soc/intel: Factor out common smmrelocate.c
There are seven identical copies of the same file. One is enough. Change-Id: I68c023029ec45ecfaab0e756fce774674bb02871 Signed-off-by: Angel Pons <th3fanbus@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/50937 Reviewed-by: Michael Niewöhner <foss@mniewoehner.de> Reviewed-by: Arthur Heymans <arthur@aheymans.xyz> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
parent
482d3a1f03
commit
a4cd9117da
23 changed files with 12 additions and 1507 deletions
|
@ -52,6 +52,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CHIP_CONFIG
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_DTT
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
|
||||
select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2
|
||||
|
|
|
@ -41,7 +41,6 @@ ramstage-y += p2sb.c
|
|||
ramstage-y += pcie_rp.c
|
||||
ramstage-y += pmc.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += soundwire.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += xhci.c
|
||||
|
|
|
@ -93,6 +93,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CNVI
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
|
||||
select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2
|
||||
select SOC_INTEL_COMMON_BLOCK_HDA
|
||||
|
|
|
@ -46,7 +46,6 @@ ramstage-y += p2sb.c
|
|||
ramstage-y += pmc.c
|
||||
ramstage-y += pmutil.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += spi.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += uart.c
|
||||
|
|
|
@ -1,250 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
|
||||
#include <console/console.h>
|
||||
#include <cpu/intel/common/common.h>
|
||||
#include <cpu/intel/em64t101_save_state.h>
|
||||
#include <cpu/intel/smm_reloc.h>
|
||||
#include <cpu/x86/mp.h>
|
||||
#include <cpu/x86/msr.h>
|
||||
#include <cpu/x86/mtrr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <device/pci_ops.h>
|
||||
#include <smp/node.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/msr.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/soc_chip.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
|
||||
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase,
|
||||
struct smm_relocation_params *relo_params)
|
||||
{
|
||||
u32 smbase;
|
||||
u32 iedbase;
|
||||
|
||||
/*
|
||||
* The relocated handler runs with all CPUs concurrently. Therefore
|
||||
* stagger the entry points adjusting SMBASE downwards by save state
|
||||
* size * CPU num.
|
||||
*/
|
||||
smbase = staggered_smbase;
|
||||
iedbase = relo_params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
||||
smbase, iedbase);
|
||||
|
||||
/*
|
||||
* All threads need to set IEDBASE and SMBASE to the relocated
|
||||
* handler region. However, the save state location depends on the
|
||||
* smm_save_state_in_msrs field in the relocation parameters. If
|
||||
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
||||
* the SMM handler in parallel, and each CPUs save state area is
|
||||
* located in their respective MSR space. If smm_save_state_in_msrs
|
||||
* is zero then the SMM relocation is happening serially so the
|
||||
* save state is at the same default location for all CPUs.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smbase_msr;
|
||||
msr_t iedbase_msr;
|
||||
|
||||
smbase_msr.lo = smbase;
|
||||
smbase_msr.hi = 0;
|
||||
|
||||
/*
|
||||
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
||||
* not clear why it differs from the SMBASE MSR.
|
||||
*/
|
||||
iedbase_msr.lo = 0;
|
||||
iedbase_msr.hi = iedbase;
|
||||
|
||||
wrmsr(SMBASE_MSR, smbase_msr);
|
||||
wrmsr(IEDBASE_MSR, iedbase_msr);
|
||||
} else {
|
||||
em64t101_smm_state_save_area_t *save_state;
|
||||
|
||||
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
||||
sizeof(*save_state));
|
||||
|
||||
save_state->smbase = smbase;
|
||||
save_state->iedbase = iedbase;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns 1 if SMM MSR save state was set. */
|
||||
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
||||
{
|
||||
msr_t smm_mca_cap;
|
||||
|
||||
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
||||
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.hi = 0;
|
||||
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
relo_params->smm_save_state_in_msrs = 1;
|
||||
}
|
||||
return relo_params->smm_save_state_in_msrs;
|
||||
}
|
||||
|
||||
/*
|
||||
* The relocation work is actually performed in SMM context, but the code
|
||||
* resides in the ramstage module. This occurs by trampolining from the default
|
||||
* SMRAM entry point to here.
|
||||
*/
|
||||
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase)
|
||||
{
|
||||
msr_t mtrr_cap;
|
||||
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
||||
|
||||
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
||||
|
||||
/*
|
||||
* Determine if the processor supports saving state in MSRs. If so,
|
||||
* enable it before the non-BSPs run so that SMM relocation can occur
|
||||
* in parallel in the non-BSP CPUs.
|
||||
*/
|
||||
if (cpu == 0) {
|
||||
/*
|
||||
* If smm_save_state_in_msrs is 1 then that means this is the
|
||||
* 2nd time through the relocation handler for the BSP.
|
||||
* Parallel SMM handler relocation is taking place. However,
|
||||
* it is desired to access other CPUs save state in the real
|
||||
* SMM handler. Therefore, disable the SMM save state in MSRs
|
||||
* feature.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
} else if (bsp_setup_msr_save_state(relo_params))
|
||||
/*
|
||||
* Just return from relocation handler if MSR save
|
||||
* state is enabled. In that case the BSP will come
|
||||
* back into the relocation handler to setup the new
|
||||
* SMBASE as well disabling SMM save state in MSRs.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Make appropriate changes to the save state map. */
|
||||
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
||||
|
||||
/*
|
||||
* The SMRR MSRs are core-level registers, so if two threads that share
|
||||
* a core try to both set the lock bit (in the same physical register),
|
||||
* a #GP will be raised on the second write to that register (which is
|
||||
* exactly what the lock is supposed to do), therefore secondary threads
|
||||
* should exit here.
|
||||
*/
|
||||
if (intel_ht_sibling())
|
||||
return;
|
||||
|
||||
/* Write SMRR MSRs based on indicated support. */
|
||||
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
||||
|
||||
/* Set Lock bit if supported */
|
||||
if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
|
||||
relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
|
||||
|
||||
/* Write SMRRs if supported */
|
||||
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
||||
write_smrr(relo_params);
|
||||
}
|
||||
|
||||
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
||||
{
|
||||
uintptr_t tseg_base;
|
||||
size_t tseg_size;
|
||||
/* All range registers are aligned to 4KiB */
|
||||
const u32 rmask = ~(4 * KiB - 1);
|
||||
|
||||
smm_region(&tseg_base, &tseg_size);
|
||||
|
||||
if (!IS_ALIGNED(tseg_base, tseg_size)) {
|
||||
printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
|
||||
return;
|
||||
}
|
||||
|
||||
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
||||
|
||||
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
||||
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
||||
params->smrr_base.hi = 0;
|
||||
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
||||
params->smrr_mask.hi = 0;
|
||||
}
|
||||
|
||||
static void setup_ied_area(struct smm_relocation_params *params)
|
||||
{
|
||||
char *ied_base;
|
||||
|
||||
struct ied_header ied = {
|
||||
.signature = "INTEL RSVD",
|
||||
.size = params->ied_size,
|
||||
.reserved = {0},
|
||||
};
|
||||
|
||||
ied_base = (void *)params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
|
||||
printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
|
||||
|
||||
/* Place IED header at IEDBASE. */
|
||||
memcpy(ied_base, &ied, sizeof(ied));
|
||||
|
||||
/* Zero out 32KiB at IEDBASE + 1MiB */
|
||||
memset(ied_base + 1 * MiB, 0, 32 * KiB);
|
||||
}
|
||||
|
||||
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
||||
size_t *smm_save_state_size)
|
||||
{
|
||||
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
||||
|
||||
fill_in_relocation_params(&smm_reloc_params);
|
||||
|
||||
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
||||
|
||||
if (smm_reloc_params.ied_size)
|
||||
setup_ied_area(&smm_reloc_params);
|
||||
|
||||
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
||||
}
|
||||
|
||||
void smm_initialize(void)
|
||||
{
|
||||
/* Clear the SMM state in the southbridge. */
|
||||
smm_southbridge_clear_state();
|
||||
|
||||
/*
|
||||
* Run the relocation handler for on the BSP to check and set up
|
||||
* parallel SMM relocation.
|
||||
*/
|
||||
smm_initiate_relocation();
|
||||
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
||||
}
|
||||
|
||||
void smm_relocate(void)
|
||||
{
|
||||
/*
|
||||
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
||||
* shall take place. Run the relocation handler a second time on the
|
||||
* BSP to do * the final move. For APs, a relocation handler always
|
||||
* needs to be run.
|
||||
*/
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
smm_initiate_relocation_parallel();
|
||||
else if (!boot_cpu())
|
||||
smm_initiate_relocation();
|
||||
}
|
|
@ -18,6 +18,10 @@ config SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
|||
ensured that all MTRRs are re-programmed based on the DRAM
|
||||
resource settings.
|
||||
|
||||
config SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
bool
|
||||
depends on SOC_INTEL_COMMON_BLOCK_CPU
|
||||
|
||||
config SOC_INTEL_COMMON_BLOCK_CAR
|
||||
bool
|
||||
default n
|
||||
|
|
|
@ -16,3 +16,4 @@ romstage-$(CONFIG_SOC_INTEL_COMMON_BLOCK_CPU) += cpulib.c
|
|||
ramstage-$(CONFIG_SOC_INTEL_COMMON_BLOCK_CPU) += cpulib.c
|
||||
ramstage-$(CONFIG_SOC_INTEL_COMMON_BLOCK_CPU_MPINIT) += mp_init.c
|
||||
ramstage-$(CONFIG_CPU_SUPPORTS_PM_TIMER_EMULATION) += pm_timer_emulation.c
|
||||
ramstage-$(CONFIG_SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE) += smmrelocate.c
|
||||
|
|
|
@ -45,6 +45,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CHIP_CONFIG
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
|
||||
select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2
|
||||
select SOC_INTEL_COMMON_BLOCK_HDA
|
||||
|
|
|
@ -39,7 +39,6 @@ ramstage-y += lockdown.c
|
|||
ramstage-y += p2sb.c
|
||||
ramstage-y += pmc.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += sd.c
|
||||
ramstage-y += me.c
|
||||
|
|
|
@ -1,250 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
|
||||
#include <console/console.h>
|
||||
#include <cpu/intel/common/common.h>
|
||||
#include <cpu/intel/em64t101_save_state.h>
|
||||
#include <cpu/intel/smm_reloc.h>
|
||||
#include <cpu/x86/mp.h>
|
||||
#include <cpu/x86/msr.h>
|
||||
#include <cpu/x86/mtrr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <device/pci_ops.h>
|
||||
#include <smp/node.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/msr.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/soc_chip.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
|
||||
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase,
|
||||
struct smm_relocation_params *relo_params)
|
||||
{
|
||||
u32 smbase;
|
||||
u32 iedbase;
|
||||
|
||||
/*
|
||||
* The relocated handler runs with all CPUs concurrently. Therefore
|
||||
* stagger the entry points adjusting SMBASE downwards by save state
|
||||
* size * CPU num.
|
||||
*/
|
||||
smbase = staggered_smbase;
|
||||
iedbase = relo_params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
||||
smbase, iedbase);
|
||||
|
||||
/*
|
||||
* All threads need to set IEDBASE and SMBASE to the relocated
|
||||
* handler region. However, the save state location depends on the
|
||||
* smm_save_state_in_msrs field in the relocation parameters. If
|
||||
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
||||
* the SMM handler in parallel, and each CPUs save state area is
|
||||
* located in their respective MSR space. If smm_save_state_in_msrs
|
||||
* is zero then the SMM relocation is happening serially so the
|
||||
* save state is at the same default location for all CPUs.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smbase_msr;
|
||||
msr_t iedbase_msr;
|
||||
|
||||
smbase_msr.lo = smbase;
|
||||
smbase_msr.hi = 0;
|
||||
|
||||
/*
|
||||
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
||||
* not clear why it differs from the SMBASE MSR.
|
||||
*/
|
||||
iedbase_msr.lo = 0;
|
||||
iedbase_msr.hi = iedbase;
|
||||
|
||||
wrmsr(SMBASE_MSR, smbase_msr);
|
||||
wrmsr(IEDBASE_MSR, iedbase_msr);
|
||||
} else {
|
||||
em64t101_smm_state_save_area_t *save_state;
|
||||
|
||||
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
||||
sizeof(*save_state));
|
||||
|
||||
save_state->smbase = smbase;
|
||||
save_state->iedbase = iedbase;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns 1 if SMM MSR save state was set. */
|
||||
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
||||
{
|
||||
msr_t smm_mca_cap;
|
||||
|
||||
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
||||
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.hi = 0;
|
||||
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
relo_params->smm_save_state_in_msrs = 1;
|
||||
}
|
||||
return relo_params->smm_save_state_in_msrs;
|
||||
}
|
||||
|
||||
/*
|
||||
* The relocation work is actually performed in SMM context, but the code
|
||||
* resides in the ramstage module. This occurs by trampolining from the default
|
||||
* SMRAM entry point to here.
|
||||
*/
|
||||
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase)
|
||||
{
|
||||
msr_t mtrr_cap;
|
||||
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
||||
|
||||
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
||||
|
||||
/*
|
||||
* Determine if the processor supports saving state in MSRs. If so,
|
||||
* enable it before the non-BSPs run so that SMM relocation can occur
|
||||
* in parallel in the non-BSP CPUs.
|
||||
*/
|
||||
if (cpu == 0) {
|
||||
/*
|
||||
* If smm_save_state_in_msrs is 1 then that means this is the
|
||||
* 2nd time through the relocation handler for the BSP.
|
||||
* Parallel SMM handler relocation is taking place. However,
|
||||
* it is desired to access other CPUs save state in the real
|
||||
* SMM handler. Therefore, disable the SMM save state in MSRs
|
||||
* feature.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
} else if (bsp_setup_msr_save_state(relo_params))
|
||||
/*
|
||||
* Just return from relocation handler if MSR save
|
||||
* state is enabled. In that case the BSP will come
|
||||
* back into the relocation handler to setup the new
|
||||
* SMBASE as well disabling SMM save state in MSRs.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Make appropriate changes to the save state map. */
|
||||
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
||||
|
||||
/*
|
||||
* The SMRR MSRs are core-level registers, so if two threads that share
|
||||
* a core try to both set the lock bit (in the same physical register),
|
||||
* a #GP will be raised on the second write to that register (which is
|
||||
* exactly what the lock is supposed to do), therefore secondary threads
|
||||
* should exit here.
|
||||
*/
|
||||
if (intel_ht_sibling())
|
||||
return;
|
||||
|
||||
/* Write SMRR MSRs based on indicated support. */
|
||||
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
||||
|
||||
/* Set Lock bit if supported */
|
||||
if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
|
||||
relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
|
||||
|
||||
/* Write SMRRs if supported */
|
||||
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
||||
write_smrr(relo_params);
|
||||
}
|
||||
|
||||
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
||||
{
|
||||
uintptr_t tseg_base;
|
||||
size_t tseg_size;
|
||||
/* All range registers are aligned to 4KiB */
|
||||
const u32 rmask = ~(4 * KiB - 1);
|
||||
|
||||
smm_region(&tseg_base, &tseg_size);
|
||||
|
||||
if (!IS_ALIGNED(tseg_base, tseg_size)) {
|
||||
printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
|
||||
return;
|
||||
}
|
||||
|
||||
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
||||
|
||||
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
||||
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
||||
params->smrr_base.hi = 0;
|
||||
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
||||
params->smrr_mask.hi = 0;
|
||||
}
|
||||
|
||||
static void setup_ied_area(struct smm_relocation_params *params)
|
||||
{
|
||||
char *ied_base;
|
||||
|
||||
struct ied_header ied = {
|
||||
.signature = "INTEL RSVD",
|
||||
.size = params->ied_size,
|
||||
.reserved = {0},
|
||||
};
|
||||
|
||||
ied_base = (void *)params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
|
||||
printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
|
||||
|
||||
/* Place IED header at IEDBASE. */
|
||||
memcpy(ied_base, &ied, sizeof(ied));
|
||||
|
||||
/* Zero out 32KiB at IEDBASE + 1MiB */
|
||||
memset(ied_base + 1 * MiB, 0, 32 * KiB);
|
||||
}
|
||||
|
||||
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
||||
size_t *smm_save_state_size)
|
||||
{
|
||||
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
||||
|
||||
fill_in_relocation_params(&smm_reloc_params);
|
||||
|
||||
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
||||
|
||||
if (smm_reloc_params.ied_size)
|
||||
setup_ied_area(&smm_reloc_params);
|
||||
|
||||
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
||||
}
|
||||
|
||||
void smm_initialize(void)
|
||||
{
|
||||
/* Clear the SMM state in the southbridge. */
|
||||
smm_southbridge_clear_state();
|
||||
|
||||
/*
|
||||
* Run the relocation handler for on the BSP to check and set up
|
||||
* parallel SMM relocation.
|
||||
*/
|
||||
smm_initiate_relocation();
|
||||
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
||||
}
|
||||
|
||||
void smm_relocate(void)
|
||||
{
|
||||
/*
|
||||
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
||||
* shall take place. Run the relocation handler a second time on the
|
||||
* BSP to do * the final move. For APs, a relocation handler always
|
||||
* needs to be run.
|
||||
*/
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
smm_initiate_relocation_parallel();
|
||||
else if (!boot_cpu())
|
||||
smm_initiate_relocation();
|
||||
}
|
|
@ -46,6 +46,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CNVI
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2
|
||||
select SOC_INTEL_COMMON_BLOCK_HDA
|
||||
select SOC_INTEL_COMMON_BLOCK_SA
|
||||
|
|
|
@ -38,7 +38,6 @@ ramstage-y += lockdown.c
|
|||
ramstage-y += p2sb.c
|
||||
ramstage-y += pmc.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += sd.c
|
||||
ramstage-y += me.c
|
||||
|
|
|
@ -1,250 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
|
||||
#include <console/console.h>
|
||||
#include <cpu/intel/common/common.h>
|
||||
#include <cpu/intel/em64t101_save_state.h>
|
||||
#include <cpu/intel/smm_reloc.h>
|
||||
#include <cpu/x86/mp.h>
|
||||
#include <cpu/x86/msr.h>
|
||||
#include <cpu/x86/mtrr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <device/pci_ops.h>
|
||||
#include <smp/node.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/msr.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/soc_chip.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
|
||||
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase,
|
||||
struct smm_relocation_params *relo_params)
|
||||
{
|
||||
u32 smbase;
|
||||
u32 iedbase;
|
||||
|
||||
/*
|
||||
* The relocated handler runs with all CPUs concurrently. Therefore
|
||||
* stagger the entry points adjusting SMBASE downwards by save state
|
||||
* size * CPU num.
|
||||
*/
|
||||
smbase = staggered_smbase;
|
||||
iedbase = relo_params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
||||
smbase, iedbase);
|
||||
|
||||
/*
|
||||
* All threads need to set IEDBASE and SMBASE to the relocated
|
||||
* handler region. However, the save state location depends on the
|
||||
* smm_save_state_in_msrs field in the relocation parameters. If
|
||||
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
||||
* the SMM handler in parallel, and each CPUs save state area is
|
||||
* located in their respective MSR space. If smm_save_state_in_msrs
|
||||
* is zero then the SMM relocation is happening serially so the
|
||||
* save state is at the same default location for all CPUs.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smbase_msr;
|
||||
msr_t iedbase_msr;
|
||||
|
||||
smbase_msr.lo = smbase;
|
||||
smbase_msr.hi = 0;
|
||||
|
||||
/*
|
||||
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
||||
* not clear why it differs from the SMBASE MSR.
|
||||
*/
|
||||
iedbase_msr.lo = 0;
|
||||
iedbase_msr.hi = iedbase;
|
||||
|
||||
wrmsr(SMBASE_MSR, smbase_msr);
|
||||
wrmsr(IEDBASE_MSR, iedbase_msr);
|
||||
} else {
|
||||
em64t101_smm_state_save_area_t *save_state;
|
||||
|
||||
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
||||
sizeof(*save_state));
|
||||
|
||||
save_state->smbase = smbase;
|
||||
save_state->iedbase = iedbase;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns 1 if SMM MSR save state was set. */
|
||||
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
||||
{
|
||||
msr_t smm_mca_cap;
|
||||
|
||||
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
||||
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.hi = 0;
|
||||
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
relo_params->smm_save_state_in_msrs = 1;
|
||||
}
|
||||
return relo_params->smm_save_state_in_msrs;
|
||||
}
|
||||
|
||||
/*
|
||||
* The relocation work is actually performed in SMM context, but the code
|
||||
* resides in the ramstage module. This occurs by trampolining from the default
|
||||
* SMRAM entry point to here.
|
||||
*/
|
||||
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase)
|
||||
{
|
||||
msr_t mtrr_cap;
|
||||
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
||||
|
||||
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
||||
|
||||
/*
|
||||
* Determine if the processor supports saving state in MSRs. If so,
|
||||
* enable it before the non-BSPs run so that SMM relocation can occur
|
||||
* in parallel in the non-BSP CPUs.
|
||||
*/
|
||||
if (cpu == 0) {
|
||||
/*
|
||||
* If smm_save_state_in_msrs is 1 then that means this is the
|
||||
* 2nd time through the relocation handler for the BSP.
|
||||
* Parallel SMM handler relocation is taking place. However,
|
||||
* it is desired to access other CPUs save state in the real
|
||||
* SMM handler. Therefore, disable the SMM save state in MSRs
|
||||
* feature.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
} else if (bsp_setup_msr_save_state(relo_params))
|
||||
/*
|
||||
* Just return from relocation handler if MSR save
|
||||
* state is enabled. In that case the BSP will come
|
||||
* back into the relocation handler to setup the new
|
||||
* SMBASE as well disabling SMM save state in MSRs.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Make appropriate changes to the save state map. */
|
||||
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
||||
|
||||
/*
|
||||
* The SMRR MSRs are core-level registers, so if two threads that share
|
||||
* a core try to both set the lock bit (in the same physical register),
|
||||
* a #GP will be raised on the second write to that register (which is
|
||||
* exactly what the lock is supposed to do), therefore secondary threads
|
||||
* should exit here.
|
||||
*/
|
||||
if (intel_ht_sibling())
|
||||
return;
|
||||
|
||||
/* Write SMRR MSRs based on indicated support. */
|
||||
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
||||
|
||||
/* Set Lock bit if supported */
|
||||
if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
|
||||
relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
|
||||
|
||||
/* Write SMRRs if supported */
|
||||
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
||||
write_smrr(relo_params);
|
||||
}
|
||||
|
||||
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
||||
{
|
||||
uintptr_t tseg_base;
|
||||
size_t tseg_size;
|
||||
/* All range registers are aligned to 4KiB */
|
||||
const u32 rmask = ~(4 * KiB - 1);
|
||||
|
||||
smm_region(&tseg_base, &tseg_size);
|
||||
|
||||
if (!IS_ALIGNED(tseg_base, tseg_size)) {
|
||||
printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
|
||||
return;
|
||||
}
|
||||
|
||||
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
||||
|
||||
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
||||
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
||||
params->smrr_base.hi = 0;
|
||||
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
||||
params->smrr_mask.hi = 0;
|
||||
}
|
||||
|
||||
static void setup_ied_area(struct smm_relocation_params *params)
|
||||
{
|
||||
char *ied_base;
|
||||
|
||||
struct ied_header ied = {
|
||||
.signature = "INTEL RSVD",
|
||||
.size = params->ied_size,
|
||||
.reserved = {0},
|
||||
};
|
||||
|
||||
ied_base = (void *)params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
|
||||
printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
|
||||
|
||||
/* Place IED header at IEDBASE. */
|
||||
memcpy(ied_base, &ied, sizeof(ied));
|
||||
|
||||
/* Zero out 32KiB at IEDBASE + 1MiB */
|
||||
memset(ied_base + 1 * MiB, 0, 32 * KiB);
|
||||
}
|
||||
|
||||
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
||||
size_t *smm_save_state_size)
|
||||
{
|
||||
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
||||
|
||||
fill_in_relocation_params(&smm_reloc_params);
|
||||
|
||||
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
||||
|
||||
if (smm_reloc_params.ied_size)
|
||||
setup_ied_area(&smm_reloc_params);
|
||||
|
||||
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
||||
}
|
||||
|
||||
void smm_initialize(void)
|
||||
{
|
||||
/* Clear the SMM state in the southbridge. */
|
||||
smm_southbridge_clear_state();
|
||||
|
||||
/*
|
||||
* Run the relocation handler for on the BSP to check and set up
|
||||
* parallel SMM relocation.
|
||||
*/
|
||||
smm_initiate_relocation();
|
||||
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
||||
}
|
||||
|
||||
void smm_relocate(void)
|
||||
{
|
||||
/*
|
||||
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
||||
* shall take place. Run the relocation handler a second time on the
|
||||
* BSP to do * the final move. For APs, a relocation handler always
|
||||
* needs to be run.
|
||||
*/
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
smm_initiate_relocation_parallel();
|
||||
else if (!boot_cpu())
|
||||
smm_initiate_relocation();
|
||||
}
|
|
@ -47,6 +47,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CNVI
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
|
||||
select SOC_INTEL_COMMON_BLOCK_GSPI_VERSION_2
|
||||
select SOC_INTEL_COMMON_BLOCK_HDA
|
||||
|
|
|
@ -39,7 +39,6 @@ ramstage-y += lockdown.c
|
|||
ramstage-y += p2sb.c
|
||||
ramstage-y += pmc.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += sd.c
|
||||
ramstage-y += me.c
|
||||
|
|
|
@ -1,250 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
|
||||
#include <console/console.h>
|
||||
#include <cpu/intel/common/common.h>
|
||||
#include <cpu/intel/em64t101_save_state.h>
|
||||
#include <cpu/intel/smm_reloc.h>
|
||||
#include <cpu/x86/mp.h>
|
||||
#include <cpu/x86/msr.h>
|
||||
#include <cpu/x86/mtrr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <device/pci_ops.h>
|
||||
#include <smp/node.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/msr.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/soc_chip.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
|
||||
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase,
|
||||
struct smm_relocation_params *relo_params)
|
||||
{
|
||||
u32 smbase;
|
||||
u32 iedbase;
|
||||
|
||||
/*
|
||||
* The relocated handler runs with all CPUs concurrently. Therefore
|
||||
* stagger the entry points adjusting SMBASE downwards by save state
|
||||
* size * CPU num.
|
||||
*/
|
||||
smbase = staggered_smbase;
|
||||
iedbase = relo_params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
||||
smbase, iedbase);
|
||||
|
||||
/*
|
||||
* All threads need to set IEDBASE and SMBASE to the relocated
|
||||
* handler region. However, the save state location depends on the
|
||||
* smm_save_state_in_msrs field in the relocation parameters. If
|
||||
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
||||
* the SMM handler in parallel, and each CPUs save state area is
|
||||
* located in their respective MSR space. If smm_save_state_in_msrs
|
||||
* is zero then the SMM relocation is happening serially so the
|
||||
* save state is at the same default location for all CPUs.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smbase_msr;
|
||||
msr_t iedbase_msr;
|
||||
|
||||
smbase_msr.lo = smbase;
|
||||
smbase_msr.hi = 0;
|
||||
|
||||
/*
|
||||
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
||||
* not clear why it differs from the SMBASE MSR.
|
||||
*/
|
||||
iedbase_msr.lo = 0;
|
||||
iedbase_msr.hi = iedbase;
|
||||
|
||||
wrmsr(SMBASE_MSR, smbase_msr);
|
||||
wrmsr(IEDBASE_MSR, iedbase_msr);
|
||||
} else {
|
||||
em64t101_smm_state_save_area_t *save_state;
|
||||
|
||||
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
||||
sizeof(*save_state));
|
||||
|
||||
save_state->smbase = smbase;
|
||||
save_state->iedbase = iedbase;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns 1 if SMM MSR save state was set. */
|
||||
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
||||
{
|
||||
msr_t smm_mca_cap;
|
||||
|
||||
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
||||
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.hi = 0;
|
||||
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
relo_params->smm_save_state_in_msrs = 1;
|
||||
}
|
||||
return relo_params->smm_save_state_in_msrs;
|
||||
}
|
||||
|
||||
/*
|
||||
* The relocation work is actually performed in SMM context, but the code
|
||||
* resides in the ramstage module. This occurs by trampolining from the default
|
||||
* SMRAM entry point to here.
|
||||
*/
|
||||
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase)
|
||||
{
|
||||
msr_t mtrr_cap;
|
||||
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
||||
|
||||
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
||||
|
||||
/*
|
||||
* Determine if the processor supports saving state in MSRs. If so,
|
||||
* enable it before the non-BSPs run so that SMM relocation can occur
|
||||
* in parallel in the non-BSP CPUs.
|
||||
*/
|
||||
if (cpu == 0) {
|
||||
/*
|
||||
* If smm_save_state_in_msrs is 1 then that means this is the
|
||||
* 2nd time through the relocation handler for the BSP.
|
||||
* Parallel SMM handler relocation is taking place. However,
|
||||
* it is desired to access other CPUs save state in the real
|
||||
* SMM handler. Therefore, disable the SMM save state in MSRs
|
||||
* feature.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
} else if (bsp_setup_msr_save_state(relo_params))
|
||||
/*
|
||||
* Just return from relocation handler if MSR save
|
||||
* state is enabled. In that case the BSP will come
|
||||
* back into the relocation handler to setup the new
|
||||
* SMBASE as well disabling SMM save state in MSRs.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Make appropriate changes to the save state map. */
|
||||
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
||||
|
||||
/*
|
||||
* The SMRR MSRs are core-level registers, so if two threads that share
|
||||
* a core try to both set the lock bit (in the same physical register),
|
||||
* a #GP will be raised on the second write to that register (which is
|
||||
* exactly what the lock is supposed to do), therefore secondary threads
|
||||
* should exit here.
|
||||
*/
|
||||
if (intel_ht_sibling())
|
||||
return;
|
||||
|
||||
/* Write SMRR MSRs based on indicated support. */
|
||||
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
||||
|
||||
/* Set Lock bit if supported */
|
||||
if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
|
||||
relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
|
||||
|
||||
/* Write SMRRs if supported */
|
||||
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
||||
write_smrr(relo_params);
|
||||
}
|
||||
|
||||
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
||||
{
|
||||
uintptr_t tseg_base;
|
||||
size_t tseg_size;
|
||||
/* All range registers are aligned to 4KiB */
|
||||
const u32 rmask = ~(4 * KiB - 1);
|
||||
|
||||
smm_region(&tseg_base, &tseg_size);
|
||||
|
||||
if (!IS_ALIGNED(tseg_base, tseg_size)) {
|
||||
printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
|
||||
return;
|
||||
}
|
||||
|
||||
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
||||
|
||||
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
||||
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
||||
params->smrr_base.hi = 0;
|
||||
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
||||
params->smrr_mask.hi = 0;
|
||||
}
|
||||
|
||||
static void setup_ied_area(struct smm_relocation_params *params)
|
||||
{
|
||||
char *ied_base;
|
||||
|
||||
struct ied_header ied = {
|
||||
.signature = "INTEL RSVD",
|
||||
.size = params->ied_size,
|
||||
.reserved = {0},
|
||||
};
|
||||
|
||||
ied_base = (void *)params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
|
||||
printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
|
||||
|
||||
/* Place IED header at IEDBASE. */
|
||||
memcpy(ied_base, &ied, sizeof(ied));
|
||||
|
||||
/* Zero out 32KiB at IEDBASE + 1MiB */
|
||||
memset(ied_base + 1 * MiB, 0, 32 * KiB);
|
||||
}
|
||||
|
||||
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
||||
size_t *smm_save_state_size)
|
||||
{
|
||||
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
||||
|
||||
fill_in_relocation_params(&smm_reloc_params);
|
||||
|
||||
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
||||
|
||||
if (smm_reloc_params.ied_size)
|
||||
setup_ied_area(&smm_reloc_params);
|
||||
|
||||
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
||||
}
|
||||
|
||||
void smm_initialize(void)
|
||||
{
|
||||
/* Clear the SMM state in the southbridge. */
|
||||
smm_southbridge_clear_state();
|
||||
|
||||
/*
|
||||
* Run the relocation handler for on the BSP to check and set up
|
||||
* parallel SMM relocation.
|
||||
*/
|
||||
smm_initiate_relocation();
|
||||
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
||||
}
|
||||
|
||||
void smm_relocate(void)
|
||||
{
|
||||
/*
|
||||
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
||||
* shall take place. Run the relocation handler a second time on the
|
||||
* BSP to do * the final move. For APs, a relocation handler always
|
||||
* needs to be run.
|
||||
*/
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
smm_initiate_relocation_parallel();
|
||||
else if (!boot_cpu())
|
||||
smm_initiate_relocation();
|
||||
}
|
|
@ -55,6 +55,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CHIP_CONFIG
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_PADCFG_PADTOL
|
||||
select SOC_INTEL_COMMON_BLOCK_GSPI
|
||||
|
|
|
@ -57,7 +57,6 @@ ramstage-y += pmc.c
|
|||
ramstage-y += pmutil.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += sd.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += spi.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += uart.c
|
||||
|
|
|
@ -1,250 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
|
||||
#include <console/console.h>
|
||||
#include <cpu/intel/common/common.h>
|
||||
#include <cpu/intel/em64t101_save_state.h>
|
||||
#include <cpu/intel/smm_reloc.h>
|
||||
#include <cpu/x86/mp.h>
|
||||
#include <cpu/x86/msr.h>
|
||||
#include <cpu/x86/mtrr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <device/pci_ops.h>
|
||||
#include <smp/node.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/msr.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/soc_chip.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
|
||||
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase,
|
||||
struct smm_relocation_params *relo_params)
|
||||
{
|
||||
u32 smbase;
|
||||
u32 iedbase;
|
||||
|
||||
/*
|
||||
* The relocated handler runs with all CPUs concurrently. Therefore
|
||||
* stagger the entry points adjusting SMBASE downwards by save state
|
||||
* size * CPU num.
|
||||
*/
|
||||
smbase = staggered_smbase;
|
||||
iedbase = relo_params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
||||
smbase, iedbase);
|
||||
|
||||
/*
|
||||
* All threads need to set IEDBASE and SMBASE to the relocated
|
||||
* handler region. However, the save state location depends on the
|
||||
* smm_save_state_in_msrs field in the relocation parameters. If
|
||||
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
||||
* the SMM handler in parallel, and each CPUs save state area is
|
||||
* located in their respective MSR space. If smm_save_state_in_msrs
|
||||
* is zero then the SMM relocation is happening serially so the
|
||||
* save state is at the same default location for all CPUs.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smbase_msr;
|
||||
msr_t iedbase_msr;
|
||||
|
||||
smbase_msr.lo = smbase;
|
||||
smbase_msr.hi = 0;
|
||||
|
||||
/*
|
||||
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
||||
* not clear why it differs from the SMBASE MSR.
|
||||
*/
|
||||
iedbase_msr.lo = 0;
|
||||
iedbase_msr.hi = iedbase;
|
||||
|
||||
wrmsr(SMBASE_MSR, smbase_msr);
|
||||
wrmsr(IEDBASE_MSR, iedbase_msr);
|
||||
} else {
|
||||
em64t101_smm_state_save_area_t *save_state;
|
||||
|
||||
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
||||
sizeof(*save_state));
|
||||
|
||||
save_state->smbase = smbase;
|
||||
save_state->iedbase = iedbase;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns 1 if SMM MSR save state was set. */
|
||||
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
||||
{
|
||||
msr_t smm_mca_cap;
|
||||
|
||||
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
||||
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.hi = 0;
|
||||
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
relo_params->smm_save_state_in_msrs = 1;
|
||||
}
|
||||
return relo_params->smm_save_state_in_msrs;
|
||||
}
|
||||
|
||||
/*
|
||||
* The relocation work is actually performed in SMM context, but the code
|
||||
* resides in the ramstage module. This occurs by trampolining from the default
|
||||
* SMRAM entry point to here.
|
||||
*/
|
||||
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase)
|
||||
{
|
||||
msr_t mtrr_cap;
|
||||
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
||||
|
||||
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
||||
|
||||
/*
|
||||
* Determine if the processor supports saving state in MSRs. If so,
|
||||
* enable it before the non-BSPs run so that SMM relocation can occur
|
||||
* in parallel in the non-BSP CPUs.
|
||||
*/
|
||||
if (cpu == 0) {
|
||||
/*
|
||||
* If smm_save_state_in_msrs is 1 then that means this is the
|
||||
* 2nd time through the relocation handler for the BSP.
|
||||
* Parallel SMM handler relocation is taking place. However,
|
||||
* it is desired to access other CPUs save state in the real
|
||||
* SMM handler. Therefore, disable the SMM save state in MSRs
|
||||
* feature.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
} else if (bsp_setup_msr_save_state(relo_params))
|
||||
/*
|
||||
* Just return from relocation handler if MSR save
|
||||
* state is enabled. In that case the BSP will come
|
||||
* back into the relocation handler to setup the new
|
||||
* SMBASE as well disabling SMM save state in MSRs.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Make appropriate changes to the save state map. */
|
||||
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
||||
|
||||
/*
|
||||
* The SMRR MSRs are core-level registers, so if two threads that share
|
||||
* a core try to both set the lock bit (in the same physical register),
|
||||
* a #GP will be raised on the second write to that register (which is
|
||||
* exactly what the lock is supposed to do), therefore secondary threads
|
||||
* should exit here.
|
||||
*/
|
||||
if (intel_ht_sibling())
|
||||
return;
|
||||
|
||||
/* Write SMRR MSRs based on indicated support. */
|
||||
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
||||
|
||||
/* Set Lock bit if supported */
|
||||
if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
|
||||
relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
|
||||
|
||||
/* Write SMRRs if supported */
|
||||
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
||||
write_smrr(relo_params);
|
||||
}
|
||||
|
||||
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
||||
{
|
||||
uintptr_t tseg_base;
|
||||
size_t tseg_size;
|
||||
/* All range registers are aligned to 4KiB */
|
||||
const u32 rmask = ~(4 * KiB - 1);
|
||||
|
||||
smm_region(&tseg_base, &tseg_size);
|
||||
|
||||
if (!IS_ALIGNED(tseg_base, tseg_size)) {
|
||||
printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
|
||||
return;
|
||||
}
|
||||
|
||||
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
||||
|
||||
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
||||
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
||||
params->smrr_base.hi = 0;
|
||||
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
||||
params->smrr_mask.hi = 0;
|
||||
}
|
||||
|
||||
static void setup_ied_area(struct smm_relocation_params *params)
|
||||
{
|
||||
char *ied_base;
|
||||
|
||||
struct ied_header ied = {
|
||||
.signature = "INTEL RSVD",
|
||||
.size = params->ied_size,
|
||||
.reserved = {0},
|
||||
};
|
||||
|
||||
ied_base = (void *)params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
|
||||
printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
|
||||
|
||||
/* Place IED header at IEDBASE. */
|
||||
memcpy(ied_base, &ied, sizeof(ied));
|
||||
|
||||
/* Zero out 32KiB at IEDBASE + 1MiB */
|
||||
memset(ied_base + 1 * MiB, 0, 32 * KiB);
|
||||
}
|
||||
|
||||
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
||||
size_t *smm_save_state_size)
|
||||
{
|
||||
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
||||
|
||||
fill_in_relocation_params(&smm_reloc_params);
|
||||
|
||||
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
||||
|
||||
if (smm_reloc_params.ied_size)
|
||||
setup_ied_area(&smm_reloc_params);
|
||||
|
||||
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
||||
}
|
||||
|
||||
void smm_initialize(void)
|
||||
{
|
||||
/* Clear the SMM state in the southbridge. */
|
||||
smm_southbridge_clear_state();
|
||||
|
||||
/*
|
||||
* Run the relocation handler for on the BSP to check and set up
|
||||
* parallel SMM relocation.
|
||||
*/
|
||||
smm_initiate_relocation();
|
||||
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
||||
}
|
||||
|
||||
void smm_relocate(void)
|
||||
{
|
||||
/*
|
||||
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
||||
* shall take place. Run the relocation handler a second time on the
|
||||
* BSP to do * the final move. For APs, a relocation handler always
|
||||
* needs to be run.
|
||||
*/
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
smm_initiate_relocation_parallel();
|
||||
else if (!boot_cpu())
|
||||
smm_initiate_relocation();
|
||||
}
|
|
@ -50,6 +50,7 @@ config CPU_SPECIFIC_OPTIONS
|
|||
select SOC_INTEL_COMMON_BLOCK_CNVI
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_MPINIT
|
||||
select SOC_INTEL_COMMON_BLOCK_CPU_SMMRELOCATE
|
||||
select SOC_INTEL_COMMON_BLOCK_DTT
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_DUAL_ROUTE_SUPPORT
|
||||
select SOC_INTEL_COMMON_BLOCK_GPIO_IOSTANDBY
|
||||
|
|
|
@ -40,7 +40,6 @@ ramstage-y += lockdown.c
|
|||
ramstage-y += p2sb.c
|
||||
ramstage-y += pmc.c
|
||||
ramstage-y += reset.c
|
||||
ramstage-y += smmrelocate.c
|
||||
ramstage-y += soundwire.c
|
||||
ramstage-y += systemagent.c
|
||||
ramstage-y += me.c
|
||||
|
|
|
@ -1,250 +0,0 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
|
||||
#include <console/console.h>
|
||||
#include <cpu/intel/common/common.h>
|
||||
#include <cpu/intel/em64t101_save_state.h>
|
||||
#include <cpu/intel/smm_reloc.h>
|
||||
#include <cpu/x86/mp.h>
|
||||
#include <cpu/x86/msr.h>
|
||||
#include <cpu/x86/mtrr.h>
|
||||
#include <cpu/x86/smm.h>
|
||||
#include <device/device.h>
|
||||
#include <device/pci.h>
|
||||
#include <device/pci_ops.h>
|
||||
#include <smp/node.h>
|
||||
#include <soc/cpu.h>
|
||||
#include <soc/msr.h>
|
||||
#include <soc/pci_devs.h>
|
||||
#include <soc/soc_chip.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
|
||||
static void update_save_state(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase,
|
||||
struct smm_relocation_params *relo_params)
|
||||
{
|
||||
u32 smbase;
|
||||
u32 iedbase;
|
||||
|
||||
/*
|
||||
* The relocated handler runs with all CPUs concurrently. Therefore
|
||||
* stagger the entry points adjusting SMBASE downwards by save state
|
||||
* size * CPU num.
|
||||
*/
|
||||
smbase = staggered_smbase;
|
||||
iedbase = relo_params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
||||
smbase, iedbase);
|
||||
|
||||
/*
|
||||
* All threads need to set IEDBASE and SMBASE to the relocated
|
||||
* handler region. However, the save state location depends on the
|
||||
* smm_save_state_in_msrs field in the relocation parameters. If
|
||||
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
||||
* the SMM handler in parallel, and each CPUs save state area is
|
||||
* located in their respective MSR space. If smm_save_state_in_msrs
|
||||
* is zero then the SMM relocation is happening serially so the
|
||||
* save state is at the same default location for all CPUs.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smbase_msr;
|
||||
msr_t iedbase_msr;
|
||||
|
||||
smbase_msr.lo = smbase;
|
||||
smbase_msr.hi = 0;
|
||||
|
||||
/*
|
||||
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
||||
* not clear why it differs from the SMBASE MSR.
|
||||
*/
|
||||
iedbase_msr.lo = 0;
|
||||
iedbase_msr.hi = iedbase;
|
||||
|
||||
wrmsr(SMBASE_MSR, smbase_msr);
|
||||
wrmsr(IEDBASE_MSR, iedbase_msr);
|
||||
} else {
|
||||
em64t101_smm_state_save_area_t *save_state;
|
||||
|
||||
save_state = (void *)(curr_smbase + SMM_DEFAULT_SIZE -
|
||||
sizeof(*save_state));
|
||||
|
||||
save_state->smbase = smbase;
|
||||
save_state->iedbase = iedbase;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns 1 if SMM MSR save state was set. */
|
||||
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
||||
{
|
||||
msr_t smm_mca_cap;
|
||||
|
||||
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
||||
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.hi = 0;
|
||||
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
relo_params->smm_save_state_in_msrs = 1;
|
||||
}
|
||||
return relo_params->smm_save_state_in_msrs;
|
||||
}
|
||||
|
||||
/*
|
||||
* The relocation work is actually performed in SMM context, but the code
|
||||
* resides in the ramstage module. This occurs by trampolining from the default
|
||||
* SMRAM entry point to here.
|
||||
*/
|
||||
void smm_relocation_handler(int cpu, uintptr_t curr_smbase,
|
||||
uintptr_t staggered_smbase)
|
||||
{
|
||||
msr_t mtrr_cap;
|
||||
struct smm_relocation_params *relo_params = &smm_reloc_params;
|
||||
|
||||
printk(BIOS_DEBUG, "In relocation handler: CPU %d\n", cpu);
|
||||
|
||||
/*
|
||||
* Determine if the processor supports saving state in MSRs. If so,
|
||||
* enable it before the non-BSPs run so that SMM relocation can occur
|
||||
* in parallel in the non-BSP CPUs.
|
||||
*/
|
||||
if (cpu == 0) {
|
||||
/*
|
||||
* If smm_save_state_in_msrs is 1 then that means this is the
|
||||
* 2nd time through the relocation handler for the BSP.
|
||||
* Parallel SMM handler relocation is taking place. However,
|
||||
* it is desired to access other CPUs save state in the real
|
||||
* SMM handler. Therefore, disable the SMM save state in MSRs
|
||||
* feature.
|
||||
*/
|
||||
if (relo_params->smm_save_state_in_msrs) {
|
||||
msr_t smm_feature_control;
|
||||
|
||||
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
||||
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
||||
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
||||
} else if (bsp_setup_msr_save_state(relo_params))
|
||||
/*
|
||||
* Just return from relocation handler if MSR save
|
||||
* state is enabled. In that case the BSP will come
|
||||
* back into the relocation handler to setup the new
|
||||
* SMBASE as well disabling SMM save state in MSRs.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
/* Make appropriate changes to the save state map. */
|
||||
update_save_state(cpu, curr_smbase, staggered_smbase, relo_params);
|
||||
|
||||
/*
|
||||
* The SMRR MSRs are core-level registers, so if two threads that share
|
||||
* a core try to both set the lock bit (in the same physical register),
|
||||
* a #GP will be raised on the second write to that register (which is
|
||||
* exactly what the lock is supposed to do), therefore secondary threads
|
||||
* should exit here.
|
||||
*/
|
||||
if (intel_ht_sibling())
|
||||
return;
|
||||
|
||||
/* Write SMRR MSRs based on indicated support. */
|
||||
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
||||
|
||||
/* Set Lock bit if supported */
|
||||
if (mtrr_cap.lo & SMRR_LOCK_SUPPORTED)
|
||||
relo_params->smrr_mask.lo |= SMRR_PHYS_MASK_LOCK;
|
||||
|
||||
/* Write SMRRs if supported */
|
||||
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
||||
write_smrr(relo_params);
|
||||
}
|
||||
|
||||
static void fill_in_relocation_params(struct smm_relocation_params *params)
|
||||
{
|
||||
uintptr_t tseg_base;
|
||||
size_t tseg_size;
|
||||
/* All range registers are aligned to 4KiB */
|
||||
const u32 rmask = ~(4 * KiB - 1);
|
||||
|
||||
smm_region(&tseg_base, &tseg_size);
|
||||
|
||||
if (!IS_ALIGNED(tseg_base, tseg_size)) {
|
||||
printk(BIOS_WARNING, "TSEG base not aligned with TSEG size! Not setting SMRR\n");
|
||||
return;
|
||||
}
|
||||
|
||||
smm_subregion(SMM_SUBREGION_CHIPSET, ¶ms->ied_base, ¶ms->ied_size);
|
||||
|
||||
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
||||
params->smrr_base.lo = (tseg_base & rmask) | MTRR_TYPE_WRBACK;
|
||||
params->smrr_base.hi = 0;
|
||||
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
||||
params->smrr_mask.hi = 0;
|
||||
}
|
||||
|
||||
static void setup_ied_area(struct smm_relocation_params *params)
|
||||
{
|
||||
char *ied_base;
|
||||
|
||||
struct ied_header ied = {
|
||||
.signature = "INTEL RSVD",
|
||||
.size = params->ied_size,
|
||||
.reserved = {0},
|
||||
};
|
||||
|
||||
ied_base = (void *)params->ied_base;
|
||||
|
||||
printk(BIOS_DEBUG, "IED base = 0x%08x\n", (u32)params->ied_base);
|
||||
printk(BIOS_DEBUG, "IED size = 0x%08x\n", (u32)params->ied_size);
|
||||
|
||||
/* Place IED header at IEDBASE. */
|
||||
memcpy(ied_base, &ied, sizeof(ied));
|
||||
|
||||
/* Zero out 32KiB at IEDBASE + 1MiB */
|
||||
memset(ied_base + 1 * MiB, 0, 32 * KiB);
|
||||
}
|
||||
|
||||
void smm_info(uintptr_t *perm_smbase, size_t *perm_smsize,
|
||||
size_t *smm_save_state_size)
|
||||
{
|
||||
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
||||
|
||||
fill_in_relocation_params(&smm_reloc_params);
|
||||
|
||||
smm_subregion(SMM_SUBREGION_HANDLER, perm_smbase, perm_smsize);
|
||||
|
||||
if (smm_reloc_params.ied_size)
|
||||
setup_ied_area(&smm_reloc_params);
|
||||
|
||||
*smm_save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
||||
}
|
||||
|
||||
void smm_initialize(void)
|
||||
{
|
||||
/* Clear the SMM state in the southbridge. */
|
||||
smm_southbridge_clear_state();
|
||||
|
||||
/*
|
||||
* Run the relocation handler for on the BSP to check and set up
|
||||
* parallel SMM relocation.
|
||||
*/
|
||||
smm_initiate_relocation();
|
||||
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
||||
}
|
||||
|
||||
void smm_relocate(void)
|
||||
{
|
||||
/*
|
||||
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
||||
* shall take place. Run the relocation handler a second time on the
|
||||
* BSP to do * the final move. For APs, a relocation handler always
|
||||
* needs to be run.
|
||||
*/
|
||||
if (smm_reloc_params.smm_save_state_in_msrs)
|
||||
smm_initiate_relocation_parallel();
|
||||
else if (!boot_cpu())
|
||||
smm_initiate_relocation();
|
||||
}
|
Loading…
Reference in a new issue