drivers/intel/fsp1_1: split relocation code for tool use

In order for easier consumption in userland tools split the
FSP 1.1 relocation logic into a single file w/ an aptly named
function name.

BUG=chrome-os-partner:44827
BRANCH=None
TEST=Built and booted glados.

Change-Id: I49998b8621611c638375bc90884e80d0cd3bdf78
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: bc898e1c528df60683575d553d6194a1e8200afa
Original-Change-Id: I736c0059d43f6d0be4fdb6e6f47cdb5c189a7ae8
Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/298833
Original-Reviewed-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/11665
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This commit is contained in:
Aaron Durbin 2015-09-10 22:52:27 -05:00 committed by Patrick Georgi
parent a77d0d6b39
commit a5be7fa5c1
4 changed files with 547 additions and 518 deletions

View File

@ -23,6 +23,7 @@ romstage-y += hob.c
ramstage-$(CONFIG_GOP_SUPPORT) += fsp_gop.c
ramstage-y += fsp_relocate.c
ramstage-y += fsp1_1_relocate.c
ramstage-y += fsp_util.c
ramstage-y += hob.c

View File

@ -0,0 +1,539 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2015 Google Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <console/console.h>
#include <endian.h>
#include <fsp/api.h>
#include <fsp/util.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define FSP_DBG_LVL BIOS_NEVER
/*
* UEFI defines everything as little endian. However, this piece of code
* can be integrated in a userland tool. That tool could be on a big endian
* machine so one needs to access the fields within UEFI structures using
* endian-aware accesses.
*/
/* Return 0 if equal. Non-zero if not equal. */
static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid)
{
if (le32toh(le_guid->Data1) != native_guid->Data1)
return 1;
if (le16toh(le_guid->Data2) != native_guid->Data2)
return 1;
if (le16toh(le_guid->Data3) != native_guid->Data3)
return 1;
return memcmp(le_guid->Data4, native_guid->Data4,
ARRAY_SIZE(le_guid->Data4));
}
/* Provide this for symmetry when accessing UEFI fields. */
static inline uint8_t le8toh(uint8_t byte)
{
return byte;
}
static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID;
static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID;
struct fsp_patch_table {
uint32_t signature;
uint16_t header_length;
uint8_t header_revision;
uint8_t reserved;
uint32_t patch_entry_num;
uint32_t patch_entries[0];
} __attribute__((packed));
#define FSPP_SIG 0x50505346
static void *relative_offset(void *base, ssize_t offset)
{
uintptr_t loc;
loc = (uintptr_t)base;
loc += offset;
return (void *)loc;
}
static uint32_t *fspp_reloc(void *fsp, size_t fsp_size, uint32_t e)
{
size_t offset;
/* Offsets live in bits 23:0. */
offset = e & 0xffffff;
/* If bit 31 is set then the offset is considered a negative value
* relative to the end of the image using 16MiB as the offset's
* reference. */
if (e & (1 << 31))
offset = fsp_size - (16 * MiB - offset);
/* Determine if offset falls within fsp_size for a 32 bit relocation. */
if (offset > fsp_size - sizeof(uint32_t))
return NULL;
return relative_offset(fsp, offset);
}
static int reloc_type(uint16_t reloc_entry)
{
/* Reloc type in upper 4 bits */
return reloc_entry >> 12;
}
static size_t reloc_offset(uint16_t reloc_entry)
{
/* Offsets are in low 12 bits. */
return reloc_entry & ((1 << 12) - 1);
}
static int te_relocate(uintptr_t new_addr, void *te, size_t size)
{
EFI_TE_IMAGE_HEADER *teih;
EFI_IMAGE_DATA_DIRECTORY *relocd;
EFI_IMAGE_BASE_RELOCATION *relocb;
uintptr_t image_base;
size_t fixup_offset;
size_t num_relocs;
uint16_t *reloc;
size_t relocd_offset;
uint8_t *te_base;
uint32_t adj;
teih = te;
if (le16toh(teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) {
printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n",
le16toh(teih->Signature),
EFI_TE_IMAGE_HEADER_SIGNATURE);
return -1;
}
/*
* A TE image is created by converting a PE file. Because of this
* the offsets within the headers are off. In order to calculate
* the correct releative offets one needs to subtract fixup_offset
* from the encoded offets. Similarly, the linked address of the
* program is found by adding the fixup_offset to the ImageBase.
*/
fixup_offset = le16toh(teih->StrippedSize);
fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER);
/* Keep track of a base that is correctly adjusted so that offsets
* can be used directly. */
te_base = te;
te_base -= fixup_offset;
image_base = le64toh(teih->ImageBase);
adj = new_addr - (image_base + fixup_offset);
printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n",
(void *)image_base, (void *)new_addr, adj);
/* Adjust ImageBase for consistency. */
teih->ImageBase = htole32(image_base + adj);
relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC];
relocd_offset = 0;
/* Though the field name is VirtualAddress it's actually relative to
* the beginning of the image which is linked at ImageBase. */
relocb = relative_offset(te,
le32toh(relocd->VirtualAddress) - fixup_offset);
while (relocd_offset < relocd->Size) {
size_t rva_offset = le32toh(relocb->VirtualAddress);
printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset);
num_relocs = le32toh(relocb->SizeOfBlock) - sizeof(*relocb);
num_relocs /= sizeof(uint16_t);
reloc = relative_offset(relocb, sizeof(*relocb));
printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs);
while (num_relocs > 0) {
uint16_t reloc_val = le16toh(*reloc);
int type = reloc_type(reloc_val);
size_t offset = reloc_offset(reloc_val);
printk(FSP_DBG_LVL, "reloc type %x offset %zx\n",
type, offset);
if (type == EFI_IMAGE_REL_BASED_HIGHLOW) {
uint32_t *reloc_addr;
uint32_t val;
offset += rva_offset;
reloc_addr = (void *)&te_base[offset];
val = le32toh(*reloc_addr);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc_addr, val, val + adj);
*reloc_addr = htole32(val + adj);
} else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) {
printk(BIOS_ERR, "Unknown reloc type: %x\n",
type);
return -1;
}
num_relocs--;
reloc++;
}
/* Track consumption of relocation directory contents. */
relocd_offset += le32toh(relocb->SizeOfBlock);
/* Get next relocation block to process. */
relocb = relative_offset(relocb, le32toh(relocb->SizeOfBlock));
}
return 0;
}
static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh)
{
size_t size;
/* Unpack the array into a type that can be used. */
size = 0;
size |= le8toh(csh->Size[0]) << 0;
size |= le8toh(csh->Size[1]) << 8;
size |= le8toh(csh->Size[2]) << 16;
return size;
}
static size_t section_data_offset(const EFI_COMMON_SECTION_HEADER *csh)
{
if (csh_size(csh) == 0x00ffffff)
return sizeof(EFI_COMMON_SECTION_HEADER2);
else
return sizeof(EFI_COMMON_SECTION_HEADER);
}
static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh)
{
size_t section_size;
if (csh_size(csh) == 0x00ffffff)
section_size = le32toh(SECTION2_SIZE(csh));
else
section_size = csh_size(csh);
return section_size - section_data_offset(csh);
}
static size_t file_section_offset(const EFI_FFS_FILE_HEADER *ffsfh)
{
if (IS_FFS_FILE2(ffsfh))
return sizeof(EFI_FFS_FILE_HEADER2);
else
return sizeof(EFI_FFS_FILE_HEADER);
}
static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh)
{
size_t size;
if (IS_FFS_FILE2(ffsfh))
size = le32toh(FFS_FILE2_SIZE(ffsfh));
else {
size = le8toh(ffsfh->Size[0]) << 0;
size |= le8toh(ffsfh->Size[1]) << 8;
size |= le8toh(ffsfh->Size[2]) << 16;
}
return size;
}
static int relocate_patch_table(void *fsp, size_t size, size_t offset,
ssize_t adjustment)
{
struct fsp_patch_table *table;
size_t num;
size_t num_entries;
table = relative_offset(fsp, offset);
if ((offset + sizeof(*table) > size) ||
(le16toh(table->header_length) + offset) > size) {
printk(BIOS_ERR, "FSPP not entirely contained in region.\n");
return -1;
}
num_entries = le32toh(table->patch_entry_num);
printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries);
for (num = 0; num < table->patch_entry_num; num++) {
uint32_t *reloc;
uint32_t reloc_val;
reloc = fspp_reloc(fsp, size,
le32toh(table->patch_entries[num]));
if (reloc == NULL) {
printk(BIOS_ERR, "Ignoring FSPP entry: %x\n",
le32toh(table->patch_entries[num]));
continue;
}
reloc_val = le32toh(*reloc);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc, reloc_val,
(unsigned int)(reloc_val + adjustment));
*reloc = htole32(reloc_val + adjustment);
}
return 0;
}
static ssize_t relocate_remaining_items(void *fsp, size_t size,
uintptr_t new_addr, size_t fih_offset)
{
EFI_FFS_FILE_HEADER *ffsfh;
EFI_COMMON_SECTION_HEADER *csh;
FSP_INFO_HEADER *fih;
ssize_t adjustment;
size_t offset;
printk(FSP_DBG_LVL, "FSP_INFO_HEADER offset is %zx\n", fih_offset);
if (fih_offset == 0) {
printk(BIOS_ERR, "FSP_INFO_HEADER offset is 0.\n");
return -1;
}
/* FSP_INFO_HEADER at first file in FV within first RAW section. */
ffsfh = relative_offset(fsp, fih_offset);
fih_offset += file_section_offset(ffsfh);
csh = relative_offset(fsp, fih_offset);
fih_offset += section_data_offset(csh);
fih = relative_offset(fsp, fih_offset);
if (guid_compare(&ffsfh->Name, &fih_guid)) {
printk(BIOS_ERR, "Bad FIH GUID.\n");
return -1;
}
if (le8toh(csh->Type) != EFI_SECTION_RAW) {
printk(BIOS_ERR, "FIH file should have raw section: %x\n",
csh->Type);
return -1;
}
if (le32toh(fih->Signature) != FSP_SIG) {
printk(BIOS_ERR, "Unexpected FIH signature: %08x\n",
le32toh(fih->Signature));
return -1;
}
adjustment = (intptr_t)new_addr - le32toh(fih->ImageBase);
/* Update ImageBase to reflect FSP's new home. */
fih->ImageBase = htole32(adjustment + le32toh(fih->ImageBase));
/* Need to find patch table and adjust each entry. The tables
* following FSP_INFO_HEADER have a 32-bit signature and header
* length. The patch table is denoted as having a 'FSPP' signature;
* the table format doesn't follow the other tables. */
offset = fih_offset + le32toh(fih->HeaderLength);
while (offset + 2 * sizeof(uint32_t) <= size) {
uint32_t *table_headers;
table_headers = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n",
offset);
if (le32toh(table_headers[0]) != FSPP_SIG) {
offset += le32toh(table_headers[1]);
continue;
}
if (relocate_patch_table(fsp, size, offset, adjustment)) {
printk(BIOS_ERR, "FSPP relocation failed.\n");
return -1;
}
return fih_offset;
}
printk(BIOS_ERR, "Could not find the FSP patch table.\n");
return -1;
}
static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
size_t fvh_offset, size_t *fih_offset)
{
EFI_FIRMWARE_VOLUME_HEADER *fvh;
EFI_FFS_FILE_HEADER *ffsfh;
EFI_COMMON_SECTION_HEADER *csh;
size_t offset;
size_t file_offset;
size_t size;
size_t fv_length;
offset = fvh_offset;
fvh = relative_offset(fsp, offset);
if (le32toh(fvh->Signature) != EFI_FVH_SIGNATURE)
return -1;
fv_length = le64toh(fvh->FvLength);
printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n",
fv_length, offset, fsp_size);
if (fvh->FvLength + offset > fsp_size)
return -1;
/* Parse only this FV. However, the algorithm uses offsets into the
* entire FSP region so make size include the starting offset. */
size = fv_length + offset;
if (guid_compare(&fvh->FileSystemGuid, &ffs2_guid)) {
printk(BIOS_ERR, "FVH not an FFS2 type.\n");
return -1;
}
if (le16toh(fvh->ExtHeaderOffset) != 0) {
EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh;
offset += le16toh(fvh->ExtHeaderOffset);
fveh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n",
(size_t)le16toh(fvh->ExtHeaderOffset),
(size_t)le32toh(fveh->ExtHeaderSize));
offset += le32toh(fveh->ExtHeaderSize);
/* FFS files are 8 byte aligned after extended header. */
offset = ALIGN_UP(offset, 8);
} else {
offset += le16toh(fvh->HeaderLength);
}
file_offset = offset;
while (file_offset + sizeof(*ffsfh) < size) {
offset = file_offset;
printk(FSP_DBG_LVL, "file offset: %zx\n", file_offset);
/* First file and section should be FSP info header. */
if (fih_offset != NULL && *fih_offset == 0)
*fih_offset = file_offset;
ffsfh = relative_offset(fsp, file_offset);
printk(FSP_DBG_LVL, "file type = %x\n", le8toh(ffsfh->Type));
printk(FSP_DBG_LVL, "file attribs = %x\n",
le8toh(ffsfh->Attributes));
/* Exit FV relocation when empty space found */
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX)
break;
/* Next file on 8 byte alignment. */
file_offset += ffs_file_size(ffsfh);
file_offset = ALIGN_UP(file_offset, 8);
/* Padding files have no section information. */
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD)
continue;
offset += file_section_offset(ffsfh);
while (offset + sizeof(*csh) < file_offset) {
size_t data_size;
size_t data_offset;
csh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "section offset: %zx\n", offset);
printk(FSP_DBG_LVL, "section type: %x\n",
le8toh(csh->Type));
data_size = section_data_size(csh);
data_offset = section_data_offset(csh);
if (data_size + data_offset + offset > file_offset) {
printk(BIOS_ERR, "Section exceeds FV size.\n");
return -1;
}
/*
* The entire FSP 1.1 image can be thought of as one
* program with a single link address even though there
* are multiple TEs linked separately. The reason is
* that each TE is linked for XIP. So in order to
* relocate the TE properly we need to form the
* relocated address based on the TE offset within
* FSP proper.
*/
if (le8toh(csh->Type) == EFI_SECTION_TE) {
void *te;
size_t te_offset = offset + data_offset;
uintptr_t te_addr = new_addr + te_offset;
printk(FSP_DBG_LVL, "TE image at offset %zx\n",
te_offset);
te = relative_offset(fsp, te_offset);
te_relocate(te_addr, te, data_size);
}
offset += data_size + data_offset;
/* Sections are aligned to 4 bytes. */
offset = ALIGN_UP(offset, 4);
}
}
/* Return amount of buffer parsed: FV size. */
return fv_length;
}
ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size)
{
size_t offset;
size_t fih_offset;
offset = 0;
fih_offset = 0;
while (offset < size) {
ssize_t nparsed;
/* Relocate each FV within the FSP region. The FSP_INFO_HEADER
* should only be located in the first FV. */
if (offset == 0)
nparsed = relocate_fvh(new_addr, fsp, size, offset,
&fih_offset);
else
nparsed = relocate_fvh(new_addr, fsp, size, offset,
NULL);
/* FV should be larger than 0 or failed to parse. */
if (nparsed <= 0) {
printk(BIOS_ERR, "FV @ offset %zx relocation failed\n",
offset);
return -1;
}
offset += nparsed;
}
return relocate_remaining_items(fsp, size, new_addr, fih_offset);
}

View File

@ -19,524 +19,7 @@
#include <console/console.h>
#include <cbmem.h>
#include <endian.h>
#include <fsp/util.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define FSP_DBG_LVL BIOS_NEVER
/*
* UEFI defines everything as little endian. However, this piece of code
* can be integrated in a userland tool. That tool could be on a big endian
* machine so one needs to access the fields within UEFI structures using
* endian-aware accesses.
*/
/* Return 0 if equal. Non-zero if not equal. */
static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid)
{
if (le32toh(le_guid->Data1) != native_guid->Data1)
return 1;
if (le16toh(le_guid->Data2) != native_guid->Data2)
return 1;
if (le16toh(le_guid->Data3) != native_guid->Data3)
return 1;
return memcmp(le_guid->Data4, native_guid->Data4,
ARRAY_SIZE(le_guid->Data4));
}
/* Provide this for symmetry when accessing UEFI fields. */
static inline uint8_t le8toh(uint8_t byte)
{
return byte;
}
static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID;
static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID;
struct fsp_patch_table {
uint32_t signature;
uint16_t header_length;
uint8_t header_revision;
uint8_t reserved;
uint32_t patch_entry_num;
uint32_t patch_entries[0];
} __attribute__((packed));
#define FSPP_SIG 0x50505346
static void *relative_offset(void *base, ssize_t offset)
{
uintptr_t loc;
loc = (uintptr_t)base;
loc += offset;
return (void *)loc;
}
static uint32_t *fspp_reloc(void *fsp, size_t fsp_size, uint32_t e)
{
size_t offset;
/* Offsets live in bits 23:0. */
offset = e & 0xffffff;
/* If bit 31 is set then the offset is considered a negative value
* relative to the end of the image using 16MiB as the offset's
* reference. */
if (e & (1 << 31))
offset = fsp_size - (16 * MiB - offset);
/* Determine if offset falls within fsp_size for a 32 bit relocation. */
if (offset > fsp_size - sizeof(uint32_t))
return NULL;
return relative_offset(fsp, offset);
}
static int reloc_type(uint16_t reloc_entry)
{
/* Reloc type in upper 4 bits */
return reloc_entry >> 12;
}
static size_t reloc_offset(uint16_t reloc_entry)
{
/* Offsets are in low 12 bits. */
return reloc_entry & ((1 << 12) - 1);
}
static int te_relocate(uintptr_t new_addr, void *te, size_t size)
{
EFI_TE_IMAGE_HEADER *teih;
EFI_IMAGE_DATA_DIRECTORY *relocd;
EFI_IMAGE_BASE_RELOCATION *relocb;
uintptr_t image_base;
size_t fixup_offset;
size_t num_relocs;
uint16_t *reloc;
size_t relocd_offset;
uint8_t *te_base;
uint32_t adj;
teih = te;
if (le16toh(teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) {
printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n",
le16toh(teih->Signature),
EFI_TE_IMAGE_HEADER_SIGNATURE);
return -1;
}
/*
* A TE image is created by converting a PE file. Because of this
* the offsets within the headers are off. In order to calculate
* the correct releative offets one needs to subtract fixup_offset
* from the encoded offets. Similarly, the linked address of the
* program is found by adding the fixup_offset to the ImageBase.
*/
fixup_offset = le16toh(teih->StrippedSize);
fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER);
/* Keep track of a base that is correctly adjusted so that offsets
* can be used directly. */
te_base = te;
te_base -= fixup_offset;
image_base = le64toh(teih->ImageBase);
adj = new_addr - (image_base + fixup_offset);
printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n",
(void *)image_base, (void *)new_addr, adj);
/* Adjust ImageBase for consistency. */
teih->ImageBase = htole32(image_base + adj);
relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC];
relocd_offset = 0;
/* Though the field name is VirtualAddress it's actually relative to
* the beginning of the image which is linked at ImageBase. */
relocb = relative_offset(te,
le32toh(relocd->VirtualAddress) - fixup_offset);
while (relocd_offset < relocd->Size) {
size_t rva_offset = le32toh(relocb->VirtualAddress);
printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset);
num_relocs = le32toh(relocb->SizeOfBlock) - sizeof(*relocb);
num_relocs /= sizeof(uint16_t);
reloc = relative_offset(relocb, sizeof(*relocb));
printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs);
while (num_relocs > 0) {
uint16_t reloc_val = le16toh(*reloc);
int type = reloc_type(reloc_val);
size_t offset = reloc_offset(reloc_val);
printk(FSP_DBG_LVL, "reloc type %x offset %zx\n",
type, offset);
if (type == EFI_IMAGE_REL_BASED_HIGHLOW) {
uint32_t *reloc_addr;
uint32_t val;
offset += rva_offset;
reloc_addr = (void *)&te_base[offset];
val = le32toh(*reloc_addr);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc_addr, val, val + adj);
*reloc_addr = htole32(val + adj);
} else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) {
printk(BIOS_ERR, "Unknown reloc type: %x\n",
type);
return -1;
}
num_relocs--;
reloc++;
}
/* Track consumption of relocation directory contents. */
relocd_offset += le32toh(relocb->SizeOfBlock);
/* Get next relocation block to process. */
relocb = relative_offset(relocb, le32toh(relocb->SizeOfBlock));
}
return 0;
}
static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh)
{
size_t size;
/* Unpack the array into a type that can be used. */
size = 0;
size |= le8toh(csh->Size[0]) << 0;
size |= le8toh(csh->Size[1]) << 8;
size |= le8toh(csh->Size[2]) << 16;
return size;
}
static size_t section_data_offset(const EFI_COMMON_SECTION_HEADER *csh)
{
if (csh_size(csh) == 0x00ffffff)
return sizeof(EFI_COMMON_SECTION_HEADER2);
else
return sizeof(EFI_COMMON_SECTION_HEADER);
}
static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh)
{
size_t section_size;
if (csh_size(csh) == 0x00ffffff)
section_size = le32toh(SECTION2_SIZE(csh));
else
section_size = csh_size(csh);
return section_size - section_data_offset(csh);
}
static size_t file_section_offset(const EFI_FFS_FILE_HEADER *ffsfh)
{
if (IS_FFS_FILE2(ffsfh))
return sizeof(EFI_FFS_FILE_HEADER2);
else
return sizeof(EFI_FFS_FILE_HEADER);
}
static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh)
{
size_t size;
if (IS_FFS_FILE2(ffsfh))
size = le32toh(FFS_FILE2_SIZE(ffsfh));
else {
size = le8toh(ffsfh->Size[0]) << 0;
size |= le8toh(ffsfh->Size[1]) << 8;
size |= le8toh(ffsfh->Size[2]) << 16;
}
return size;
}
static int relocate_patch_table(void *fsp, size_t size, size_t offset,
ssize_t adjustment)
{
struct fsp_patch_table *table;
size_t num;
size_t num_entries;
table = relative_offset(fsp, offset);
if ((offset + sizeof(*table) > size) ||
(le16toh(table->header_length) + offset) > size) {
printk(BIOS_ERR, "FSPP not entirely contained in region.\n");
return -1;
}
num_entries = le32toh(table->patch_entry_num);
printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries);
for (num = 0; num < table->patch_entry_num; num++) {
uint32_t *reloc;
uint32_t reloc_val;
reloc = fspp_reloc(fsp, size,
le32toh(table->patch_entries[num]));
if (reloc == NULL) {
printk(BIOS_ERR, "Ignoring FSPP entry: %x\n",
le32toh(table->patch_entries[num]));
continue;
}
reloc_val = le32toh(*reloc);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc, reloc_val,
(unsigned int)(reloc_val + adjustment));
*reloc = htole32(reloc_val + adjustment);
}
return 0;
}
static ssize_t relocate_remaining_items(void *fsp, size_t size,
uintptr_t new_addr, size_t fih_offset)
{
EFI_FFS_FILE_HEADER *ffsfh;
EFI_COMMON_SECTION_HEADER *csh;
FSP_INFO_HEADER *fih;
ssize_t adjustment;
size_t offset;
printk(FSP_DBG_LVL, "FSP_INFO_HEADER offset is %zx\n", fih_offset);
if (fih_offset == 0) {
printk(BIOS_ERR, "FSP_INFO_HEADER offset is 0.\n");
return -1;
}
/* FSP_INFO_HEADER at first file in FV within first RAW section. */
ffsfh = relative_offset(fsp, fih_offset);
fih_offset += file_section_offset(ffsfh);
csh = relative_offset(fsp, fih_offset);
fih_offset += section_data_offset(csh);
fih = relative_offset(fsp, fih_offset);
if (guid_compare(&ffsfh->Name, &fih_guid)) {
printk(BIOS_ERR, "Bad FIH GUID.\n");
return -1;
}
if (le8toh(csh->Type) != EFI_SECTION_RAW) {
printk(BIOS_ERR, "FIH file should have raw section: %x\n",
csh->Type);
return -1;
}
if (le32toh(fih->Signature) != FSP_SIG) {
printk(BIOS_ERR, "Unexpected FIH signature: %08x\n",
le32toh(fih->Signature));
return -1;
}
adjustment = (intptr_t)new_addr - le32toh(fih->ImageBase);
/* Update ImageBase to reflect FSP's new home. */
fih->ImageBase = htole32(adjustment + le32toh(fih->ImageBase));
/* Need to find patch table and adjust each entry. The tables
* following FSP_INFO_HEADER have a 32-bit signature and header
* length. The patch table is denoted as having a 'FSPP' signature;
* the table format doesn't follow the other tables. */
offset = fih_offset + le32toh(fih->HeaderLength);
while (offset + 2 * sizeof(uint32_t) <= size) {
uint32_t *table_headers;
table_headers = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n",
offset);
if (le32toh(table_headers[0]) != FSPP_SIG) {
offset += le32toh(table_headers[1]);
continue;
}
if (relocate_patch_table(fsp, size, offset, adjustment)) {
printk(BIOS_ERR, "FSPP relocation failed.\n");
return -1;
}
return fih_offset;
}
printk(BIOS_ERR, "Could not find the FSP patch table.\n");
return -1;
}
static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
size_t fvh_offset, size_t *fih_offset)
{
EFI_FIRMWARE_VOLUME_HEADER *fvh;
EFI_FFS_FILE_HEADER *ffsfh;
EFI_COMMON_SECTION_HEADER *csh;
size_t offset;
size_t file_offset;
size_t size;
size_t fv_length;
offset = fvh_offset;
fvh = relative_offset(fsp, offset);
if (le32toh(fvh->Signature) != EFI_FVH_SIGNATURE)
return -1;
fv_length = le64toh(fvh->FvLength);
printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n",
fv_length, offset, fsp_size);
if (fvh->FvLength + offset > fsp_size)
return -1;
/* Parse only this FV. However, the algorithm uses offsets into the
* entire FSP region so make size include the starting offset. */
size = fv_length + offset;
if (guid_compare(&fvh->FileSystemGuid, &ffs2_guid)) {
printk(BIOS_ERR, "FVH not an FFS2 type.\n");
return -1;
}
if (le16toh(fvh->ExtHeaderOffset) != 0) {
EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh;
offset += le16toh(fvh->ExtHeaderOffset);
fveh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n",
(size_t)le16toh(fvh->ExtHeaderOffset),
(size_t)le32toh(fveh->ExtHeaderSize));
offset += le32toh(fveh->ExtHeaderSize);
/* FFS files are 8 byte aligned after extended header. */
offset = ALIGN_UP(offset, 8);
} else {
offset += le16toh(fvh->HeaderLength);
}
file_offset = offset;
while (file_offset + sizeof(*ffsfh) < size) {
offset = file_offset;
printk(FSP_DBG_LVL, "file offset: %zx\n", file_offset);
/* First file and section should be FSP info header. */
if (fih_offset != NULL && *fih_offset == 0)
*fih_offset = file_offset;
ffsfh = relative_offset(fsp, file_offset);
printk(FSP_DBG_LVL, "file type = %x\n", le8toh(ffsfh->Type));
printk(FSP_DBG_LVL, "file attribs = %x\n",
le8toh(ffsfh->Attributes));
/* Exit FV relocation when empty space found */
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX)
break;
/* Next file on 8 byte alignment. */
file_offset += ffs_file_size(ffsfh);
file_offset = ALIGN_UP(file_offset, 8);
/* Padding files have no section information. */
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD)
continue;
offset += file_section_offset(ffsfh);
while (offset + sizeof(*csh) < file_offset) {
size_t data_size;
size_t data_offset;
csh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "section offset: %zx\n", offset);
printk(FSP_DBG_LVL, "section type: %x\n",
le8toh(csh->Type));
data_size = section_data_size(csh);
data_offset = section_data_offset(csh);
if (data_size + data_offset + offset > file_offset) {
printk(BIOS_ERR, "Section exceeds FV size.\n");
return -1;
}
/*
* The entire FSP 1.1 image can be thought of as one
* program with a single link address even though there
* are multiple TEs linked separately. The reason is
* that each TE is linked for XIP. So in order to
* relocate the TE properly we need to form the
* relocated address based on the TE offset within
* FSP proper.
*/
if (le8toh(csh->Type) == EFI_SECTION_TE) {
void *te;
size_t te_offset = offset + data_offset;
uintptr_t te_addr = new_addr + te_offset;
printk(FSP_DBG_LVL, "TE image at offset %zx\n",
te_offset);
te = relative_offset(fsp, te_offset);
te_relocate(te_addr, te, data_size);
}
offset += data_size + data_offset;
/* Sections are aligned to 4 bytes. */
offset = ALIGN_UP(offset, 4);
}
}
/* Return amount of buffer parsed: FV size. */
return fv_length;
}
static ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size)
{
size_t offset;
size_t fih_offset;
offset = 0;
fih_offset = 0;
while (offset < size) {
ssize_t nparsed;
/* Relocate each FV within the FSP region. The FSP_INFO_HEADER
* should only be located in the first FV. */
if (offset == 0)
nparsed = relocate_fvh(new_addr, fsp, size, offset,
&fih_offset);
else
nparsed = relocate_fvh(new_addr, fsp, size, offset,
NULL);
/* FV should be larger than 0 or failed to parse. */
if (nparsed <= 0) {
printk(BIOS_ERR, "FV @ offset %zx relocation failed\n",
offset);
return -1;
}
offset += nparsed;
}
return relocate_remaining_items(fsp, size, new_addr, fih_offset);
}
int fsp_relocate(struct prog *fsp_relocd, const struct region_device *fsp_src)
{
@ -564,7 +47,7 @@ int fsp_relocate(struct prog *fsp_relocd, const struct region_device *fsp_src)
return -1;
}
fih = relative_offset(new_loc, fih_offset);
fih = (void *)((uint8_t *)new_loc + fih_offset);
prog_set_area(fsp_relocd, new_loc, size);
prog_set_entry(fsp_relocd, fih, NULL);

View File

@ -53,6 +53,12 @@ void *get_first_resource_hob(const EFI_GUID *guid);
*/
int fsp_relocate(struct prog *fsp_relocd, const struct region_device *fsp_src);
/*
* Relocate FSP held within buffer defined by size to new_addr. Returns < 0
* on error, offset to FSP_INFO_HEADER on success.
*/
ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size);
/* Additional HOB types not included in the FSP:
* #define EFI_HOB_TYPE_HANDOFF 0x0001
* #define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002