fsp1_1: use commonlib/endian.h routines

Now that the commonlib/endian.h routines have landed utilize
those in the FSP relocation code.

BUG=chrome-os-partner:44827
BRANCH=None
TEST=Built and booted glados.

Change-Id: If431d64fd2843bea864d971ca1ea06b07c0d6435
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11771
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This commit is contained in:
Aaron Durbin 2015-09-30 16:48:26 -05:00
parent 8c3780a142
commit 923b4d5c58
1 changed files with 62 additions and 61 deletions

View File

@ -18,9 +18,9 @@
*/ */
#include <console/console.h> #include <console/console.h>
#include <endian.h> #include <commonlib/endian.h>
#include <fsp/api.h> #include <commonlib/fsp1_1.h>
#include <fsp/util.h> #include <commonlib/helpers.h>
#include <stdlib.h> #include <stdlib.h>
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
@ -37,11 +37,11 @@
/* Return 0 if equal. Non-zero if not equal. */ /* Return 0 if equal. Non-zero if not equal. */
static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid) static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid)
{ {
if (le32toh(le_guid->Data1) != native_guid->Data1) if (read_le32(&le_guid->Data1) != native_guid->Data1)
return 1; return 1;
if (le16toh(le_guid->Data2) != native_guid->Data2) if (read_le16(&le_guid->Data2) != native_guid->Data2)
return 1; return 1;
if (le16toh(le_guid->Data3) != native_guid->Data3) if (read_le16(&le_guid->Data3) != native_guid->Data3)
return 1; return 1;
return memcmp(le_guid->Data4, native_guid->Data4, return memcmp(le_guid->Data4, native_guid->Data4,
ARRAY_SIZE(le_guid->Data4)); ARRAY_SIZE(le_guid->Data4));
@ -109,7 +109,7 @@ static size_t reloc_offset(uint16_t reloc_entry)
return reloc_entry & ((1 << 12) - 1); return reloc_entry & ((1 << 12) - 1);
} }
static int te_relocate(uintptr_t new_addr, void *te, size_t size) static int te_relocate(uintptr_t new_addr, void *te)
{ {
EFI_TE_IMAGE_HEADER *teih; EFI_TE_IMAGE_HEADER *teih;
EFI_IMAGE_DATA_DIRECTORY *relocd; EFI_IMAGE_DATA_DIRECTORY *relocd;
@ -124,9 +124,9 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
teih = te; teih = te;
if (le16toh(teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) { if (read_le16(&teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) {
printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n", printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n",
le16toh(teih->Signature), read_le16(&teih->Signature),
EFI_TE_IMAGE_HEADER_SIGNATURE); EFI_TE_IMAGE_HEADER_SIGNATURE);
return -1; return -1;
} }
@ -138,21 +138,21 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
* from the encoded offets. Similarly, the linked address of the * from the encoded offets. Similarly, the linked address of the
* program is found by adding the fixup_offset to the ImageBase. * program is found by adding the fixup_offset to the ImageBase.
*/ */
fixup_offset = le16toh(teih->StrippedSize); fixup_offset = read_le16(&teih->StrippedSize);
fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER); fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER);
/* Keep track of a base that is correctly adjusted so that offsets /* Keep track of a base that is correctly adjusted so that offsets
* can be used directly. */ * can be used directly. */
te_base = te; te_base = te;
te_base -= fixup_offset; te_base -= fixup_offset;
image_base = le64toh(teih->ImageBase); image_base = read_le64(&teih->ImageBase);
adj = new_addr - (image_base + fixup_offset); adj = new_addr - (image_base + fixup_offset);
printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n", printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n",
(void *)image_base, (void *)new_addr, adj); (void *)image_base, (void *)new_addr, adj);
/* Adjust ImageBase for consistency. */ /* Adjust ImageBase for consistency. */
teih->ImageBase = htole32(image_base + adj); write_le64(&teih->ImageBase, (uint32_t)(image_base + adj));
relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC]; relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC];
@ -160,19 +160,19 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
/* Though the field name is VirtualAddress it's actually relative to /* Though the field name is VirtualAddress it's actually relative to
* the beginning of the image which is linked at ImageBase. */ * the beginning of the image which is linked at ImageBase. */
relocb = relative_offset(te, relocb = relative_offset(te,
le32toh(relocd->VirtualAddress) - fixup_offset); read_le32(&relocd->VirtualAddress) - fixup_offset);
while (relocd_offset < relocd->Size) { while (relocd_offset < read_le32(&relocd->Size)) {
size_t rva_offset = le32toh(relocb->VirtualAddress); size_t rva_offset = read_le32(&relocb->VirtualAddress);
printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset); printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset);
num_relocs = le32toh(relocb->SizeOfBlock) - sizeof(*relocb); num_relocs = read_le32(&relocb->SizeOfBlock) - sizeof(*relocb);
num_relocs /= sizeof(uint16_t); num_relocs /= sizeof(uint16_t);
reloc = relative_offset(relocb, sizeof(*relocb)); reloc = relative_offset(relocb, sizeof(*relocb));
printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs); printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs);
while (num_relocs > 0) { while (num_relocs > 0) {
uint16_t reloc_val = le16toh(*reloc); uint16_t reloc_val = read_le16(reloc);
int type = reloc_type(reloc_val); int type = reloc_type(reloc_val);
size_t offset = reloc_offset(reloc_val); size_t offset = reloc_offset(reloc_val);
@ -185,11 +185,11 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
offset += rva_offset; offset += rva_offset;
reloc_addr = (void *)&te_base[offset]; reloc_addr = (void *)&te_base[offset];
val = le32toh(*reloc_addr); val = read_le32(reloc_addr);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n", printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc_addr, val, val + adj); reloc_addr, val, val + adj);
*reloc_addr = htole32(val + adj); write_le32(reloc_addr, val + adj);
} else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) { } else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) {
printk(BIOS_ERR, "Unknown reloc type: %x\n", printk(BIOS_ERR, "Unknown reloc type: %x\n",
type); type);
@ -200,9 +200,10 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
} }
/* Track consumption of relocation directory contents. */ /* Track consumption of relocation directory contents. */
relocd_offset += le32toh(relocb->SizeOfBlock); relocd_offset += read_le32(&relocb->SizeOfBlock);
/* Get next relocation block to process. */ /* Get next relocation block to process. */
relocb = relative_offset(relocb, le32toh(relocb->SizeOfBlock)); relocb = relative_offset(relocb,
read_le32(&relocb->SizeOfBlock));
} }
return 0; return 0;
@ -214,9 +215,9 @@ static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh)
/* Unpack the array into a type that can be used. */ /* Unpack the array into a type that can be used. */
size = 0; size = 0;
size |= le8toh(csh->Size[0]) << 0; size |= read_le8(&csh->Size[0]) << 0;
size |= le8toh(csh->Size[1]) << 8; size |= read_le8(&csh->Size[1]) << 8;
size |= le8toh(csh->Size[2]) << 16; size |= read_le8(&csh->Size[2]) << 16;
return size; return size;
} }
@ -234,7 +235,7 @@ static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh)
size_t section_size; size_t section_size;
if (csh_size(csh) == 0x00ffffff) if (csh_size(csh) == 0x00ffffff)
section_size = le32toh(SECTION2_SIZE(csh)); section_size = read_le32(&SECTION2_SIZE(csh));
else else
section_size = csh_size(csh); section_size = csh_size(csh);
@ -254,11 +255,11 @@ static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh)
size_t size; size_t size;
if (IS_FFS_FILE2(ffsfh)) if (IS_FFS_FILE2(ffsfh))
size = le32toh(FFS_FILE2_SIZE(ffsfh)); size = read_le32(&FFS_FILE2_SIZE(ffsfh));
else { else {
size = le8toh(ffsfh->Size[0]) << 0; size = read_le8(&ffsfh->Size[0]) << 0;
size |= le8toh(ffsfh->Size[1]) << 8; size |= read_le8(&ffsfh->Size[1]) << 8;
size |= le8toh(ffsfh->Size[2]) << 16; size |= read_le8(&ffsfh->Size[2]) << 16;
} }
return size; return size;
} }
@ -273,33 +274,33 @@ static int relocate_patch_table(void *fsp, size_t size, size_t offset,
table = relative_offset(fsp, offset); table = relative_offset(fsp, offset);
if ((offset + sizeof(*table) > size) || if ((offset + sizeof(*table) > size) ||
(le16toh(table->header_length) + offset) > size) { (read_le16(&table->header_length) + offset) > size) {
printk(BIOS_ERR, "FSPP not entirely contained in region.\n"); printk(BIOS_ERR, "FSPP not entirely contained in region.\n");
return -1; return -1;
} }
num_entries = le32toh(table->patch_entry_num); num_entries = read_le32(&table->patch_entry_num);
printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries); printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries);
for (num = 0; num < table->patch_entry_num; num++) { for (num = 0; num < num_entries; num++) {
uint32_t *reloc; uint32_t *reloc;
uint32_t reloc_val; uint32_t reloc_val;
reloc = fspp_reloc(fsp, size, reloc = fspp_reloc(fsp, size,
le32toh(table->patch_entries[num])); read_le32(&table->patch_entries[num]));
if (reloc == NULL) { if (reloc == NULL) {
printk(BIOS_ERR, "Ignoring FSPP entry: %x\n", printk(BIOS_ERR, "Ignoring FSPP entry: %x\n",
le32toh(table->patch_entries[num])); read_le32(&table->patch_entries[num]));
continue; continue;
} }
reloc_val = le32toh(*reloc); reloc_val = read_le32(reloc);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n", printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc, reloc_val, reloc, reloc_val,
(unsigned int)(reloc_val + adjustment)); (unsigned int)(reloc_val + adjustment));
*reloc = htole32(reloc_val + adjustment); write_le32(reloc, reloc_val + adjustment);
} }
return 0; return 0;
@ -333,28 +334,28 @@ static ssize_t relocate_remaining_items(void *fsp, size_t size,
return -1; return -1;
} }
if (le8toh(csh->Type) != EFI_SECTION_RAW) { if (read_le8(&csh->Type) != EFI_SECTION_RAW) {
printk(BIOS_ERR, "FIH file should have raw section: %x\n", printk(BIOS_ERR, "FIH file should have raw section: %x\n",
csh->Type); read_le8(&csh->Type));
return -1; return -1;
} }
if (le32toh(fih->Signature) != FSP_SIG) { if (read_le32(&fih->Signature) != FSP_SIG) {
printk(BIOS_ERR, "Unexpected FIH signature: %08x\n", printk(BIOS_ERR, "Unexpected FIH signature: %08x\n",
le32toh(fih->Signature)); read_le32(&fih->Signature));
return -1; return -1;
} }
adjustment = (intptr_t)new_addr - le32toh(fih->ImageBase); adjustment = (intptr_t)new_addr - read_le32(&fih->ImageBase);
/* Update ImageBase to reflect FSP's new home. */ /* Update ImageBase to reflect FSP's new home. */
fih->ImageBase = htole32(adjustment + le32toh(fih->ImageBase)); write_le32(&fih->ImageBase, adjustment + read_le32(&fih->ImageBase));
/* Need to find patch table and adjust each entry. The tables /* Need to find patch table and adjust each entry. The tables
* following FSP_INFO_HEADER have a 32-bit signature and header * following FSP_INFO_HEADER have a 32-bit signature and header
* length. The patch table is denoted as having a 'FSPP' signature; * length. The patch table is denoted as having a 'FSPP' signature;
* the table format doesn't follow the other tables. */ * the table format doesn't follow the other tables. */
offset = fih_offset + le32toh(fih->HeaderLength); offset = fih_offset + read_le32(&fih->HeaderLength);
while (offset + 2 * sizeof(uint32_t) <= size) { while (offset + 2 * sizeof(uint32_t) <= size) {
uint32_t *table_headers; uint32_t *table_headers;
@ -363,8 +364,8 @@ static ssize_t relocate_remaining_items(void *fsp, size_t size,
printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n", printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n",
offset); offset);
if (le32toh(table_headers[0]) != FSPP_SIG) { if (read_le32(&table_headers[0]) != FSPP_SIG) {
offset += le32toh(table_headers[1]); offset += read_le32(&table_headers[1]);
continue; continue;
} }
@ -394,15 +395,15 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
offset = fvh_offset; offset = fvh_offset;
fvh = relative_offset(fsp, offset); fvh = relative_offset(fsp, offset);
if (le32toh(fvh->Signature) != EFI_FVH_SIGNATURE) if (read_le32(&fvh->Signature) != EFI_FVH_SIGNATURE)
return -1; return -1;
fv_length = le64toh(fvh->FvLength); fv_length = read_le64(&fvh->FvLength);
printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n", printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n",
fv_length, offset, fsp_size); fv_length, offset, fsp_size);
if (fvh->FvLength + offset > fsp_size) if (fv_length + offset > fsp_size)
return -1; return -1;
/* Parse only this FV. However, the algorithm uses offsets into the /* Parse only this FV. However, the algorithm uses offsets into the
@ -414,19 +415,19 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
return -1; return -1;
} }
if (le16toh(fvh->ExtHeaderOffset) != 0) { if (read_le16(&fvh->ExtHeaderOffset) != 0) {
EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh; EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh;
offset += le16toh(fvh->ExtHeaderOffset); offset += read_le16(&fvh->ExtHeaderOffset);
fveh = relative_offset(fsp, offset); fveh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n", printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n",
(size_t)le16toh(fvh->ExtHeaderOffset), (size_t)read_le16(&fvh->ExtHeaderOffset),
(size_t)le32toh(fveh->ExtHeaderSize)); (size_t)read_le32(&fveh->ExtHeaderSize));
offset += le32toh(fveh->ExtHeaderSize); offset += read_le32(&fveh->ExtHeaderSize);
/* FFS files are 8 byte aligned after extended header. */ /* FFS files are 8 byte aligned after extended header. */
offset = ALIGN_UP(offset, 8); offset = ALIGN_UP(offset, 8);
} else { } else {
offset += le16toh(fvh->HeaderLength); offset += read_le16(&fvh->HeaderLength);
} }
file_offset = offset; file_offset = offset;
@ -440,12 +441,12 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
ffsfh = relative_offset(fsp, file_offset); ffsfh = relative_offset(fsp, file_offset);
printk(FSP_DBG_LVL, "file type = %x\n", le8toh(ffsfh->Type)); printk(FSP_DBG_LVL, "file type = %x\n", read_le8(&ffsfh->Type));
printk(FSP_DBG_LVL, "file attribs = %x\n", printk(FSP_DBG_LVL, "file attribs = %x\n",
le8toh(ffsfh->Attributes)); read_le8(&ffsfh->Attributes));
/* Exit FV relocation when empty space found */ /* Exit FV relocation when empty space found */
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX) if (read_le8(&ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX)
break; break;
/* Next file on 8 byte alignment. */ /* Next file on 8 byte alignment. */
@ -453,7 +454,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
file_offset = ALIGN_UP(file_offset, 8); file_offset = ALIGN_UP(file_offset, 8);
/* Padding files have no section information. */ /* Padding files have no section information. */
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD) if (read_le8(&ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD)
continue; continue;
offset += file_section_offset(ffsfh); offset += file_section_offset(ffsfh);
@ -466,7 +467,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
printk(FSP_DBG_LVL, "section offset: %zx\n", offset); printk(FSP_DBG_LVL, "section offset: %zx\n", offset);
printk(FSP_DBG_LVL, "section type: %x\n", printk(FSP_DBG_LVL, "section type: %x\n",
le8toh(csh->Type)); read_le8(&csh->Type));
data_size = section_data_size(csh); data_size = section_data_size(csh);
data_offset = section_data_offset(csh); data_offset = section_data_offset(csh);
@ -485,7 +486,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
* relocated address based on the TE offset within * relocated address based on the TE offset within
* FSP proper. * FSP proper.
*/ */
if (le8toh(csh->Type) == EFI_SECTION_TE) { if (read_le8(&csh->Type) == EFI_SECTION_TE) {
void *te; void *te;
size_t te_offset = offset + data_offset; size_t te_offset = offset + data_offset;
uintptr_t te_addr = new_addr + te_offset; uintptr_t te_addr = new_addr + te_offset;
@ -493,7 +494,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
printk(FSP_DBG_LVL, "TE image at offset %zx\n", printk(FSP_DBG_LVL, "TE image at offset %zx\n",
te_offset); te_offset);
te = relative_offset(fsp, te_offset); te = relative_offset(fsp, te_offset);
te_relocate(te_addr, te, data_size); te_relocate(te_addr, te);
} }
offset += data_size + data_offset; offset += data_size + data_offset;