_file(void);
void write_cmos_layout(FILE * f);
#endif /* LAYOUT_FILE_H */
#endif /* LAYOUT_FILE_H */

File diff suppressed because it is too large Load Diff

View File

@ -33,10 +33,10 @@
#include "common.h"
void get_lbtable (void);
void get_layout_from_cmos_table (void);
void dump_lbtable (void);
void list_lbtable_choices (void);
void list_lbtable_item (const char item[]);
void get_lbtable(void);
void get_layout_from_cmos_table(void);
void dump_lbtable(void);
void list_lbtable_choices(void);
void list_lbtable_item(const char item[]);
#endif /* LBTABLE_H */
#endif /* LBTABLE_H */

File diff suppressed because it is too large Load Diff

View File

@ -35,11 +35,11 @@ nvramtool_op_info_t nvramtool_op;
nvramtool_op_modifier_info_t nvramtool_op_modifiers[NVRAMTOOL_NUM_OP_MODIFIERS];
static char * handle_optional_arg (int argc, char *argv[]);
static void register_op (int *op_found, nvramtool_op_t op, char op_param[]);
static void register_op_modifier (nvramtool_op_modifier_t mod, char mod_param[]);
static void resolve_op_modifiers (void);
static void sanity_check_args (void);
static char *handle_optional_arg(int argc, char *argv[]);
static void register_op(int *op_found, nvramtool_op_t op, char op_param[]);
static void register_op_modifier(nvramtool_op_modifier_t mod, char mod_param[]);
static void resolve_op_modifiers(void);
static void sanity_check_args(void);
static const char getopt_string[] = "-ab:B:c::de:hil::np:r:tvw:xX:y:Y";
@ -48,143 +48,158 @@ static const char getopt_string[] = "-ab:B:c::de:hil::np:r:tvw:xX:y:Y";
*
* Parse command line arguments.
****************************************************************************/
void parse_nvramtool_args (int argc, char *argv[])
{ nvramtool_op_modifier_info_t *mod_info;
int i, op_found;
char c;
void parse_nvramtool_args(int argc, char *argv[])
{
nvramtool_op_modifier_info_t *mod_info;
int i, op_found;
char c;
for (i = 0, mod_info = nvramtool_op_modifiers;
i < NVRAMTOOL_NUM_OP_MODIFIERS;
i++, mod_info++)
{ mod_info->found = FALSE;
mod_info->found_seq = 0;
mod_info->param = NULL;
}
for (i = 0, mod_info = nvramtool_op_modifiers;
i < NVRAMTOOL_NUM_OP_MODIFIERS; i++, mod_info++) {
mod_info->found = FALSE;
mod_info->found_seq = 0;
mod_info->param = NULL;
}
op_found = FALSE;
opterr = 0;
op_found = FALSE;
opterr = 0;
do
{ switch (c = getopt(argc, argv, getopt_string))
{ case 'a':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SHOW_ALL_PARAMS, NULL);
break;
case 'b':
register_op(&op_found, NVRAMTOOL_OP_WRITE_CMOS_DUMP, optarg);
break;
case 'B':
register_op(&op_found, NVRAMTOOL_OP_READ_CMOS_DUMP, optarg);
break;
case 'c':
register_op(&op_found, NVRAMTOOL_OP_CMOS_CHECKSUM,
handle_optional_arg(argc, argv));
break;
case 'd':
register_op(&op_found, NVRAMTOOL_OP_LBTABLE_DUMP, NULL);
break;
case 'e':
register_op(&op_found, NVRAMTOOL_OP_SHOW_PARAM_VALUES, optarg);
break;
case 'h':
register_op(&op_found, NVRAMTOOL_OP_SHOW_USAGE, NULL);
break;
case 'i':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SET_PARAMS_STDIN, NULL);
break;
case 'l':
register_op(&op_found, NVRAMTOOL_OP_LBTABLE_SHOW_INFO,
handle_optional_arg(argc, argv));
break;
case 'n':
register_op_modifier(NVRAMTOOL_MOD_SHOW_VALUE_ONLY, NULL);
break;
case 'p':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SET_PARAMS_FILE, optarg);
break;
case 'r':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SHOW_ONE_PARAM, optarg);
break;
case 't':
register_op_modifier(NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE, NULL);
break;
case 'v':
register_op(&op_found, NVRAMTOOL_OP_SHOW_VERSION, NULL);
break;
case 'w':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SET_ONE_PARAM, optarg);
break;
case 'x':
register_op(&op_found, NVRAMTOOL_OP_SHOW_CMOS_HEX_DUMP, NULL);
break;
case 'X':
register_op(&op_found, NVRAMTOOL_OP_SHOW_CMOS_DUMPFILE, optarg);
break;
case 'y':
register_op_modifier(NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE, optarg);
break;
case 'Y':
register_op(&op_found, NVRAMTOOL_OP_SHOW_LAYOUT, NULL);
break;
case -1: /* no more command line args */
break;
case '?': /* unknown option found */
case 1: /* nonoption command line arg found */
default:
usage(stderr);
break;
}
}
while (c != -1);
do {
switch (c = getopt(argc, argv, getopt_string)) {
case 'a':
register_op(&op_found,
NVRAMTOOL_OP_CMOS_SHOW_ALL_PARAMS, NULL);
break;
case 'b':
register_op(&op_found, NVRAMTOOL_OP_WRITE_CMOS_DUMP,
optarg);
break;
case 'B':
register_op(&op_found, NVRAMTOOL_OP_READ_CMOS_DUMP,
optarg);
break;
case 'c':
register_op(&op_found, NVRAMTOOL_OP_CMOS_CHECKSUM,
handle_optional_arg(argc, argv));
break;
case 'd':
register_op(&op_found, NVRAMTOOL_OP_LBTABLE_DUMP, NULL);
break;
case 'e':
register_op(&op_found, NVRAMTOOL_OP_SHOW_PARAM_VALUES,
optarg);
break;
case 'h':
register_op(&op_found, NVRAMTOOL_OP_SHOW_USAGE, NULL);
break;
case 'i':
register_op(&op_found,
NVRAMTOOL_OP_CMOS_SET_PARAMS_STDIN, NULL);
break;
case 'l':
register_op(&op_found, NVRAMTOOL_OP_LBTABLE_SHOW_INFO,
handle_optional_arg(argc, argv));
break;
case 'n':
register_op_modifier(NVRAMTOOL_MOD_SHOW_VALUE_ONLY,
NULL);
break;
case 'p':
register_op(&op_found,
NVRAMTOOL_OP_CMOS_SET_PARAMS_FILE, optarg);
break;
case 'r':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SHOW_ONE_PARAM,
optarg);
break;
case 't':
register_op_modifier(NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE,
NULL);
break;
case 'v':
register_op(&op_found, NVRAMTOOL_OP_SHOW_VERSION, NULL);
break;
case 'w':
register_op(&op_found, NVRAMTOOL_OP_CMOS_SET_ONE_PARAM,
optarg);
break;
case 'x':
register_op(&op_found, NVRAMTOOL_OP_SHOW_CMOS_HEX_DUMP,
NULL);
break;
case 'X':
register_op(&op_found, NVRAMTOOL_OP_SHOW_CMOS_DUMPFILE,
optarg);
break;
case 'y':
register_op_modifier(NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE,
optarg);
break;
case 'Y':
register_op(&op_found, NVRAMTOOL_OP_SHOW_LAYOUT, NULL);
break;
case -1: /* no more command line args */
break;
case '?': /* unknown option found */
case 1: /* nonoption command line arg found */
default:
usage(stderr);
break;
}
} while (c != -1);
if (!op_found)
usage(stderr);
if (!op_found)
usage(stderr);
resolve_op_modifiers();
sanity_check_args();
}
resolve_op_modifiers();
sanity_check_args();
}
/****************************************************************************
* handle_optional_arg
*
* Handle a command line option with an optional argument.
****************************************************************************/
static char * handle_optional_arg (int argc, char *argv[])
{ char *arg;
static char *handle_optional_arg(int argc, char *argv[])
{
char *arg;
if (optarg != NULL)
{ /* optional arg is present and arg was specified as "-zarg" (with no
* whitespace between "z" and "arg"), where -z is the option and "arg"
* is the value of the optional arg
*/
return optarg;
}
if (optarg != NULL) {
/* optional arg is present and arg was specified as
* "-zarg" (with no whitespace between "z" and "arg"),
* where -z is the option and "arg" is the value of the
* optional arg
*/
return optarg;
}
if ((argv[optind] == NULL) || (argv[optind][0] == '-'))
return NULL;
if ((argv[optind] == NULL) || (argv[optind][0] == '-'))
return NULL;
arg = argv[optind]; /* optional arg is present */
arg = argv[optind]; /* optional arg is present */
/* This call to getopt yields the optional arg we just found, which we want
* to skip.
*/
getopt(argc, argv, getopt_string);
/* This call to getopt yields the optional arg we just found,
* which we want to skip.
*/
getopt(argc, argv, getopt_string);
return arg;
}
return arg;
}
/****************************************************************************
* register_op
*
* Store the user's selection of which operation this program should perform.
****************************************************************************/
static void register_op (int *op_found, nvramtool_op_t op, char op_param[])
{ if (*op_found && (op != nvramtool_op.op))
usage(stderr);
static void register_op(int *op_found, nvramtool_op_t op, char op_param[])
{
if (*op_found && (op != nvramtool_op.op))
usage(stderr);
*op_found = TRUE;
nvramtool_op.op = op;
nvramtool_op.param = op_param;
}
*op_found = TRUE;
nvramtool_op.op = op;
nvramtool_op.param = op_param;
}
/****************************************************************************
* register_op_modifier
@ -192,15 +207,16 @@ static void register_op (int *op_found, nvramtool_op_t op, char op_param[])
* Store information regarding an optional argument specified in addition to
* the user's selection of which operation this program should perform.
****************************************************************************/
static void register_op_modifier (nvramtool_op_modifier_t mod, char mod_param[])
{ static int found_seq = 0;
nvramtool_op_modifier_info_t *mod_info;
static void register_op_modifier(nvramtool_op_modifier_t mod, char mod_param[])
{
static int found_seq = 0;
nvramtool_op_modifier_info_t *mod_info;
mod_info = &nvramtool_op_modifiers[mod];
mod_info->found = TRUE;
mod_info->found_seq = ++found_seq;
mod_info->param = mod_param;
}
mod_info = &nvramtool_op_modifiers[mod];
mod_info->found = TRUE;
mod_info->found_seq = ++found_seq;
mod_info->param = mod_param;
}
/****************************************************************************
* resolve_op_modifiers
@ -208,24 +224,28 @@ static void register_op_modifier (nvramtool_op_modifier_t mod, char mod_param[])
* If the user specifies multiple arguments that conflict with each other,
* the last specified argument overrides previous conflicting arguments.
****************************************************************************/
static void resolve_op_modifiers (void)
{ if (nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE].found &&
nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE].found)
{ if (nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE].found_seq >
nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE].found_seq)
nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE].found = FALSE;
else
nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE].found = FALSE;
}
}
static void resolve_op_modifiers(void)
{
if (nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE].found &&
nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE].found) {
if (nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE].found_seq >
nvramtool_op_modifiers[NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE].found_seq)
nvramtool_op_modifiers
[NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE].found = FALSE;
else
nvramtool_op_modifiers
[NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE].found = FALSE;
}
}
/****************************************************************************
* sanity_check_args
*
* Perform sanity checking on command line arguments.
****************************************************************************/
static void sanity_check_args (void)
{ if ((nvramtool_op_modifiers[NVRAMTOOL_MOD_SHOW_VALUE_ONLY].found) &&
(nvramtool_op.op != NVRAMTOOL_OP_CMOS_SHOW_ONE_PARAM))
usage(stderr);
}
static void sanity_check_args(void)
{
if ((nvramtool_op_modifiers[NVRAMTOOL_MOD_SHOW_VALUE_ONLY].found) &&
(nvramtool_op.op != NVRAMTOOL_OP_CMOS_SHOW_ONE_PARAM))
usage(stderr);
}

View File

@ -33,51 +33,45 @@
#include "common.h"
typedef enum
{ NVRAMTOOL_OP_SHOW_VERSION = 0,
NVRAMTOOL_OP_SHOW_USAGE,
NVRAMTOOL_OP_LBTABLE_SHOW_INFO,
NVRAMTOOL_OP_LBTABLE_DUMP,
NVRAMTOOL_OP_SHOW_PARAM_VALUES,
NVRAMTOOL_OP_CMOS_SHOW_ONE_PARAM,
NVRAMTOOL_OP_CMOS_SHOW_ALL_PARAMS,
NVRAMTOOL_OP_CMOS_SET_ONE_PARAM,
NVRAMTOOL_OP_CMOS_SET_PARAMS_STDIN,
NVRAMTOOL_OP_CMOS_SET_PARAMS_FILE,
NVRAMTOOL_OP_CMOS_CHECKSUM,
NVRAMTOOL_OP_SHOW_LAYOUT,
NVRAMTOOL_OP_WRITE_CMOS_DUMP,
NVRAMTOOL_OP_READ_CMOS_DUMP,
NVRAMTOOL_OP_SHOW_CMOS_HEX_DUMP,
NVRAMTOOL_OP_SHOW_CMOS_DUMPFILE
}
nvramtool_op_t;
typedef enum { NVRAMTOOL_OP_SHOW_VERSION = 0,
NVRAMTOOL_OP_SHOW_USAGE,
NVRAMTOOL_OP_LBTABLE_SHOW_INFO,
NVRAMTOOL_OP_LBTABLE_DUMP,
NVRAMTOOL_OP_SHOW_PARAM_VALUES,
NVRAMTOOL_OP_CMOS_SHOW_ONE_PARAM,
NVRAMTOOL_OP_CMOS_SHOW_ALL_PARAMS,
NVRAMTOOL_OP_CMOS_SET_ONE_PARAM,
NVRAMTOOL_OP_CMOS_SET_PARAMS_STDIN,
NVRAMTOOL_OP_CMOS_SET_PARAMS_FILE,
NVRAMTOOL_OP_CMOS_CHECKSUM,
NVRAMTOOL_OP_SHOW_LAYOUT,
NVRAMTOOL_OP_WRITE_CMOS_DUMP,
NVRAMTOOL_OP_READ_CMOS_DUMP,
NVRAMTOOL_OP_SHOW_CMOS_HEX_DUMP,
NVRAMTOOL_OP_SHOW_CMOS_DUMPFILE
} nvramtool_op_t;
typedef struct
{ nvramtool_op_t op;
char *param;
}
nvramtool_op_info_t;
typedef struct {
nvramtool_op_t op;
char *param;
} nvramtool_op_info_t;
typedef enum
{ NVRAMTOOL_MOD_SHOW_VALUE_ONLY = 0,
NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE,
NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE,
NVRAMTOOL_NUM_OP_MODIFIERS /* must always be last */
}
nvramtool_op_modifier_t;
typedef enum { NVRAMTOOL_MOD_SHOW_VALUE_ONLY = 0,
NVRAMTOOL_MOD_USE_CMOS_LAYOUT_FILE,
NVRAMTOOL_MOD_USE_CMOS_OPT_TABLE,
NVRAMTOOL_NUM_OP_MODIFIERS /* must always be last */
} nvramtool_op_modifier_t;
typedef struct
{ int found;
int found_seq;
char *param;
}
nvramtool_op_modifier_info_t;
typedef struct {
int found;
int found_seq;
char *param;
} nvramtool_op_modifier_info_t;
extern nvramtool_op_info_t nvramtool_op;
extern nvramtool_op_modifier_info_t nvramtool_op_modifiers[];
void parse_nvramtool_args (int argc, char *argv[]);
void parse_nvramtool_args(int argc, char *argv[]);
#endif /* OPTS_H */
#endif /* OPTS_H */

View File

@ -37,44 +37,46 @@
*
* Compile a bunch of regular expressions.
****************************************************************************/
void compile_reg_exprs (int cflags, int num_exprs,
/* const char *expr1, regex_t *reg1, */ ...)
{ static const size_t ERROR_BUF_SIZE = 256;
char error_msg[ERROR_BUF_SIZE];
va_list ap;
regex_t *reg;
const char *expr;
int i, result;
void compile_reg_exprs(int cflags, int num_exprs,
/* const char *expr1, regex_t *reg1, */ ...)
{
static const size_t ERROR_BUF_SIZE = 256;
char error_msg[ERROR_BUF_SIZE];
va_list ap;
regex_t *reg;
const char *expr;
int i, result;
va_start(ap, num_exprs);
va_start(ap, num_exprs);
for (i = 0; i < num_exprs; i++)
{ expr = va_arg(ap, const char *);
reg = va_arg(ap, regex_t *);
for (i = 0; i < num_exprs; i++) {
expr = va_arg(ap, const char *);
reg = va_arg(ap, regex_t *);
if ((result = regcomp(reg, expr, cflags)) != 0)
{ regerror(result, reg, error_msg, ERROR_BUF_SIZE);
fprintf(stderr, "%s: %s\n", prog_name, error_msg);
exit(1);
}
}
if ((result = regcomp(reg, expr, cflags)) != 0) {
regerror(result, reg, error_msg, ERROR_BUF_SIZE);
fprintf(stderr, "%s: %s\n", prog_name, error_msg);
exit(1);
}
}
va_end(ap);
}
va_end(ap);
}
/****************************************************************************
* free_reg_exprs
*
* Destroy a bunch of previously compiled regular expressions.
****************************************************************************/
void free_reg_exprs (int num_exprs, /* regex_t *reg1, */ ...)
{ va_list ap;
int i;
void free_reg_exprs(int num_exprs, /* regex_t *reg1, */ ...)
{
va_list ap;
int i;
va_start(ap, num_exprs);
va_start(ap, num_exprs);
for (i = 0; i < num_exprs; i++)
regfree(va_arg(ap, regex_t *));
for (i = 0; i < num_exprs; i++)
regfree(va_arg(ap, regex_t *));
va_end(ap);
}
va_end(ap);
}

View File

@ -34,8 +34,8 @@
#include <regex.h>
#include "common.h"
void compile_reg_exprs (int cflags, int num_exprs,
/* const char *expr1, regex_t *reg1, */ ...);
void free_reg_exprs (int num_exprs, /* regex_t *reg1, */ ...);
void compile_reg_exprs(int cflags, int num_exprs,
/* const char *expr1, regex_t *reg1, */ ...);
void free_reg_exprs(int num_exprs, /* regex_t *reg1, */ ...);
#endif /* REG_EXPR_H */
#endif /* REG_EXPR_H */