soc/intel/adl and mb/intel/adlrvp: Use the newly added meminit block driver

This change uses the newly added meminit block driver and updates ADL
SoC and mainboard code accordingly.

BUG=b:172978729

Change-Id: Ibcc4ee685cdd70eac99f12a5b5d79fdbaf2b3cf6
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/49043
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org>
Reviewed-by: Meera Ravindranath <meera.ravindranath@intel.com>
Reviewed-by: EricR Lai <ericr_lai@compal.corp-partner.google.com>
Reviewed-by: Subrata Banik <subrata.banik@intel.com>
This commit is contained in:
Furquan Shaikh 2020-12-31 22:50:14 -08:00
parent 13d6a4647d
commit a1c247b55d
5 changed files with 428 additions and 289 deletions

View File

@ -6,6 +6,14 @@
#include <soc/romstage.h> #include <soc/romstage.h>
static const struct mb_cfg ddr4_mem_config = { static const struct mb_cfg ddr4_mem_config = {
.type = MEM_TYPE_DDR4,
.ect = true, /* Early Command Training */
.UserBd = BOARD_TYPE_MOBILE,
.ddr_config = {
/* Baseboard uses only 100ohm Rcomp resistors */ /* Baseboard uses only 100ohm Rcomp resistors */
.rcomp_resistor = {100, 100, 100}, .rcomp_resistor = {100, 100, 100},
@ -13,66 +21,133 @@ static const struct mb_cfg ddr4_mem_config = {
.rcomp_targets = {40, 30, 33, 33, 30}, .rcomp_targets = {40, 30, 33, 33, 30},
.dq_pins_interleaved = false, .dq_pins_interleaved = false,
},
.ect = true, /* Early Command Training */
.UserBd = BOARD_TYPE_MOBILE,
}; };
static const struct mb_cfg lpddr4_mem_config = { static const struct mb_cfg lpddr4_mem_config = {
.type = MEM_TYPE_LP4X,
/* DQ byte map */ /* DQ byte map */
.dq_map = { .lpx_dq_map = {
{ 0, 2, 3, 1, 6, 7, 5, 4, 10, 8, 11, 9, 14, 12, 13, 15 }, .ddr0 = {
{ 12, 8, 14, 10, 11, 13, 15, 9, 5, 0, 7, 3, 6, 2, 1, 4 }, .dq0 = { 0, 2, 3, 1, 6, 7, 5, 4, },
{ 3, 0, 2, 1, 6, 5, 4, 7, 12, 13, 14, 15, 10, 9, 8, 11 }, .dq1 = { 10, 8, 11, 9, 14, 12, 13, 15, },
{ 2, 6, 7, 1, 3, 4, 0, 5, 9, 13, 8, 15, 14, 11, 12, 10 }, },
{ 3, 0, 1, 2, 7, 4, 6, 5, 10, 8, 11, 9, 14, 13, 12, 15 }, .ddr1 = {
{ 10, 12, 14, 8, 9, 13, 15, 11, 3, 7, 6, 2, 0, 4, 5, 1 }, .dq0 = { 12, 8, 14, 10, 11, 13, 15, 9, },
{ 12, 15, 14, 13, 9, 10, 11, 8, 7, 4, 6, 5, 0, 1, 3, 2 }, .dq1 = { 5, 0, 7, 3, 6, 2, 1, 4, },
{ 0, 2, 4, 3, 1, 6, 7, 5, 13, 9, 10, 11, 8, 12, 14, 15 }, },
.ddr2 = {
.dq0 = { 3, 0, 2, 1, 6, 5, 4, 7, },
.dq1 = { 12, 13, 14, 15, 10, 9, 8, 11, },
},
.ddr3 = {
.dq0 = { 2, 6, 7, 1, 3, 4, 0, 5, },
.dq1 = { 9, 13, 8, 15, 14, 11, 12, 10, },
},
.ddr4 = {
.dq0 = { 3, 0, 1, 2, 7, 4, 6, 5, },
.dq1 = { 10, 8, 11, 9, 14, 13, 12, 15, },
},
.ddr5 = {
.dq0 = { 10, 12, 14, 8, 9, 13, 15, 11, },
.dq1 = { 3, 7, 6, 2, 0, 4, 5, 1, },
},
.ddr6 = {
.dq0 = { 12, 15, 14, 13, 9, 10, 11, 8, },
.dq1 = { 7, 4, 6, 5, 0, 1, 3, 2, },
},
.ddr7 = {
.dq0 = { 0, 2, 4, 3, 1, 6, 7, 5, },
.dq1 = { 13, 9, 10, 11, 8, 12, 14, 15, },
},
}, },
/* DQS CPU<>DRAM map */ /* DQS CPU<>DRAM map */
.dqs_map = { .lpx_dqs_map = {
{ 0, 1 }, { 1, 0 }, { 0, 1 }, { 0, 1 }, { 0, 1 }, { 1, 0 }, { 1, 0 }, { 0, 1 } .ddr0 = { .dqs0 = 0, .dqs1 = 1 },
.ddr1 = { .dqs0 = 1, .dqs1 = 0 },
.ddr2 = { .dqs0 = 0, .dqs1 = 1 },
.ddr3 = { .dqs0 = 0, .dqs1 = 1 },
.ddr4 = { .dqs0 = 0, .dqs1 = 1 },
.ddr5 = { .dqs0 = 1, .dqs1 = 0 },
.ddr6 = { .dqs0 = 1, .dqs1 = 0 },
.ddr7 = { .dqs0 = 0, .dqs1 = 1 },
}, },
.dq_pins_interleaved = false,
.ect = true, /* Early Command Training */ .ect = true, /* Early Command Training */
.UserBd = BOARD_TYPE_MOBILE, .UserBd = BOARD_TYPE_MOBILE,
}; };
static const struct mb_cfg lp5_mem_config = { static const struct mb_cfg lp5_mem_config = {
.type = MEM_TYPE_LP5X,
/* DQ byte map */ /* DQ byte map */
.dq_map = { .lpx_dq_map = {
{ 3, 2, 1, 0, 5, 4, 6, 7, 15, 14, 12, 13, 8, 9, 10, 11 }, .ddr0 = {
{ 0, 2, 3, 1, 5, 7, 4, 6, 14, 13, 15, 12, 8, 9, 11, 10 }, .dq0 = { 3, 2, 1, 0, 5, 4, 6, 7, },
{ 1, 2, 0, 3, 4, 6, 5, 7, 15, 13, 12, 14, 9, 10, 8, 11 }, .dq1 = { 15, 14, 12, 13, 8, 9, 10, 11, },
{ 2, 1, 3, 0, 7, 4, 5, 6, 13, 12, 15, 14, 9, 11, 8, 10 }, },
{ 1, 2, 3, 0, 6, 4, 5, 7, 15, 13, 14, 12, 10, 9, 8, 11 }, .ddr1 = {
{ 1, 0, 3, 2, 6, 7, 4, 5, 14, 12, 15, 13, 8, 9, 10, 11 }, .dq0 = { 0, 2, 3, 1, 5, 7, 4, 6, },
{ 0, 2, 1, 3, 4, 7, 5, 6, 12, 13, 15, 14, 9, 11, 10, 8 }, .dq1 = { 14, 13, 15, 12, 8, 9, 11, 10, },
{ 3, 2, 1, 0, 5, 4, 6, 7, 13, 15, 11, 12, 10, 9, 14, 8 }, },
.ddr2 = {
.dq0 = { 1, 2, 0, 3, 4, 6, 5, 7, },
.dq1 = { 15, 13, 12, 14, 9, 10, 8, 11, },
},
.ddr3 = {
.dq0 = { 2, 1, 3, 0, 7, 4, 5, 6, },
.dq1 = { 13, 12, 15, 14, 9, 11, 8, 10, },
},
.ddr4 = {
.dq0 = { 1, 2, 3, 0, 6, 4, 5, 7, },
.dq1 = { 15, 13, 14, 12, 10, 9, 8, 11, },
},
.ddr5 = {
.dq0 = { 1, 0, 3, 2, 6, 7, 4, 5, },
.dq1 = { 14, 12, 15, 13, 8, 9, 10, 11, },
},
.ddr6 = {
.dq0 = { 0, 2, 1, 3, 4, 7, 5, 6, },
.dq1 = { 12, 13, 15, 14, 9, 11, 10, 8, },
},
.ddr7 = {
.dq0 = { 3, 2, 1, 0, 5, 4, 6, 7, },
.dq1 = { 13, 15, 11, 12, 10, 9, 14, 8, },
},
}, },
/* DQS CPU<>DRAM map */ /* DQS CPU<>DRAM map */
.dqs_map = { .lpx_dqs_map = {
{ 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 }, { 0, 1 } .ddr0 = { .dqs0 = 0, .dqs1 = 1 },
.ddr1 = { .dqs0 = 0, .dqs1 = 1 },
.ddr2 = { .dqs0 = 0, .dqs1 = 1 },
.ddr3 = { .dqs0 = 0, .dqs1 = 1 },
.ddr4 = { .dqs0 = 0, .dqs1 = 1 },
.ddr5 = { .dqs0 = 0, .dqs1 = 1 },
.ddr6 = { .dqs0 = 0, .dqs1 = 1 },
.ddr7 = { .dqs0 = 0, .dqs1 = 1 }
}, },
.dq_pins_interleaved = false,
.ect = false, /* Early Command Training */ .ect = false, /* Early Command Training */
.lp5_ccc_config = 0xff,
.UserBd = BOARD_TYPE_MOBILE, .UserBd = BOARD_TYPE_MOBILE,
.lp5x_config = {
.ccc_config = 0xff,
},
}; };
static const struct mb_cfg ddr5_mem_config = { static const struct mb_cfg ddr5_mem_config = {
.type = MEM_TYPE_DDR5,
.ect = true, /* Early Command Training */
.UserBd = BOARD_TYPE_MOBILE,
.ddr_config = {
/* Baseboard uses only 100ohm Rcomp resistors */ /* Baseboard uses only 100ohm Rcomp resistors */
.rcomp_resistor = {100, 100, 100}, .rcomp_resistor = {100, 100, 100},
@ -80,10 +155,7 @@ static const struct mb_cfg ddr5_mem_config = {
.rcomp_targets = {50, 30, 30, 30, 27}, .rcomp_targets = {50, 30, 30, 30, 27},
.dq_pins_interleaved = false, .dq_pins_interleaved = false,
}
.ect = true, /* Early Command Training */
.UserBd = BOARD_TYPE_MOBILE,
}; };
const struct mb_cfg *variant_memory_params(void) const struct mb_cfg *variant_memory_params(void)

View File

@ -31,19 +31,21 @@ void mainboard_memory_init_params(FSPM_UPD *mupd)
int board_id = get_board_id(); int board_id = get_board_id();
const bool half_populated = false; const bool half_populated = false;
const struct spd_info lp4_lp5_spd_info = { const struct mem_spd lp4_lp5_spd_info = {
.read_type = READ_SPD_CBFS, .topo = MEM_TOPO_MEMORY_DOWN,
.spd_spec.spd_index = get_spd_index(), .cbfs_index = get_spd_index(),
}; };
const struct spd_info ddr4_ddr5_spd_info = { const struct mem_spd ddr4_ddr5_spd_info = {
.read_type = READ_SMBUS, .topo = MEM_TOPO_DIMM_MODULE,
.spd_spec = { .smbus = {
.spd_smbus_address = { [0] = {
[0] = 0xa0, .addr_dimm[0] = 0xa0,
[1] = 0xa2, .addr_dimm[1] = 0xa2,
[8] = 0xa4, },
[9] = 0xa6, [1] = {
.addr_dimm[0] = 0xa4,
.addr_dimm[1] = 0xa6,
}, },
}, },
}; };

View File

@ -55,6 +55,7 @@ config CPU_SPECIFIC_OPTIONS
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2 select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2
select SOC_INTEL_COMMON_BLOCK_HDA select SOC_INTEL_COMMON_BLOCK_HDA
select SOC_INTEL_COMMON_BLOCK_MEMINIT
select SOC_INTEL_COMMON_BLOCK_SA select SOC_INTEL_COMMON_BLOCK_SA
select SOC_INTEL_COMMON_BLOCK_SMM select SOC_INTEL_COMMON_BLOCK_SMM
select SOC_INTEL_COMMON_BLOCK_SMM_IO_TRAP select SOC_INTEL_COMMON_BLOCK_SMM_IO_TRAP
@ -250,4 +251,17 @@ config SOC_INTEL_ALDERLAKE_DEBUG_CONSENT
0:Disabled, 1:Enabled (DCI OOB+[DbC]), 2:Enabled (DCI OOB), 0:Disabled, 1:Enabled (DCI OOB+[DbC]), 2:Enabled (DCI OOB),
3:Enabled (USB3 DbC), 4:Enabled (XDP/MIPI60), 5:Enabled (USB2 DbC), 3:Enabled (USB3 DbC), 4:Enabled (XDP/MIPI60), 5:Enabled (USB2 DbC),
6:Enable (2-wire DCI OOB), 7:Manual 6:Enable (2-wire DCI OOB), 7:Manual
config DATA_BUS_WIDTH
int
default 128
config DIMMS_PER_CHANNEL
int
default 2
config MRC_CHANNEL_WIDTH
int
default 16
endif endif

View File

@ -5,106 +5,102 @@
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <types.h>
#include <fsp/soc_binding.h> #include <fsp/soc_binding.h>
#include <intelblocks/meminit.h>
#define BYTES_PER_CHANNEL 2 enum mem_type {
#define BITS_PER_BYTE 8 MEM_TYPE_DDR4,
#define DQS_PER_CHANNEL 2 MEM_TYPE_DDR5,
MEM_TYPE_LP4X,
/* 64-bit Channel identification */ MEM_TYPE_LP5X,
enum {
DDR_CH0,
DDR_CH1,
DDR_CH2,
DDR_CH3,
DDR_CH4,
DDR_CH5,
DDR_CH6,
DDR_CH7,
DDR_NUM_CHANNELS
};
/* Number of memory DIMM slots available on Alderlake board */
#define NUM_DIMM_SLOT 16
struct spd_by_pointer {
size_t spd_data_len;
uintptr_t spd_data_ptr;
}; };
enum mem_info_read_type { struct mem_ddr_config {
NOT_EXISTING, /* No memory in this slot */ /* Dqs Pins Interleaved Setting. Enable/Disable Control */
READ_SMBUS, /* Read on-module spd by SMBUS. */ bool dq_pins_interleaved;
READ_SPD_CBFS, /* Find SPD file in CBFS. */
READ_SPD_MEMPTR /* Find SPD data from pointer. */
};
struct spd_info {
enum mem_info_read_type read_type;
union spd_data_by {
/* To read on-module SPD when read_type is READ_SMBUS. */
uint8_t spd_smbus_address[NUM_DIMM_SLOT];
/* To identify SPD file when read_type is READ_SPD_CBFS. */
int spd_index;
/* To find SPD data when read_type is READ_SPD_MEMPTR. */
struct spd_by_pointer spd_data_ptr_info;
} spd_spec;
};
/* Board-specific memory configuration information */
struct mb_cfg {
/* DQ mapping */
uint8_t dq_map[DDR_NUM_CHANNELS][BYTES_PER_CHANNEL * BITS_PER_BYTE];
/*
* DQS CPU<>DRAM map. Each array entry represents a
* mapping of a dq bit on the CPU to the bit it's connected to on
* the memory part. The array index represents the dqs bit number
* on the memory part, and the values in the array represent which
* pin on the CPU that DRAM pin connects to.
*/
uint8_t dqs_map[DDR_NUM_CHANNELS][DQS_PER_CHANNEL];
/* /*
* Rcomp resistor values. These values represent the resistance in * Rcomp resistor values. These values represent the resistance in
* ohms of the three rcomp resistors attached to the DDR_COMP_0, * ohms of the three rcomp resistors attached to the DDR_COMP_0,
* DDR_COMP_1, and DDR_COMP_2 pins on the DRAM. * DDR_COMP_1, and DDR_COMP_2 pins on the DRAM.
*/ */
uint16_t rcomp_resistor[3]; uint16_t rcomp_resistor[3];
/* Rcomp target values. */ /* Rcomp target values. */
uint16_t rcomp_targets[5]; uint16_t rcomp_targets[5];
};
/* struct lpx_dq {
* Dqs Pins Interleaved Setting. Enable/Disable Control uint8_t dq0[BITS_PER_BYTE];
* TRUE = enable, FALSE = disable uint8_t dq1[BITS_PER_BYTE];
*/ };
bool dq_pins_interleaved;
struct lpx_dqs {
uint8_t dqs0;
uint8_t dqs1;
};
struct lpx_dq_map {
struct lpx_dq ddr0;
struct lpx_dq ddr1;
struct lpx_dq ddr2;
struct lpx_dq ddr3;
struct lpx_dq ddr4;
struct lpx_dq ddr5;
struct lpx_dq ddr6;
struct lpx_dq ddr7;
};
struct lpx_dqs_map {
struct lpx_dqs ddr0;
struct lpx_dqs ddr1;
struct lpx_dqs ddr2;
struct lpx_dqs ddr3;
struct lpx_dqs ddr4;
struct lpx_dqs ddr5;
struct lpx_dqs ddr6;
struct lpx_dqs ddr7;
};
struct mem_lp5x_config {
uint8_t ccc_config;
};
struct mb_cfg {
enum mem_type type;
union {
/* /*
* Early Command Training Enable/Disable Control * DQ CPU<>DRAM map:
* TRUE = enable, FALSE = disable * Index of the array represents DQ# on the CPU and the value represents DQ# on
* the DRAM part.
*/ */
uint8_t dq_map[CONFIG_DATA_BUS_WIDTH];
struct lpx_dq_map lpx_dq_map;
};
union {
/*
* DQS CPU<>DRAM map:
* Index of the array represents DQS# on the CPU and the value represents DQS#
* on the DRAM part.
*/
uint8_t dqs_map[CONFIG_DATA_BUS_WIDTH/BITS_PER_BYTE];
struct lpx_dqs_map lpx_dqs_map;
};
union {
struct mem_lp5x_config lp5x_config;
struct mem_ddr_config ddr_config;
};
/* Early Command Training Enable/Disable Control */
bool ect; bool ect;
/* Board type */ /* Board type */
uint8_t UserBd; uint8_t UserBd;
/*
* Command pins mapping for Controller Channel (ccc)
* lp5_ccc_config: Bitmask where bits [3:0] are Controller 0 Channel [3:0] and
* bits [7:4] are Controller 1 Channel [3:0]
* Bit value: 0 = ccc pin mapping is ascending, 1 = ccc pin mapping is descending.
*/
uint8_t lp5_ccc_config;
}; };
/* void memcfg_init(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *mb_cfg,
* Initialize default memory configurations for Alder Lake. const struct mem_spd *spd_info, bool half_populated);
*/
void memcfg_init(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *board_cfg,
const struct spd_info *spd_info, bool half_populated);
#endif /* _SOC_ALDERLAKE_MEMINIT_H_ */ #endif /* _SOC_ALDERLAKE_MEMINIT_H_ */

View File

@ -1,185 +1,240 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* SPDX-License-Identifier: GPL-2.0-or-later */
#include <assert.h>
#include <console/console.h> #include <console/console.h>
#include <fsp/util.h> #include <fsp/util.h>
#include <soc/meminit.h> #include <soc/meminit.h>
#include <spd_bin.h>
#include <string.h> #include <string.h>
enum dimm_enable_options { #define LPX_PHYSICAL_CH_WIDTH 16
ENABLE_BOTH_DIMMS = 0, #define LPX_CHANNELS CHANNEL_COUNT(LPX_PHYSICAL_CH_WIDTH)
DISABLE_DIMM0 = 1,
DISABLE_DIMM1 = 2, #define DDR4_PHYSICAL_CH_WIDTH 64
DISABLE_BOTH_DIMMS = 3 #define DDR4_CHANNELS CHANNEL_COUNT(DDR4_PHYSICAL_CH_WIDTH)
#define DDR5_PHYSICAL_CH_WIDTH 32
#define DDR5_CHANNELS CHANNEL_COUNT(DDR5_PHYSICAL_CH_WIDTH)
static void meminit_lp4x(FSP_M_CONFIG *mem_cfg)
{
mem_cfg->DqPinsInterleaved = 0;
}
static void meminit_lp5x(FSP_M_CONFIG *mem_cfg, const struct mem_lp5x_config *lp5x_config)
{
mem_cfg->DqPinsInterleaved = 0;
mem_cfg->Lp5CccConfig = lp5x_config->ccc_config;
}
static void meminit_ddr(FSP_M_CONFIG *mem_cfg, const struct mem_ddr_config *ddr_config)
{
mem_cfg->DqPinsInterleaved = ddr_config->dq_pins_interleaved;
memcpy(&mem_cfg->RcompResistor, ddr_config->rcomp_resistor,
sizeof(mem_cfg->RcompResistor));
memcpy(&mem_cfg->RcompTarget, ddr_config->rcomp_targets, sizeof(mem_cfg->RcompTarget));
}
static const struct soc_mem_cfg soc_mem_cfg[] = {
[MEM_TYPE_DDR4] = {
.num_phys_channels = DDR4_CHANNELS,
.phys_to_mrc_map = {
[0] = 0,
[1] = 4,
},
.md_phy_masks = {
/*
* Only physical channel 0 is populated in case of half-populated
* configuration.
*/
.half_channel = BIT(0),
/* In mixed topologies, channel 1 is always memory-down. */
.mixed_topo = BIT(1),
},
},
[MEM_TYPE_DDR5] = {
.num_phys_channels = DDR5_CHANNELS,
.phys_to_mrc_map = {
[0] = 0,
[1] = 1,
[2] = 4,
[3] = 5,
},
.md_phy_masks = {
/*
* Physical channels 0 and 1 are populated in case of
* half-populated configurations.
*/
.half_channel = BIT(0) | BIT(1),
/* In mixed topologies, channels 2 and 3 are always memory-down. */
.mixed_topo = BIT(2) | BIT(3),
},
},
[MEM_TYPE_LP4X] = {
.num_phys_channels = LPX_CHANNELS,
.phys_to_mrc_map = {
[0] = 0,
[1] = 1,
[2] = 2,
[3] = 3,
[4] = 4,
[5] = 5,
[6] = 6,
[7] = 7,
},
.md_phy_masks = {
/*
* Physical channels 0, 1, 2 and 3 are populated in case of
* half-populated configurations.
*/
.half_channel = BIT(0) | BIT(1) | BIT(2) | BIT(3),
/* LP4x does not support mixed topologies. */
},
},
[MEM_TYPE_LP5X] = {
.num_phys_channels = LPX_CHANNELS,
.phys_to_mrc_map = {
[0] = 0,
[1] = 1,
[2] = 2,
[3] = 3,
[4] = 4,
[5] = 5,
[6] = 6,
[7] = 7,
},
.md_phy_masks = {
/*
* Physical channels 0, 1, 2 and 3 are populated in case of
* half-populated configurations.
*/
.half_channel = BIT(0) | BIT(1) | BIT(2) | BIT(3),
/* LP5x does not support mixed topologies. */
},
},
}; };
static void spd_read_from_cbfs(const struct spd_info *spd_info, static void mem_init_spd_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data)
uintptr_t *spd_data_ptr, size_t *spd_data_len)
{ {
struct region_device spd_rdev; uint32_t *spd_upds[MRC_CHANNELS][CONFIG_DIMMS_PER_CHANNEL] = {
size_t spd_index = spd_info->spd_spec.spd_index; [0] = { &mem_cfg->MemorySpdPtr00, &mem_cfg->MemorySpdPtr01, },
[1] = { &mem_cfg->MemorySpdPtr02, &mem_cfg->MemorySpdPtr03, },
[2] = { &mem_cfg->MemorySpdPtr04, &mem_cfg->MemorySpdPtr05, },
[3] = { &mem_cfg->MemorySpdPtr06, &mem_cfg->MemorySpdPtr07, },
[4] = { &mem_cfg->MemorySpdPtr08, &mem_cfg->MemorySpdPtr09, },
[5] = { &mem_cfg->MemorySpdPtr10, &mem_cfg->MemorySpdPtr11, },
[6] = { &mem_cfg->MemorySpdPtr12, &mem_cfg->MemorySpdPtr13, },
[7] = { &mem_cfg->MemorySpdPtr14, &mem_cfg->MemorySpdPtr15, },
};
uint8_t *disable_dimm_upds[MRC_CHANNELS] = {
&mem_cfg->DisableDimmMc0Ch0,
&mem_cfg->DisableDimmMc0Ch1,
&mem_cfg->DisableDimmMc0Ch2,
&mem_cfg->DisableDimmMc0Ch3,
&mem_cfg->DisableDimmMc1Ch0,
&mem_cfg->DisableDimmMc1Ch1,
&mem_cfg->DisableDimmMc1Ch2,
&mem_cfg->DisableDimmMc1Ch3,
};
size_t ch, dimm;
printk(BIOS_DEBUG, "SPD INDEX = %lu\n", spd_index); mem_cfg->MemorySpdDataLen = data->spd_len;
if (get_spd_cbfs_rdev(&spd_rdev, spd_index) < 0)
die("spd.bin not found or incorrect index\n");
*spd_data_len = region_device_sz(&spd_rdev); for (ch = 0; ch < MRC_CHANNELS; ch++) {
uint8_t *disable_dimm_ptr = disable_dimm_upds[ch];
*disable_dimm_ptr = 0;
/* Memory leak is ok since we have memory mapped boot media */ for (dimm = 0; dimm < CONFIG_DIMMS_PER_CHANNEL; dimm++) {
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED)); uint32_t *spd_ptr = spd_upds[ch][dimm];
*spd_data_ptr = (uintptr_t)rdev_mmap_full(&spd_rdev); *spd_ptr = data->spd[ch][dimm];
if (!*spd_ptr)
*disable_dimm_ptr |= BIT(dimm);
}
}
} }
static void get_spd_data(const struct spd_info *spd_info, static void mem_init_dq_dqs_upds(void *upds[MRC_CHANNELS], const void *map, size_t upd_size,
uintptr_t *spd_data_ptr, size_t *spd_data_len) const struct mem_channel_data *data, bool auto_detect)
{ {
if (spd_info->read_type == READ_SPD_MEMPTR) { size_t i;
*spd_data_ptr = spd_info->spd_spec.spd_data_ptr_info.spd_data_ptr;
*spd_data_len = spd_info->spd_spec.spd_data_ptr_info.spd_data_len;
return;
}
if (spd_info->read_type == READ_SPD_CBFS) { for (i = 0; i < MRC_CHANNELS; i++, map += upd_size) {
spd_read_from_cbfs(spd_info, spd_data_ptr, spd_data_len); if (auto_detect ||
return; !channel_is_populated(i, MRC_CHANNELS, data->ch_population_flags))
memset(upds[i], 0, upd_size);
else
memcpy(upds[i], map, upd_size);
} }
} }
static void meminit_dq_dqs_map(FSP_M_CONFIG *mem_cfg, static void mem_init_dq_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data,
const struct mb_cfg *board_cfg, const struct mb_cfg *mb_cfg, bool auto_detect)
bool half_populated)
{ {
memcpy(&mem_cfg->RcompResistor, &board_cfg->rcomp_resistor, void *dq_upds[MRC_CHANNELS] = {
sizeof(mem_cfg->RcompResistor)); &mem_cfg->DqMapCpu2DramCh0,
&mem_cfg->DqMapCpu2DramCh1,
&mem_cfg->DqMapCpu2DramCh2,
&mem_cfg->DqMapCpu2DramCh3,
&mem_cfg->DqMapCpu2DramCh4,
&mem_cfg->DqMapCpu2DramCh5,
&mem_cfg->DqMapCpu2DramCh6,
&mem_cfg->DqMapCpu2DramCh7,
};
memcpy(&mem_cfg->RcompTarget, &board_cfg->rcomp_targets, const size_t upd_size = sizeof(mem_cfg->DqMapCpu2DramCh0);
sizeof(mem_cfg->RcompTarget));
memcpy(&mem_cfg->DqMapCpu2DramCh0, &board_cfg->dq_map[DDR_CH0], _Static_assert(upd_size == CONFIG_MRC_CHANNEL_WIDTH, "Incorrect DQ UPD size!");
sizeof(board_cfg->dq_map[DDR_CH0]));
memcpy(&mem_cfg->DqsMapCpu2DramCh0, &board_cfg->dqs_map[DDR_CH0],
sizeof(board_cfg->dqs_map[DDR_CH0]));
memcpy(&mem_cfg->DqMapCpu2DramCh1, &board_cfg->dq_map[DDR_CH1], mem_init_dq_dqs_upds(dq_upds, mb_cfg->dq_map, upd_size, data, auto_detect);
sizeof(board_cfg->dq_map[DDR_CH1]));
memcpy(&mem_cfg->DqsMapCpu2DramCh1, &board_cfg->dqs_map[DDR_CH1],
sizeof(board_cfg->dqs_map[DDR_CH1]));
memcpy(&mem_cfg->DqMapCpu2DramCh2, &board_cfg->dq_map[DDR_CH2],
sizeof(board_cfg->dq_map[DDR_CH2]));
memcpy(&mem_cfg->DqsMapCpu2DramCh2, &board_cfg->dqs_map[DDR_CH2],
sizeof(board_cfg->dqs_map[DDR_CH2]));
memcpy(&mem_cfg->DqMapCpu2DramCh3, &board_cfg->dq_map[DDR_CH3],
sizeof(board_cfg->dq_map[DDR_CH3]));
memcpy(&mem_cfg->DqsMapCpu2DramCh3, &board_cfg->dqs_map[DDR_CH3],
sizeof(board_cfg->dqs_map[DDR_CH3]));
if (half_populated)
return;
memcpy(&mem_cfg->DqMapCpu2DramCh4, &board_cfg->dq_map[DDR_CH4],
sizeof(board_cfg->dq_map[DDR_CH4]));
memcpy(&mem_cfg->DqsMapCpu2DramCh4, &board_cfg->dqs_map[DDR_CH4],
sizeof(board_cfg->dqs_map[DDR_CH4]));
memcpy(&mem_cfg->DqMapCpu2DramCh5, &board_cfg->dq_map[DDR_CH5],
sizeof(board_cfg->dq_map[DDR_CH5]));
memcpy(&mem_cfg->DqsMapCpu2DramCh5, &board_cfg->dqs_map[DDR_CH5],
sizeof(board_cfg->dqs_map[DDR_CH5]));
memcpy(&mem_cfg->DqMapCpu2DramCh6, &board_cfg->dq_map[DDR_CH6],
sizeof(board_cfg->dq_map[DDR_CH6]));
memcpy(&mem_cfg->DqsMapCpu2DramCh6, &board_cfg->dqs_map[DDR_CH6],
sizeof(board_cfg->dqs_map[DDR_CH6]));
memcpy(&mem_cfg->DqMapCpu2DramCh7, &board_cfg->dq_map[DDR_CH7],
sizeof(board_cfg->dq_map[DDR_CH7]));
memcpy(&mem_cfg->DqsMapCpu2DramCh7, &board_cfg->dqs_map[DDR_CH7],
sizeof(board_cfg->dqs_map[DDR_CH7]));
} }
static void meminit_channels(FSP_M_CONFIG *mem_cfg, static void mem_init_dqs_upds(FSP_M_CONFIG *mem_cfg, const struct mem_channel_data *data,
const struct mb_cfg *board_cfg, const struct mb_cfg *mb_cfg, bool auto_detect)
uintptr_t spd_data_ptr,
bool half_populated)
{ {
uint8_t dimm_cfg = DISABLE_DIMM1; /* Use only DIMM0 */ void *dqs_upds[MRC_CHANNELS] = {
&mem_cfg->DqsMapCpu2DramCh0,
&mem_cfg->DqsMapCpu2DramCh1,
&mem_cfg->DqsMapCpu2DramCh2,
&mem_cfg->DqsMapCpu2DramCh3,
&mem_cfg->DqsMapCpu2DramCh4,
&mem_cfg->DqsMapCpu2DramCh5,
&mem_cfg->DqsMapCpu2DramCh6,
&mem_cfg->DqsMapCpu2DramCh7,
};
/* Channel 0 */ const size_t upd_size = sizeof(mem_cfg->DqsMapCpu2DramCh0);
mem_cfg->DisableDimmMc0Ch0 = dimm_cfg;
mem_cfg->MemorySpdPtr00 = spd_data_ptr;
mem_cfg->MemorySpdPtr01 = 0;
/* Channel 1 */ _Static_assert(upd_size == CONFIG_MRC_CHANNEL_WIDTH / 8, "Incorrect DQS UPD size!");
mem_cfg->DisableDimmMc0Ch1 = dimm_cfg;
mem_cfg->MemorySpdPtr02 = spd_data_ptr;
mem_cfg->MemorySpdPtr03 = 0;
/* Channel 2 */ mem_init_dq_dqs_upds(dqs_upds, mb_cfg->dqs_map, upd_size, data, auto_detect);
mem_cfg->DisableDimmMc0Ch2 = dimm_cfg;
mem_cfg->MemorySpdPtr04 = spd_data_ptr;
mem_cfg->MemorySpdPtr05 = 0;
/* Channel 3 */
mem_cfg->DisableDimmMc0Ch3 = dimm_cfg;
mem_cfg->MemorySpdPtr06 = spd_data_ptr;
mem_cfg->MemorySpdPtr07 = 0;
if (half_populated) {
printk(BIOS_INFO, "%s: DRAM half-populated\n", __func__);
dimm_cfg = DISABLE_BOTH_DIMMS;
spd_data_ptr = 0;
} }
/* Channel 4 */ void memcfg_init(FSP_M_CONFIG *mem_cfg, const struct mb_cfg *mb_cfg,
mem_cfg->DisableDimmMc1Ch0 = dimm_cfg; const struct mem_spd *spd_info, bool half_populated)
mem_cfg->MemorySpdPtr08 = spd_data_ptr;
mem_cfg->MemorySpdPtr09 = 0;
/* Channel 5 */
mem_cfg->DisableDimmMc1Ch1 = dimm_cfg;
mem_cfg->MemorySpdPtr10 = spd_data_ptr;
mem_cfg->MemorySpdPtr11 = 0;
/* Channel 6 */
mem_cfg->DisableDimmMc1Ch2 = dimm_cfg;
mem_cfg->MemorySpdPtr12 = spd_data_ptr;
mem_cfg->MemorySpdPtr13 = 0;
/* Channel 7 */
mem_cfg->DisableDimmMc1Ch3 = dimm_cfg;
mem_cfg->MemorySpdPtr14 = spd_data_ptr;
mem_cfg->MemorySpdPtr15 = 0;
meminit_dq_dqs_map(mem_cfg, board_cfg, half_populated);
}
/* Initialize onboard memory configurations for lpddr4x */
void memcfg_init(FSP_M_CONFIG *mem_cfg,
const struct mb_cfg *board_cfg,
const struct spd_info *spd_info,
bool half_populated)
{ {
if (spd_info->read_type == READ_SMBUS) { struct mem_channel_data data;
for (int i = 0; i < NUM_DIMM_SLOT; i++) bool dq_dqs_auto_detect = false;
mem_cfg->SpdAddressTable[i] = spd_info->spd_spec.spd_smbus_address[i];
meminit_dq_dqs_map(mem_cfg, board_cfg, half_populated);
} else {
size_t spd_data_len = 0;
uintptr_t spd_data_ptr = 0;
memset(&mem_cfg->SpdAddressTable, 0, sizeof(mem_cfg->SpdAddressTable)); mem_cfg->ECT = mb_cfg->ect;
get_spd_data(spd_info, &spd_data_ptr, &spd_data_len); mem_cfg->UserBd = mb_cfg->UserBd;
mem_cfg->MemorySpdDataLen = spd_data_len; switch (mb_cfg->type) {
meminit_channels(mem_cfg, board_cfg, spd_data_ptr, half_populated); case MEM_TYPE_DDR4:
case MEM_TYPE_DDR5:
meminit_ddr(mem_cfg, &mb_cfg->ddr_config);
dq_dqs_auto_detect = true;
break;
case MEM_TYPE_LP4X:
meminit_lp4x(mem_cfg);
break;
case MEM_TYPE_LP5X:
meminit_lp5x(mem_cfg, &mb_cfg->lp5x_config);
break;
default:
die("Unsupported memory type(%d)\n", mb_cfg->type);
} }
mem_cfg->Lp5CccConfig = board_cfg->lp5_ccc_config; mem_populate_channel_data(&soc_mem_cfg[mb_cfg->type], spd_info, half_populated, &data);
mem_cfg->ECT = board_cfg->ect; mem_init_spd_upds(mem_cfg, &data);
mem_cfg->UserBd = board_cfg->UserBd; mem_init_dq_upds(mem_cfg, &data, mb_cfg, dq_dqs_auto_detect);
mem_cfg->DqPinsInterleaved = board_cfg->dq_pins_interleaved; mem_init_dqs_upds(mem_cfg, &data, mb_cfg, dq_dqs_auto_detect);
} }